
 http://dms.sagepub.com/
Methodology, Technology

and Simulation: Applications,
The Journal of Defense Modeling

 http://dms.sagepub.com/content/3/1/11
The online version of this article can be found at:

DOI: 10.1177/875647930600300103

 2006 3: 11The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology
Faisal Momen and Jerzy W. Rozenblit

Dynamic Decision Support in the Advanced Tactical Architecture for Combat Knowledge System

Published by:

 http://www.sagepublications.com

On behalf of:

 The Society for Modeling and Simulation International

found at:
 can beThe Journal of Defense Modeling and Simulation: Applications, Methodology, TechnologyAdditional services and information for

 http://dms.sagepub.com/cgi/alertsEmail Alerts:

 http://dms.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://dms.sagepub.com/content/3/1/11.refs.htmlCitations:

 at UNIV ARIZONA LIBRARY on June 11, 2011dms.sagepub.comDownloaded from

http://dms.sagepub.com/
http://dms.sagepub.com/content/3/1/11
http://www.sagepublications.com
http://www.scs.org/
http://dms.sagepub.com/cgi/alerts
http://dms.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://dms.sagepub.com/content/3/1/11.refs.html
http://dms.sagepub.com/

Dynamic Decision Support
in the Advanced Tactical Architecture
for Combat Knowledge System
Faisal Momen
Jerzy W. Rozenblit

University of Arizona
Department of Electrical and Computer Engineering
Tucson, AZ 85721
[momen,jr]@ece.arizona.edu

JDMS, Volume 3, Issue 1, January 2006 Pages 11–26
© 2006 The Society for Modeling and Simulation International

As modern military systems demand faster reactions and become more mobile, the difference between planning and
execution will fade until the planning process appears to merge with the battle management process. Continuous planning
systems must be fast, intuitive, and accurate. In particular, the amount of information will be overwhelming and the
number of options unmanageable for many future tactical environments. The Advanced Tactical Architecture for Combat
Knowledge System (ATACKS) has been designed to incorporate both visualization tools and intelligent algorithms to allow
for rapid visualization and decision making in these military environments.

The work presented in this paper demonstrates how an external, intelligent system, in this case a system based on
the Discrete Event System Specification (DEVS) framework, was adapted and successfully integrated with ATACKS to
produce dynamic decision support for battlefield visualization in a distributed environment. The DEVS decision support
application was designed to provide recommendations on the feasibility of proposed courses of action enacted in ATACKS.
By querying the appropriate unit models, it derives the state of the current battle. Subsequently, DEVS uses its wargaming
rules to formulate a Go or No-Go decision, which is communicated back to the commander working with ATACKS.

Keywords: Discrete event simulation, distributed computing, decision support systems

1. Introduction

The Advanced Tactical Architecture for Combat
Knowledge System (ATACKS) [1] was developed as
a commander’s decision support tool designed to
provide an abstract visualization of the battlespace
environment and to allow the user to quickly create and
execute major theatre of war and Stability and Support
Operation (SASO) scenarios based on its library of 3-D
elements. Developed in Java using the Java 3D library,
ATACKS seeks to provide a simple yet potent user
interface from which 3-D elements can be loaded and
placed anywhere in the battlefield. ATACKS is geared
toward increasing portability by modularizing and
isolating the GUI and graphics rendering portions of
the application, while improving the object-oriented
class hierarchy and taking advantage of powerful

external support tools. In addition, the simulation
engine has been improved and many new features
including configural displays [2] have been added.
Further details on these new features can be found in
section 2.
 The visualization engine, which is at the core of
ATACKS, however, can only be extended to include a
limited set of functionality. During its development, the
war game rule base and the inference engine have been
continually updated to handle new types of scenarios
that mark a drastic departure from the major theatre
of war operations that ATACKS was initially designed
to accommodate. While it is difficult enough to keep
pace with the rapid developments in the domains of
military doctrine and warfighting, newer advances in
the computer and cognitive sciences such as battlefield
reasoning under uncertainty push technology
requirements even further. To survive as a useful tool
in this rapidly evolving environment, ATACKS must
be able to interface with the various latest commercial

 at UNIV ARIZONA LIBRARY on June 11, 2011dms.sagepub.comDownloaded from

http://dms.sagepub.com/

Volume 3, Number 112 JDMS

Momen and Rozenblit

off-the-shelf products, leveraging its flexible object-
oriented visualization base to display the intelligence
derived from these external sources.
 A majority of military simulation systems adopt
the goal of providing a highly realistic representation
of the battlefield. They facilitate decision making by
virtually recreating the area of operations and providing
a more natural view of the battlespace than would be
possible using 2-D maps and overlays. Although these
systems have loosened their dependence somewhat on
underlying high-performance hardware (for graphics
rendering or database services), they still tend to require
extensive support in terms of time and effort to set up
detailed and highly accurate scenarios. As a result,
these fine-grained visualization systems are typically
confined to specialized decision support applications
such as battlestaff training or geospatial analysis,
where the immediate evaluation of proposed planning
options is not the primary consideration (for example,
see http://www.stk.com). A number of the industry
sponsored battlefield decision support tools that have
emerged are more focused on providing an open
architecture for integrating various low-level planning
and execution tools, collaborating with commercial
and national data sources (such as geographic,
satellite, meteorological) and incorporating various
data and visualization formats (www.webtas.com,
www.viewcore.com). Although they are capable of
providing decision support based on massive data sets
containing information from a variety of high-fidelety
sources, the need for rapid and effective evaluation of
a scenario has become overshadowed.
 ATACKS attempts to address this deficiency by
providing a decision support tool that is tailored for
rapid evaluation, response, and analysis of courses
of action. From a visualization perspective, rather
than attempting to provide the user with life-like or
realistic rendering of the battlefield, ATACKS seeks to
relieve the burden on the processing and information
bandwidth by conveying only the most important
aspects of the unfolding battle process. Raw data
is compacted into abstractions and represented
in such a way so as to be more meaningful to
and easily assimilated by the commander. While
human computer interaction (HCI) studies and
cognitive experiments are required to arrive at such
representations, the architecture of ATACKS was
designed with the initial goal in mind of facilitating the
substitution of various types of visual representation
at run-time [3]. From a decision support standpoint,
the ATACKS architecture has been designed to allow
easy integration with external tools that facilitate a
quick, simple, and high-level evaluation of a given
scenario.

 This paper describes the evolution of ATACKS from
a tool that aids the commander in quickly generating
and visualizing abstract 3-D battlespaces into a (multi-
tiered) distributed scenario execution environment
with decision support capabilities. Section 2 gives
background on the history and evolution of ATACKS,
goes over some of the current features, and discusses
the redesigned components and some of the new
technologies added. Section 3 introduces the area of
decision support systems (DSS) and describes how
an application based on the Discrete Event System
Specification (DEVS) framework can be used to
provide feedback to the commander on the validity
of applied courses of action. Section 4 forms the most
crucial part of this paper and discusses the challenges
involved integrating a DSS with ATACKS. It provides
the implementation details on how such a coupling
was accomplished. Section 5 provides an example
scenario where the commander is given a chance to test
the DEVS-based DSS through a SASO-type scenario.
Finally, section 6 provides some concluding remarks
and directions for further research.

2. The Advanced Tactical Architecture for
Combat Knowledge System (ATACKS)

ATACKS began as a “framework for testing various
display strategies” [3] with the goal of facilitating
understanding of the process of the battle as opposed
to merely displaying events as they occur on a
screen. This implies that the display of battlefield
events undergoes some transformation to make
the presentation more meaningful and closer to the
user’s mental picture of battlespace processes. The
architecture allowed display strategies to be easily
switched, in order for researchers to test, through
experiments, which representations were most
effective in conveying the underlying battlespace
process. The architecture was required to be flexible
and extensible, which an object-oriented design
naturally supported.
 The prototype that was created based on the
architecture was a 2-D visualization system built around
the concept of a process-centered display [2]. Written
in C++, the prototype successfully demonstrated all
of the goals of the architecture using a simulator
to provide the layers of data amalgamation and
intelligence production while using the visualization
layer prototype that was built to evaluate the various
display strategies. This prototype was later extended
to a 3-D interface and ported from the Silicon Graphics
C++/Open Inventor platform to Java/Java3D. The
advantages of a 3-D environment are that it is closer
to the user’s mental picture of battlespace events and
allows the user to view the events as they are being

 at UNIV ARIZONA LIBRARY on June 11, 2011dms.sagepub.comDownloaded from

http://dms.sagepub.com/

Volume 3, Number 1 JDMS 13

Dynamic Decision Support in the Advanced Tactical Architecture for Combat Knowledge System

presented in a number of perspectives that includes
the traditional 2-D view. The 3-D environment also
allows for a richer database or library of battlefield
elements, allowing each element access to another
plane in which to represent various properties about
itself. An example can be found in the evolution
of the basic friendly or enemy “Unit” whose 3-D
structure allows it to represent at least four times the
information, using only the faces of its cube, than a
2-D Unit symbol could present on its single face.
 The driving forces behind the move toward
the Java/Java3D platform were to leave behind
performance and portability limitations of hardware
and allow incorporation of the latest off-the-shelf 3-D
development tools that would allow rapid production
of robust object-oriented applications and scenes.
SGI workstations initially provided the most feasible
solution and the required development tools, but with
the release of a 3-D library for Java, it has become
possible to continue development of ATACKS on
the Windows PC environment. The combination of
Windows and Java currently offers better potential for
cross-platform integration with external applications
in addition to a greater variety of economical hardware
configurations for both development and testing. The
availability of Java and Java3D on all major platforms
also ensures that the application will not be limited
in the future by the current choice of implementation
language and platform.

Figure 1. 3-D Unit representation in ATACKS

2.1 ATACKS Software Architecture

The requirements specifications for a visualization
tool such as ATACKS tend to experience virtually
boundless growth. Abstract symobologies, visual-
ization concepts, decision support tools, and the
types of scenarios are all continually being updated,
fueling the expansion of ATACKS into new and
different areas. The recent interest in stability and

support operations has spearheaded the development
of multiple types of configural displays (CDs)—where
previously there was only one—and has led to the
integration of an independently developed SASO war-
gaming simulator [4]. The addition of new features can
strain a software system that was not designed with
reusability and flexibility in mind early in its design
life cycle. With ATACKS, we have tried to rely on the
sound object-oriented (OO) principles that have been
successfully used in industrial software projects to
reduce the need for spurious system redesign. The
resulting OO architecture of ATACKS allows us to
more easily integrate new concepts and functionality.
 Hierarchies occur at many levels in ATACKS.
All 3-D scene objects in ATACKS are derived from a
common base class. The Object/Actor class provides
the basic interface for all 3-D objects and implements
the commonly required methods for building,
transforming, selecting, deselecting, and editing an
object’s scenegraph. In addition, the interface for a
container of Objects/Actors and all of its subclasses is
also defined in the Object class. Subclasses of Object
include Units, terrain elements, lines of defense,
brigade and battalion boundaries, paths, the terrain,
the grid and the composite class ActorGroup. The
composite pattern allows a group of objects to be
treated the same as a single object. The ActorGroup
class, which inherits the interface of the Actor,
implements the basic composite methods to add or
remove Actors (and its subclasses, which are also
Actors) from the group or to search and retrieve an
Actor from the group by name. Using this strategy,
we can have an overall Unit group comprised of two
ActorGroups, enemies, and friends; and under each
of those ActorGroups we can have the individual
friendly and enemy Units. Based on this hierarchy,
behaviors can be assigned to all the Units on the
battlefield, just the friendly Units, all the enemy Units
of type Infantry, or to any single enemy or friendly
Unit. Design patterns such as the composite pattern
are recurring OO software constructs that have been
identified by experienced software engineers as useful,
reusable solutions to common design problems [5].
They are used extensively throughout ATACKS.
 The ATACKS class hierarchy has also been
designed with an eye toward maximizing the
modularity among the functional groups. Figure 2
shows the major classes that make up the ATACKS
software system.
 The classes to the right of the AtacksDirector (Java
3D scenegraph) represent new packages in ATACKS
that allow us to incorporate various decision support
mechanisms into the core visualization architecture.
The Configural Display Manager collaborates with the
Scenegraph which maintains all the Unit objects, to

 at UNIV ARIZONA LIBRARY on June 11, 2011dms.sagepub.comDownloaded from

http://dms.sagepub.com/

Volume 3, Number 114 JDMS

Momen and Rozenblit

coordinate the set of CDs for each Unit in a particular
scenario. A discussion of CDs follows in the next
section. Next to the Configural Display Manager is the
Events Manager class, which was added to consolidate
scenario event collection, generation, and propagation
facilities. Through the ATACKS Application
Programming Interface (API), the Events Manager can
communicate events that occur within ATACKS to an
external intelligent evaluator, which can investigate the
impact of the event on the current course of action or
provide any other meaningful recommendations to the
commander using ATACKS. With a flexible API design,
ATACKS becomes an open architecture to which a
broad range of decision aids can be coupled, provided
that the appropriate information translation layers are
in place between the applications. Section 4 describes
how an external intelligent dynamic decision support
application was successfully integrated with ATACKS
to provide feedback based on the commander’s
proposed courses of action.

2.2 Graphical User Interface
and Configural Displays

The present version of ATACKS has fulfilled many
of the requirements and suggestions put forth in
the earlier designs [3]. Most of the enhancements
can easily be recognized as changes in the ATACKS
graphical user interface (GUI) and improvements in
how the user interacts with the system. CDs of various
types have been introduced to alert the commander
to certain consequential events as they are played
out in the scenario. Collectively, the CDs portray the
process of the battle, while the battlespace window
depicts the actual events underlying the battle
process. Additionally, many important abilities from
the perspective of using ATACKS as an experimental
tool, for example, timing and storing user responses

to scenario queries, have been incorporated into the
design.
 Configurable displays present the user with abstract
representations of key events as they occur in the battle.
Different types of CDs were designed to display various
aspects of the war-gaming and battle process. The basic
CD designed for use in major theatre of war scenarios
is shown in Figure 3. The chalked rectangular outline
delineates the battle grid whose dimensions can be
adjusted by the commander through the ATACKS GUI.
Also represented in white are the Phase Lines (PL), the
Line of Advance (LOA), the Forward Edge of the Battle
Arena (FEBA) and other similar command and control
features. The purpose of these outlines is to provide
the viewer of the CD with references as to the position
and progress of the Units along the battlefield. The
position of the multicolored bar is tied to the location of
the Units on the battlefield. In addition to position, the
CD also portrays the combat effectiveness of the blue
force and the red-blue combat ratio in the case where
the friendly Unit encounters an enemy. As the Unit
comes into contact with and engages enemy forces,
its combat effectiveness diminishes and the green
bar will change to yellow and finally red, indicating
the Unit is no longer combat effective. Since a CD
is created for each friendly Unit before the scenario
begins execution, the combined CDs provide an at-
a-glance indication of the status and progress of the
Units according to the battle plan. If the commander is
interested in the CD of a particular Unit, a click of the
mouse on that Unit will cause the CD for that Unit to
become highlighted.

Figure 2. ATACKS architecture

Figure 3. Combat effectiveness configural display

 at UNIV ARIZONA LIBRARY on June 11, 2011dms.sagepub.comDownloaded from

http://dms.sagepub.com/

Volume 3, Number 1 JDMS 15

Dynamic Decision Support in the Advanced Tactical Architecture for Combat Knowledge System

 The ATACKS visualization window and CDs were
designed to serve as useful tools to allow a military
user to quickly gain situational awareness and
understanding of a scenario. Many times, however,
a commander may wish to adjust certain elements of
a course of action to quickly investigate their impact
on the execution of a scenario before accepting a
particular solution. Decision support tools help users
make informed, objective decisions on strategic or
operational issues, such as picking one course of
action over another. By modeling the dynamics of
the battlespace as discrete events, and defining an
interface through which other programs can learn
or be informed about the events, ATACKS can
accommodate a large array of decision support tools
while maintaining its simple and modular design
philosophy. Users will then be able to interact with
the system through the visualization interface as if it
were an analysis tool, rather than simply be observers
of the executing scenario.

3. Dynamic Battlespace Modeling

The decision support system (DSS) introduced in this
paper is based on the DEVS framework [6, 7]. In the
DEVS framework, objects—e.g., enemy and friendly
Units (battalions, platoons, etc.)—are represented by
models. The models are characterized by their input,
output, and state sets, and a state transition function.
The input set defines all the messages the model is
able to receive and the output set defines the response
messages the model may signal to the outside world.
Inputs that arrive from external sources, i.e., other
models, may trigger a change of state for the model
receiving the input. In addition, an internal transition
function can be defined that regulates the change
of states in the absence of external inputs. These
simple atomic models can then be coupled with other
models to create more complex coupled models,
which themselves can be coupled with other atomic
or coupled models. This property of closure under
coupling also allows DEVS simulation models to be
readily mapped to high level architecture (HLA)–
compliant modeling and simulation environments
[8, 9], opening the way for interaction with a range
of decision support tools that adhere to the Defense
Modeling and Simulation Office (DMSO) standard.
 Models in the DEVS environment are event driven.
Most of the interactions between the models occur
because events are exchanged, with the exception
of those events generated by internal transitions.
For example, in the ATACKS DEVS simulation, the
Engine model sends move messages to the WarGamer
model, which interprets the message as an event that
it needs to respond to and responds accordingly.

Conversely, an internal event would be when a Unit
model discovers it is low on fuel and places itself in
a not_ready state. In order to use ATACKS with the
DEVS simulation environment, the events that need
to be exchanged between the two applications need to
be defined. Currently, the progress (position, combat
effectiveness) of friendly Units on a particular course
of action (COA) is tracked by the CDs. Whenever a
friendly Unit encounters an enemy within the vicinity
of a phase line or line of defensible terrain, the war
game rules in ATACKS are triggered and a message is
sent to the consequences display to output the results of
the encounter. For DEVS to be able to provide decision
support, it needs to be notified of these events as they
occur during the course of the simulation.
 Figure 4 is a representation of how the various
tools, ATACKS, DEVS, and FOX, a two-sided course
of action generator and war gamer [10], fit together
in a distributed architecture. FOX uses its genetic
algorithm and COA domain expertise to generate
multiple friendly and enemy COAs. The COA is
output as an XML file and transferred to the system
running ATACKS. ATACKS then uses its XML
parser to translate the FOX COA into a local scenario
representation. While ATACKS is simulating the COA,
the user is free to inject into the simulation external
events that FOX either did not or cannot evaluate
using its fitness function. Political events such as
demonstrations and surprise elements such as booby
traps or ambushes, with which FOX was not set up to
interact, can be inserted into the simulation by a user
to further test the resiliency of the generated COA.
Since FOX has completed its job by providing a COA
for visualization in ATACKS, decision support for

Figure 4. Distributed architecture overview

 at UNIV ARIZONA LIBRARY on June 11, 2011dms.sagepub.comDownloaded from

http://dms.sagepub.com/

Volume 3, Number 116 JDMS

Momen and Rozenblit

these new user-generated events needs to be obtained
from an external war gamer and inference engine. The
DEVS decision support tool described in this section
was designed for precisely that purpose.

3.1 DEVS DSS Models

Within the DSS, collaboration takes place between the
WarGamer and the Unit models. There is one Unit
model for each friendly or enemy Unit in ATACKS.
In addition, an Engine model coordinates the actions
of the DSS, and interfaces with the outside world.
The following sections provide a description of these
models and how they were coupled to produce an
abstract DSS for use with ATACKS.

3.1.1 DSS Interface Engine

 The Engine primarily serves one purpose: it
interfaces with ATACKS to receive notification
of events on a periodic basis or request further
information that is required by the WarGamer model
for evaluation. The WarGamer queries the Units to find
out if the grid location representing the destination
of the move is occupied by an enemy. If so, damages
are calculated and broadcast to the Units—only the
matching Units subtract the damage amount from
their strengths. Based on the results of this attrition
to both sides, a recommendation for the move can be
deduced that will be sent back to ATACKS to alert the
commander. The Engine model initializes to the ready
state and times out in delta_1 to the waiting state. As
it transitions to the waiting state, it begins waiting for
a move event to arrive from ATACKS. Once the move
event is received, a message is sent to the WarGamer
containing the name of the Unit that the commander
wishes to relocate as well as the change desired in the
X/Y–direction for that Unit.
 After sending the move to the WarGamer, the
Engine waits for a response. If none is received an
error message is printed, and the simulation continues
with the next move event that is received. In most
cases however, the WarGamer responds to the move
message by returning the name of a Unit and the
recommendation for the change in its position. The
Unit for which the WarGamer sends back the move
response does not necessarily have to be the same as
the Unit whose move the Engine asked it to evaluate.
The specifics of which Unit should be moved is a
function of the ComputeBattleResults method of the
WarGamer. Once the Engine receives the move event
from the WarGamer, it goes into its sending phase to
broadcast the move to all the Units, leaving it to the
Unit to decide if the message applies to it. (This is
accomplished by passing the UnitName as the second

field in the message, the first field being the command
itself.) This is done primarily so that the Unit models
have an updated picture of what is transpiring on the
battlefield. The recommendation is then sent back to
ATACKS through the interface mechanism.

3.1.2 WarGamer

 The WarGamer receives moves from the Engine for
evaluation. Since it is only given the name of the Unit
and the desired change in its position, it broadcasts
the UnitName and waits in state waitingPosn for the
matching Unit to reply with its x and y coordinates.
Once it receives the response from a Unit, it uses the
received position values and the desired change
given to it by the Engine to calculate the destination
of the move. Now all that remains is to check if
there is an enemy at the destination location. The
calculated destination moves are sent to all the Units
and only those Units which are of type “enemy” and
whose position matches the advertised destination
coordinates respond. The strength of the responding
Units is sent in the reply and used by the WarGamer
to calculate the friend/enemy force ratios. The
WarGamer contains a simplified rule base that assigns
attrition to both sides based on the force ratio. If the
ratio is unfavorable to the friends, an alternate move
should be calculated and returned to the Engine.
However, in this simplified model, the WarGamer
simply chooses to ignore the response step, causing
the Engine to assume that an error occurred in the
WarGamer and to proceed with the next move in the
scenario. This achieves the same function as returning
a move recommending the Unit to stay where it is.
 If there happen to be no enemies at the destination
location, the recommended move is calculated and, in
this case, it is the same as the original sent from the
Engine. Since there is no engagement and consequently
no attrition, the sendDamage phase is bypassed
advancing directly to the sendMove phase, which
sends the recommended move response to the Engine.

3.1.3 Units

 The Unit is the most basic and simple of the models.
It waits in the ready state until it receives an external
event. The first field of the message contains the
command to be performed on the Unit; for example:

If the command is move, the Unit first checks
to see if it is alive. (A Unit is dead if its
strength drops below a minimum threshold,
minimumStrengthToLive.) If alive, the Unit
updates its position variables to reflect the
changes dictated by the requested move.

•

 at UNIV ARIZONA LIBRARY on June 11, 2011dms.sagepub.comDownloaded from

http://dms.sagepub.com/

Volume 3, Number 1 JDMS 17

Dynamic Decision Support in the Advanced Tactical Architecture for Combat Knowledge System

If the command is sendPosn, the Unit checks to
see if the name contained in the second field of
the message matches its name. Once again it
checks to see if the strength is greater than zero,
i.e., if there is still life left in the Unit to perform
move operations. If it has any strength, the Unit
responds by sending its position and strength. If
the strength is less than zero, a message is printed
informing the system that the request befell a
deactivated Unit.
If the command is sendEnemy, a quick check is
performed to see if the Unit is of type enemy
and if its position variables match the received
location coordinates. If these checks are satisfied
and the Unit is alive, i.e., capable of engaging
in battle, then it responds by sending out its
strength to the WarGamer. The WarGamer will
wait to accumulate the strengths of all enemies
located in the vicinity of coordinates it broadcast
in order to determine the overall enemy force
ratio, if more than one enemy responds. In
addition to the strengths, the names of the
responding enemies are also stored in an array
by the WarGamer for use in the next step, which
is the dispensation of damage to all committed
enemy and friend Units.
Finally, if the command is attrition and the name
sent matches the name of the Unit, the sent
damage is subtracted from the Units strength.
If the strength dips below the minimum life
threshold, the state of the Unit is changed to
dead.

•

•

•

 In a simulation, the models of the Units should
behave as described above. Units only respond to
commands given by a superior, in this case, the Engine
model, which could be considered the equivalent of
a commander in the field. The WarGamer could be
thought of as the battlestaff, analyzing the suggested
moves of the Engine (commander) and recommending
alterations and calculating damages accrued. The
ATACKS simulator would be responsible for the
visualization of the battlespace and coordination of
the enemy and friendly forces in a scenario, while a
rule-based inference model would validate suggested
moves and calculate any necessary attrition to the blue
and red forces.

3.2 Coupling

The coupling between the atomic models discussed
above is shown in Figure 5. The Engine and WarGamer
communicate with the Units via broadcasting—usually
some information (e.g., the name of a Unit) is sent in
the message that allows a Unit to decide if the message
is intended for itself and, if so, to respond accordingly.
 The coupling basically represents the information
shown, namely, which output port of which model
is attached to the input port of another model. For
example, one can see that the “UnitsOut” output port
of the Engine is connected to the “in” input port of
model Friend1. This coupling is then repeated for all
Units.

Figure 5. Coupling between DEVS-DSS models

{ sendPosition,
sendEnemyStrength,

sendDamage }

Engine
WarGamerOut

UnitsOut

{ checkMove }

{ sendMove }

WarGamer
EngineOut

UnitsOut
Units

WarGamerOut

Friend_1

Friend_2

Enemy_1

Enemy_2

WarGamerOut

WarGamerOut

WarGamerOut

WarGamerOut

{ sendingPosition,
sendingStrength }

{ move }

 at UNIV ARIZONA LIBRARY on June 11, 2011dms.sagepub.comDownloaded from

http://dms.sagepub.com/

Volume 3, Number 118 JDMS

Momen and Rozenblit

4. Integration of Dynamic Models
with ATACKS

As described in the previous section, the WarGamer
in DEVS DSS queries the state of the Unit models and,
based on its war game rule base, reaches a decision
regarding the move in question. In reality, the Unit
models that are queried need to supply the WarGamer
with an accurate account of their status based on
what is happening in the simulation within ATACKS.
In other words, the Unit models in DEVS DSS need
to query the status of the actual ATACKS Unit
elements that they represent so that the WarGamer’s
recommendation is based on the most recent factual
data. Although the DEVS DSS is written in JAVA and
runs in the Windows environment, the same cannot
always be said for other third-party tools that we may
wish to integrate with ATACKS. Such tools need to
communicate and obtain information from ATACKS
that can potentially run on another JAVA platform.
The DEVS DSS outlined above, implemented on the
DEVS/HLA platform, can be used as an intermediary
to interconnect other HLA-compliant support
tools (i.e., other tools that run on the HLA runtime
infrastructure) with ATACKS. If greater control
over the modeling and simulation environment or
interoperability with non–HLA-compliant systems
is desired, a DEVS middleware based distributed
simulation environment implementation can be
used [11, 12]. The following sections describe how
communication between two applications was
achieved using the Common Object Request Broker
Architecture (CORBA) and how, in this instance,
CORBA Interface Definition Language (IDL) was
used to define the interface between ATACKS and the
DEVS DSS.

4.1 Middleware Selection

Decision support tools provide a very useful resource
for commanders in helping to improve the quality of
their decision-making process. Battlestaff make heavy
use of overlays in their terrain maps to help them
plan COAs. Many of these functions are now being
taken over or enhanced through the use of computer-
based tools. For example, FOX uses a steady-state
genetic algorithm to generate thousands of COAs and
then narrows the choices down to the few best while
ensuring that the selected options are sufficiently
different from each other. It presents the choices to
the user who ultimately decides which COA to select
for execution. Incorporating such tools directly into
ATACKS may be a worthwhile undertaking, but FOX
is only one example of the kinds of decision support
tools that are available. Attempting to incorporate

every interesting DSS that is encountered into ATACKS
would be extremely difficult if not impossible to
achieve. In any case, there is no guarantee that the
tools would even support one another, for instance,
if they use differing thresholds for engagement of an
enemy Unit. The solution demonstrated here would
be to use the different tools but, rather than code
them to be modules within ATACKS, to define an API
that any external tool could use to communicate with
ATACKS.
 Moreover, even though ATACKS runs on a
generalized platform, interoperability issues
invariably arise when trying to interface with
programs written for different target environments.
CORBA is a communication medium that is language
independent, as well as platform neutral, while being
available for a wide range of programming languages
and platforms. The Object Management Group (OMG)
adopted CORBA as the standard infrastructure
for applications that need to work together over a
network [13]. The specification is vendor neutral and
independent of any implementation language since
all products based on the specification must support
or use the standard Internet Inter-Orb Protocol (IIOP)
to inter-operate with each other.
 CORBA enforces adherence to three defined
standards: the OMG Interface Definition Language
(OMG IDL), the Object Request Broker (ORB), and the
standard IIOP. The entire architecture itself is object
oriented, and the interface for each CORBA object is
defined using IDL. The IDL interface describes what
operations an object can perform as well as what the
parameters for those operations are. The same IDL
file can be compiled on two different machines into
any of the currently supported high-level languages
including JAVA, C, or C++ through standardized
mappings.
 The files generated by the CORBA IDL compiler
include client stubs and server skeletons. These classes
define the operations that need to be implemented by
the actual application client and server as specified in
the original IDL file. As long as these basic operations
are implemented, any CORBA-compliant client will
be able to invoke the IDL defined operations on any
CORBA-compliant server. The generated stub and
skeleton then serve as proxies for the local client and
server, respectively, taking care of whatever is needed
to get a local method invocation through the network
to an object that can correctly handle the request.

4.2 Interface Design

Designing the interface between ATACKS and DEVS
using CORBA requires careful consideration in
determining what information needs to be shared

 at UNIV ARIZONA LIBRARY on June 11, 2011dms.sagepub.comDownloaded from

http://dms.sagepub.com/

Volume 3, Number 1 JDMS 19

Dynamic Decision Support in the Advanced Tactical Architecture for Combat Knowledge System

between the applications. At the least, some
information regarding a Unit, e.g., its designation,
position, and status, would be required by the
WarGamer. In ATACKS, every Unit that has been
assigned to a path automatically becomes associated
with a sensor that detects intersections of that Unit
with other enemy and friendly forces whenever the
Unit’s translation is updated. Consequently, each
friendly Unit maintains a list of the close-by or
engaged enemy and friendly forces. The WarGamer
in the DEVS DSS uses the friendly to enemy combat
ratio in its rules to determine attrition and arrive at
a recommendation, so the intersecting enemy and
friendly Unit information would also need to be
communicated across the applications. Finally, a
method is provided to retrieve the current status of
all the active Units in ATACKS in order to refresh
the information contained in the DEVS Unit models
so that they are up-to-date before any inferences are
formed. This final operation can be used in lieu of
multiple calls for individual Unit information if the
bandwidth availability is a primary concern or if the
data needs to be packaged in a structured format such
as XML for processing in the decision support layer.
 In addition to the types of information described
above that are paramount to any tool designed for
analyzing and providing feedback for events triggered
in the battlefield, scenario generators such as FOX
require a whole new set of interfaces, e.g., to populate
the battlefield with terrain or Units, assign behaviors
to objects, and so on. The preliminary Application
Programming Interface for ATACKS (ATACKS API)
was developed with methods that interact directly with
the ATACKS Scenegraph class and provide a means to
fulfill this need. The methods that make up the API are
listed in Figure 6.

4.3 Integration Revisited

The collaboration framework for ATACKS and DEVS
DSS is shown in Figure 7. On either extreme lie the

applications that we are trying to integrate. The
ATACKS-side CORBA server is linked to ATACKS on
one side through interprocess communication (IPC),
and to the DEVS-side server on the other through the
ORB. IPC allows one process to exchange messages
with a second process on the same machine. In its
most basic form, a parent process spawns a child
process and they are able to communicate back and
forth through a one-way and sometimes two-way
stream [14].
 The ATACKS-side server, which is executed
independently of the ATACKS visualization
component, listens for messages in the IPC message
queue after registering its interface objects with the
ORB and binding with the DEVS-side server. The
DEVS-side server must already be running at this
point on any Windows PC machine or the ATACKS-
side server will fail to bind with it and exit, raising a
CORBA_NO_IMPLEMENT exception. Whenever an
ATACKS event message is received, the ATACKS-
side server exits the IPC loop—that is, it stops actively
listening for messages from ATACKS on the message
queue—and forwards the event notice to the DEVS
DSS using the DEVS object reference that is acquired
earlier during the binding state.
 Once the message has been sent to DEVS DSS, it
is possible that further information may be required
from ATACKS before the DSS can determine a
recommendation. As a result, immediately after
forwarding the event to DEVS, the ATACKS-side server
invokes the impl_is_ready() method on the ATACKS-

Figure 6. ATACKS API

Figure 7. Integration overview

 at UNIV ARIZONA LIBRARY on June 11, 2011dms.sagepub.comDownloaded from

http://dms.sagepub.com/

Volume 3, Number 120 JDMS

Momen and Rozenblit

side CORBA object to put it into the CORBA event
loop or waiting state. Then, whenever a message is
received from the DEVS-side server, whether it is
the final recommendation for the decision or just a
request for further information, the ATACKS-side
object will be able to receive and respond to the call.
Since the ATACKS CORBA server runs as a separate
process, it does not interfere with the execution of the
scenario in ATACKS, which is free to handle further
user inputs. Any events that are generated in the
meantime—that is, while the ATACKS-side server is
listening for requests—simply become queued and
wait there until the server is free to read and dequeue
them for processing.
 Once the final recommendation is received from the
DSS, the ATACKS-side server again repeats the process
of reading the next message off the queue, forwarding
it to DEVS DSS, and so on. However, when it receives a
request for further information, the type of the request
is decoded and a second message queue to ATACKS is

opened. The request type is queued onto the message
queue and the server begins listening for a response on
the first message queue. A callback function installed
with the ATACKS Events Manager class is responsible
for periodically checking this second message queue
for requests. When it finds one, it makes the necessary
calls to the ATACKS API, which returns the desired
information. This information is again queued into
the first message stream between ATACKS and the
ATACKS-side CORBA server. When the information
is received by the ATACKS-side server, it is forwarded
again to the DEVS-side server that requested it, and
the ATACKS-side server returns again to the wait loop
state. The sequence diagram in Figure 8 shows some
of the typical steps that arise in the interaction of the
various components.
 In some preliminary testing of the distributed DSS
architecture, a predefined scenario was executed and
various events were generated to test whether there
were any conflicts (e.g., where messages are sent out

Figure 8. Interaction and sequence diagram

 at UNIV ARIZONA LIBRARY on June 11, 2011dms.sagepub.comDownloaded from

http://dms.sagepub.com/

Volume 3, Number 1 JDMS 21

Dynamic Decision Support in the Advanced Tactical Architecture for Combat Knowledge System

of sync) or bottlenecks. The results from the case study
that were used to demonstrate the efficacy of our
solution are described in the next section.

5. Case Study

In order to demonstrate how the DEVS DSS that has
been integrated with ATACKS provides added value
to the commander as a tool that enables him or her to
evaluate various maneuver options, we will consider
a common hypothetical scenario based on a SASO
that was previously designed with the aid of military
domain experts. ATACKS and DEVS DSS and the
CORBA servers are executed on their respective hosts
on two different computers connected via LAN.

5.1 Brigade Combat Team in SASO

The tactical scenario that will be used in ATACKS is
brigade-level SASO set in a terrain environment that
is intended to approximate a region in southwestern
Asia. Terrain and man-made features, selected from
the ATACKS icon library, are added to the grid at
their appropriate locations. Mountains, roads, and
an airfield are placed within the grid at their exact
geographic locations. Buildings of various types
and roads may be added to the urban site from the
ATACKS icon library.
 The terrain shown in this demonstration depicts
the generally open vicinity of a notional provincial
capital. The area of operations extends from the
vicinity of the capital to an international boundary.
Mountains in the area begin to converge toward the
highway bridge that sits astride the international
boundary. Command and control features are also
added from the library. The scene that has been built
for this demonstration includes brigade-, battalion-,
and company-level symbology for Units ranging from
mechanized infantry companies to an aviation
battalion.
 Paramilitary platoons are cited in the operations
area using appropriate red symbols. A U.S. Army
brigade combat team with a divisional support
package is used to complete the assigned initial
mission of securing the airfield near a provincial
capital adjacent to the threatening neighbor. The
ATACKS demonstration simulates a mechanized
infantry company securing the airfield allowing
for the insertion of the brigade command post, the
remainder of the brigade combat team, and support
Units. When successfully inserted and the airfield
secured, the provincial capital is to be secured by one
battalion while another is to separate the contending
local factions, one loyalist, the other an opposition
faction supplied and funded by the hostile neighbor.

 This demonstration shows three distinct phases of
the SASO: phase 1 – insertion, phase 2 – separation,
and phase 3 – support. The initial phase, insertion,
is completed when the entire brigade combat team
complement has arrived in the operational area.
 The separation phase begins as friendly Units
leave the airhead and begin to encounter both loyalist
and opposition forces. A reconnaissance screen is
established between the provincial capital and the
international boundary. Reflecting activities required
by the separations phase of the operations order,
company-sized elements move to execute their
assigned missions.
 The brigade commander wishes to develop a simple
idea for the support phase of the operation. The brigade
has been tasked to position a force forward and secure
the bridge along the international boundary. The
commander wishes to assign the mission of securing
the bridge to the first battalion. ATACKS allows the
commander to simply select the desired battalion
icon from the current operation and place it in the
future operations scene at the bridge site. The desire
to move that battalion is captured by the DSS and
validated according to current operational data. The
first battalion has apparently taken more than a few
casualties and is low on fuel. The CD reflecting that
battalion’s weakness appears on the future operations
panel allowing the brigade commander to use
another battalion. By deleting the first battalion, the
commander may wish to explore conducting an air-
mobile operation to lift all or part of the third battalion
to the bridge site. The commander simply drags the
aviation battalion symbol to the area, as well as the
third battalion symbol. Further, the commander may
position an artillery Unit midway in the extended
area of operations near a village along the highway.
The decision aid also checks these projected moves,
reporting if the designated Units are able to complete
the proposed missions.

5.2 Scenario Execution

To begin execution of the particular SASO scenario
under discussion, the user selects a previously created
scenario file from the list of stored scenarios or creates
a new scenario using ATACKS. To create a new
scenario, the user may insert elements from the 3-D
symbol library, draw command and control features
such as boundaries and avenues of approach directly
on the grid, and specify paths for the Units to move
along (optionally specifying a speed profile). Units
can be assigned a range of behaviors, such as color,
symbol, designation or affiliation, speed, strength, etc.;
and all symbols can be geometrically manipulated
(translation, rotation, scaling, etc.) to conform to the

 at UNIV ARIZONA LIBRARY on June 11, 2011dms.sagepub.comDownloaded from

http://dms.sagepub.com/

Volume 3, Number 122 JDMS

Momen and Rozenblit

users requirements. In this example, when the scenario
shown in Figure 9 is loaded, all the graphical elements
such as terrain elements, enemy and friendly Units,
lines of defense, and phase lines appear, covering the
bare grid. Once a scenario has been designed or loaded,
the user can execute the scenario through commands
on the ATACKS GUI menu. An animation engine is
then activated which moves Units along their paths
and brings up CDs that summarize the battle process.
As the Units progress through their assigned paths
in the pre-defined COA, some engagements with the
enemy forces are encountered. These engagements are
represented by an abstract chaos symbol. The results
of these elementary engagements are derived from

the simple force ratio rules currently embedded into
ATACKS and are reported in a separate CD. Figure
10a shows the first battalion engaged with an enemy
force and suffering a loss in its combat effectiveness as
a result. While the scenario is executing, any Unit that
is not assigned to a path can be selected by the user and
positioned anywhere in the battlefield. Manipulation
of such a Unit by the commander constitutes an event
that is collected, managed, and distributed by the
ATACKS Event Manager and signifies that the user
wishes to merge the ongoing execution activities with
replanning.
 In the first case, when the commander selects the first
battalion, as shown in Figure 10b, an event is generated
and sent out from ATACKS containing the name of
the particular Unit as well as its current position.
Again when the Unit is deselected, a second message
containing the final coordinates is transmitted. These
messages are first transmitted from ATACKS, where
the event was generated, to the ATACKS-side CORBA
server on the same machine, via message queues. Once
both messages (Unit selection/deselection) denoting a
change in the Unit’s status are received, an appropriate
CORBA message is sent across the network to the
DEVS tool. The DEVS-side CORBA server decodes
the message and, in this case, writes out the data it
receives in the message—namely the name of the Unit
that was updated by the commander in ATACKS and
the coordinates to which the Unit was moved—to the
DEVS input file. The Engine in the DEVS decision
support tool, which searches the input file for new
inputs, eventually picks up the new move and transmits

Figure 9. SASO scenario in ATACKS

Figure 10b. ATACKS Event: First battalion being dragged to
bridge

Figure 10a. ATACKS Event: First battalion engaged with
opposition force

 at UNIV ARIZONA LIBRARY on June 11, 2011dms.sagepub.comDownloaded from

http://dms.sagepub.com/

Volume 3, Number 1 JDMS 23

Dynamic Decision Support in the Advanced Tactical Architecture for Combat Knowledge System

the move in a DEVS message to the WarGamer for
evaluation, as shown in Figure 11.
 The DEVS-side CORBA interface knows that once
the new input is processed by the decision support
tool, the WarGamer may query the Unit models for
their strength and position parameters. In order to
keep the information in the DEVS models as up-to-
date as possible, whenever the DEVS CORBA server
receives an event from ATACKS, it automatically
sends an invocation back requesting the current status
of each Unit. The information that it receives from
ATACKS is then written out to the appropriate data
input file for each of the corresponding Unit models
in the DEVS tool.
 In this case, the WarGamer in the DSS first checks
to see if the selected Unit has sufficient resources to
complete its assigned task. The DEVS-side server is
contacted and it requests ATACKS, through its CORBA
interface, to provide the supply factors for the given
Unit. The desired information is obtained through the
appropriate call to the ATACKS API and returned to
the decision support tool. Before the war-gaming rules
are triggered, a quick check determines that the Unit’s
combat effectiveness has dropped below an acceptable
threshold, most likely from a previous engagement.
Therefore the DSS skips further evaluation using its
war-gaming rules and returns a NO_OK insufficient
combat effectiveness message, which is displayed on a
popup window in ATACKS.
 Once the commander is notified that his or her plan
was rejected by the DSS, he or she can either leave the
Unit where it is or proceed with other options. In this
example, the commander removes the first battalion

and moves the third battalion and the aviation
battalion to the future operations area as shown in
Figure 12. Once again events are generated in ATACKS
and relayed to the DSS through the CORBA interface.
This time the selected Units have a sufficient combat
effectiveness rating to go through with their assigned
missions, so the WarGamer sends a broadcast message
to retrieve the strengths and positions of all enemy
and friendly Units in the vicinity of the bridge site;
see Figure 13. The four opposition platoons located
near the site respond with their strength parameters

Figure 11. Notification of ATACKS event in the DEVS
decision support tool Figure 12. Selection of third and aviation battalions as an

alternative action

Figure 13. Broadcast query in the DEVS-DSS

 at UNIV ARIZONA LIBRARY on June 11, 2011dms.sagepub.comDownloaded from

http://dms.sagepub.com/

Volume 3, Number 124 JDMS

Momen and Rozenblit

allowing the WarGamer to carry out its rule-based
inferencing. Since the friendly battalions outnumber
the enemy platoons, the result is favorable to the
friendly forces and this outcome is communicated
back to the commander using ATACKS. At this point
the commander has effectively evaluated two minor
deviations to the COA that is being executed in the
scenario and has received feedback from the decision
support tool in both cases regarding the projected
moves. The first option was rejected by the decision
aid, so by creating paths that fulfill the objectives of
the second option and assigning the selected Units
to these paths, the commander can easily observe the
consequences of his or her modification to the original
battle plan.

5.3 Validation

The DSS for ATACKS demonstrates through the
preceeding scenario that it adequately meets the needs
of the commander evaluating elementary deviations
to proposed SASO maneuvers in real time. However,
as mentioned, the war game rules that were used to
evaluate the proposed changes in the courses of action
are fairly primitive—relying solely on combat ratios of
the opposing forces—and can be quickly computed in
real time. Newer war gamers incorporate an extensive
array of factors in producing and evaluating their
courses of action. Current war-gaming systems such
as Sheherazade, for example, take into account the
presence of information operator units (such as media
or refugees), the demographic makeup of the locale
or region, and even the regional attitudes or outlook.
Consequently, generating a few distinct options
through its GA takes a few hours (as opposed to
under a second with the current DSS); and thoroughly
evaluating an option on the fly, as the ATACKS DSS
attempts to do, would result in significant wait
times for the user. The major bottlenecks in this case
however, lie primarily in the algorithmic performance
of the war gamer, and potentially in the bandwidth
limitations of the technologies underlying the
implementation. The first issue can be addressed by
exploiting concurrency in the algorithms and through
the use of parallel computing hardware, to speed up
the generation (and evaluation) of courses of action.
Indeed, high-performance parallel and distributed
implementations of war gamers that complement
today’s highly time-sensitive military decision
making environment have already been proposed
[15]. A similar approach can be taken to hold off the
bandwidth bottleneck, by having multiple threads
perform the task of receiving queries (from the DSS)
or forwarding the requested information (from the
scenario executing in ATACKS). A thorough field test

of the current ATACKS DSS with battlestaff personnel
should provide valuable feedback in helping identify
some of these potential bottlenecks and should help
discover any unexpected conditions within the
architecture.
 For the DEVS DSS used in this case study, an
experimental frame setup provides a straightforward
approach in the verification of the system. In an
experimental frame, a generator (DEVS model)
simulates correct and incorrect inputs to the system
under test (e.g., scenario updates enacted in ATACKS)
while an acceptor collects the results or outputs.
A transducer analyzes the process, reporting any
abnormalities in the output. The DEVS DSS was able
to provide accurate feedback (go/no-go results) for
user input at higher rates than typically observed
or expected (slightly over one scenario update per
minute, for instance). An experimental frame setup
can be used in a similar fashion to evaluate future
decision support tools and determine the limitations of
such tools before they are integrated with the system.
If they are unable to meet the level of responsiveness
that would result in an acceptable level of added
value to the decision makers, then it may not be
worthwhile to undergo the effort of integrating that
particular tool. On the other hand, external tools can
be independently optimized, e.g., by utilizing multi-
processor/programming techniques, until they meet
the user’s desired performance criteria as specified in
the experimental frames.
 Although the ATACKS DSS presented here has been
designed with input from military domain experts to
address the needs of current and future commanders
and their battlestaff, the need for thorough system
validation and performance evaluation by the
intended end users cannot be underestimated. This
process is ideally suited for research psychologists
who have the background and expertise to set up and
execute a comprehensive evaluation that exercises
standard and unusual decision making scenarios in
the current domain. To facilitate this practice, ATACKS
provides many features such as the ability to load
and save scenarios, employ scripted dialogs that
prompt the user to test their situational awareness or
understanding, and record and time user responses.
The recommendations that result from experiments
with subject-matter experts can subsequently be
incorporated into the ATACKS DSS framework.

6. Conclusions

The integration of the DEVS-based DSS with ATACKS
demonstrates the adaptability of the architecture to
third-party tools that aim to aid the commander in
decision-making tasks. DEVS is an ideal platform for

 at UNIV ARIZONA LIBRARY on June 11, 2011dms.sagepub.comDownloaded from

http://dms.sagepub.com/

Volume 3, Number 1 JDMS 25

Dynamic Decision Support in the Advanced Tactical Architecture for Combat Knowledge System

the construction of a distributed DSS. The discrete
event–based methodology has been shown to be highly
efficient in terms of representation and execution [16]
and fits naturally with the domain of battlespace
modeling. DEVS has also been extended to serve as
a high-performance, advanced distributed simulation
middleware and for use with real-time distributed
simulation systems, which can enrich the application’s
user interface experience. With little additional work,
the CORBA-based distributed architecture presented
can accommodate external applications built around
any of the supported platforms and environments.
The modular design underlying DEVS and ATACKS
allows us to keep the visualization layer simple and
efficient while introducing complexity by expanding
the responsibilities of the DEVS decision support tool.
 The DEVS tool discussed here uses only a subset of
the interface methods provided by the ATACKS API. It
represents a passive system that requests information
from ATACKS without seeking to directly influence
the execution of the scenario. In the future, more active
systems like Sheherazade or FOX-GA, which select
and present the best COAs for a particular scenario
could interface with ATACKS such that the COA
output is translated and directly input to ATACKS
as a complete scenario. FOX-GA has already defined
XML schemas for the representation of battlefield
COAs and, in the effort, defined the necessary
vocabulary to describe key elements of the battlefield
and battlefield processes including Unit compositions,
terrain characteristics, and so on. By referencing the
schemas defined by FOX-GA, any application can
take advantage of the same element declarations and
type definitions. The representation of the language in
XML ensures both flexibility and adaptability to future
requirements. Moreover, as a standard language
for the exchange of information across the different
applications emerges, the overhead of coding the data
translation layer will be reduced through the use of a
shared standard war-gaming vocabulary.
 ATACKS has the potential to extend in many
directions from its current state. The war-gaming rules
that are currently used by the DEVS-based decision
support tool are fairly primitive, and support only a
limited scenario base. As the need for higher resolution
decision support evolves, the DEVS tool could also be
enhanced to provide greater analysis and more specific
feedback of the war-fighting situation. A good starting
point would be the incorporation of a rule set specific
to the SASO operations for which the 3-D library
and suite of configural displays have recently been
developed. The Sheherazade war gamer, developed
by the Army Research Laboratories, which has also
recently been interfaced with ATACKS, provides such
a SASO simulation engine designed for modeling

multi-sided conflicts between groups that include
terrorist, information operations, media units, etc.
[17, 18].
 The decision support tool presented in this paper is
only one instance of the coupling of the visualization
program and an underlying military intelligence tool.
As ATACKS begins communicating with more than
one external tool, it will become necessary to deal with
the additional complexity of managing information
from multiple sources. With interoperability based
on a DEVS platform that supports HLA and CORBA,
we anticipate that ATACKS is well suited for future
development as a dynamic decision support tool.

7. References

[1] Momen F., et al. Three layer architecture for continuous
planning and execution. Proceedings of the 2001 Army
Research Laboratories Symposium; 2001; College Park, MD.

[2] Barnes MJ. Process centered displays and cognitive models
for command applications. IEEE International Conference
and Workshop on Engineering of Computer Based Systems; 1997.
129–135.

[3] Keane JS, Rozenblit JW, Barnes MJ. The advanced battlefield
architecture for tactical information selection. IEEE
Conference and Workshop on Engineering of Computer Based
Systems; 1997; Monterey, CA. 228–237.

[4] Suantak L, et al. Intelligent decision support of Support and
Stability Operations (SASO) through symbolic visualization.
Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics; 2001. 5: 2927–2931.

[5] Gamma E, et al. Design patterns: elements of reusable object-
oriented software. Addison-Wesley; 1995.

[6] AI Simulation Research Group. Discrete event system
specification. Available from: http://www.acims.arizona.edu

[7] Zeigler BP, Kim TG, Praehofer H. Theory of modeling and
simulation. 2nd ed. Academic Press; 2000.

[8] Department of Defense. High level architecture interface
specification version 1.0; 1996.

[9] Zeigler BP, et al. Implementation of the DEVS formalism
over the HLA/RTI: problems and solutions. Proceedings of
Simulation Interoperability Workshop; 1999; Orlando, FL.

[10] Hayes CC, Sclaback JL, Feibig CB. Fox-GA: An intelligent
planning and decision support tool. IEEE International
Conference on Systems, Man, and Cybernetics; 1998. 3: 2454–
2459.

[11] Zeigler BP, et al. DEVS modeling and simulation: a new
layer of middleware. IEEE Third Annual Workshop on Active
Middleware Services; 2002. 22–31.

[12] Cho YK, Zeigler BP, Sarjoughian H. Design and
implementation of distributed real-time DEVS/CORBA. IEEE
International Conference on Systems, Man, and Cybernetics;
2001; Tucson, AZ. 5: 3081–3086.

[13] Object Management Group. CORBA. Available from: http://
www.omg.org

[14] Stevens WR. Advanced programming in the UNIX environment.
Addison Wesley Longman; 1993.

[15] Momen F, et al. A distributed approach to genetic algorithm-
based course of action generation. CMS 2005: Conference on
Conceptual Modeling and Simulation; 2005; Marseilles, France.

[16] Zeigler BP, Moon Y, Kim D, Ball G. The DEVS environment
for high-performance modeling and simulation. IEEE
Computational Science and Engineering; 1997. 4(3): 61–71.

 at UNIV ARIZONA LIBRARY on June 11, 2011dms.sagepub.comDownloaded from

http://dms.sagepub.com/

Volume 3, Number 126 JDMS

Momen and Rozenblit

[17] Suantak L, et al. A coevolutionary approach to course of
action generation and visualization in multi-sided conflicts.
IEEE International Conference on Systems, Man, and Cybernetics;
2003. 1973–1978.

[18] Suantak L, Momen F, Rozenblit JW, Barnes MJ, Fichtl
T. Modeling and simulation of Stability and Support
Operations (SASO). IEEE International Conference and
Workshop on the Engineering of Computer Based Systems; 2004.
21–28.

Author Biographies

Jerzy Rozenblit, Ph.D., is Professor and Head of the
Electrical and Computer Engineering Department at The
University of Arizona. During his tenure, he has established
the Engineering Design Laboratory with major projects in
design and analysis of complex, computer-based systems,
software engineering, embedded systems, and symbolic
visualization. The projects have been funded by the National
Science Foundation, U.S. Army, Siemens, Infineon
Technologies, Rockwell, McDonnell Douglas, NASA,
Raytheon, and Semiconductor Research Corporation. He
has extensive teaching experience and conducts a vigorous
graduate program as evidenced by many successful Ph.D.
and M.Sc. students and best teacher awards. Dr. Rozenblit
is active in professional service in capacities ranging from
editorship of ACM and Simulation: Transactions of the
Society for Modeling and Simulation, program and
general chairmanship of major conferences, to participation
in various university and departmental committees. Among
several visiting assignments, he was a Fulbright Senior
Scholar and Visiting Professor at the Institute of Systems
Science, Johannes Kepler University, Austria, Research
Fellow at the U.S. Army Research Laboratories, Visiting
Professor at the Technical University of Munich, and
Fulbright Senior Specialist in Cracow, Poland. Over the
years, he has developed strong associations with the private
sector and government entities. Dr. Rozenblit’s management
and project experience includes over $8 million in externally
funded research. He has served as a research scientist and
visiting professor at Siemens AG and Infineon AG Central
Research and Development Laboratories in Munich, where
over the last decade he was instrumental in the development
of design frameworks for complex, computer-based systems.
For the last eleven years, he has led a vigorous research
program at the University of Arizona in visualization,
human-computer interaction, and artificial intelligence
funded by the U.S. Army. Currently, jointly with the
Arizona Simulation Technology and Education Center, he is
developing virtually assisted surgical training methods and
systems. Co-author of several edited monographs and over a
hundred publications, Dr. Rozenblit holds the Ph.D. and MS
degrees in Computer Science from Wayne State University,
Michigan, and the M.Sc. degree in Computer Engineering
from the Technical University of Wroclaw, Poland.

Faisal Momen is currently a Ph.D. student in the Electrical
and Computer Engineering Department at the University of
Arizona, Tucson. He received a BS and MS in Computer
Engineering from the University of Arizona and has worked
in industry as a Software Engineer with Motorola Computer
Group, Tempe.

 at UNIV ARIZONA LIBRARY on June 11, 2011dms.sagepub.comDownloaded from

http://dms.sagepub.com/

