

Hardware/Software Communication Middleware for Data Adaptable Embedded
Systems

Sachidanand Mahadevan, Vijay Shankar Gopinath, Roman Lysecky, Jonathan Sprinkle, Jerzy Rozenblit, Michael
W. Marcellin

Department of Electrical and Computer Engineering
University of Arizona, Tucson, AZ

{sachi, vsg, rlysecky, sprinkle, jr, marcellin}@ece.arizona.edu

Abstract—Recent trends toward increased flexibility and
configurability in emerging applications present demanding
challenges for implementing systems that incorporate such
capabilities. The resulting application configuration space is
generally much larger than any one hardware implementation
can support. We present an overview of a new data-adaptive
approach to rapid design and implementation of such highly
configurable applications. In support of this data-adaptable
approach, we demonstrate an efficient and flexible
hardware/software communication middleware to support the
seamless communication between hardware and software
tasks at runtime. We highlight the flexibility of this interface
and present an initial case study with results demonstrating
the performance capabilities and area requirements.

Keywords-Data adaptability; model-based design;
hardware/software codesign; hardware/software communication
middleware

I. INTRODUCTION
Significant increases in application complexity often

demand processing requirements that exceed the
performance achievable by current processors. At the same
time, there is a trend toward increased flexibility and
configurability in emerging applications that presents
demanding challenges for implementing systems that
incorporate such capabilities. While software
implementations provide the flexibility needed to support
standards – as demonstrated by the typical practice of
releasing reference software code for these standards – the
computational requirements of such applications often
exceed the performance achievable by current processors.
Alternatively, hardware accelerated solutions can
potentially provide the required performance for these
applications but are severely limited in the application
space that can be supported.

JPEG2000 image coding standard precisely exhibits the
aforementioned high degree of configurability and extreme
computational demands. JPEG2000 offers flexibility at
almost all stages of image compression including
colorspace and bit-depth of the compressed image, options
for wavelet transforms and quantization, support for both
lossless and lossy compression, and Motion JPEG2000 for
video support [15][28][33]. Many other emerging
multimedia standards provide similar levels of
configurability, including the MPEG-4 [13] and VC-1 [26]
video encoding standards, among others.

In an effort to alleviate the design cost of developing
software and hardware solutions capable of supporting the

entire configuration space, many modern standards define
several profiles intended for specific purposes. A profile
either defines specific settings for various configurable
parameters within the standard or a subset of allowed
options, thereby reducing the level of complexity needed
to implement a specific profile in software and/or
hardware. While application profiles may allow
hardware-accelerated implementations to support a subset
of the application space, the number and variability of
profiles even within a particular application domain
precludes traditional hardware-based implementations as
a viable option for many applications. For example,
medical imaging applications are increasingly using
JPEG2000 to meet stringent image quality requirements
and to accommodate the necessary high compression to
store and transmit vast amounts of data [16][23].
However, it is not the case that all medical imaging
applications can use the same application profiles, or even
that the same medical imaging hardware will always be
used to visualize the same kinds of images.

Extensive research has demonstrated the benefits that
can be obtained by hardware/software codesign and
partitioning – with researchers and commercial vendors
having achieved application speedups of 10X-1000X
[2][7][9][11][21][22]. Hardware/software codesign
provides a hybrid approach to design a system comprised
of software running alongside custom hardware
coprocessors or accelerators. However, a
hardware/software implementation is still limited in the
amount of configurability that can be supported in
hardware due to area and cost constraints. Thus, a
traditional hardware accelerated solution that supports all
profiles even within a single domain is often infeasible, as
hardware coprocessors must be generated for all profiles
utilized within that domain. This is true for many
configurable applications: a general hardware solution
that covers the entire data profile space, or entire
application standard, is infeasible since the combinatorial
expansion of the design will not fit within a single
affordable circuit.

Field-programmable gate arrays (FPGAs) – and
reconfigurable computing in general – offer an
increasingly economical alternative to traditional
hardware-based solutions. Several FPGAs are currently
available that integrate microprocessors and
reconfigurable logic within the same integrated circuit. As
such, hardware/software codesign targeting dynamically

2011 18th IEEE International Conference and Workshops on Engineering of Computer-Based Systems

978-0-7695-4379-6/11 $26.00 © 2011 IEEE

DOI 10.1109/ECBS.2011.12

34

reconfigurable FPGAs can be utilized to meet the
performance demands and flexibility of modern multimedia
applications. However, existing hardware/software
codesign methodologies do not provide an efficient method
to directly represent and exploit such data configurability at
the application level. Instead, current approaches would
require costly manual efforts to develop hardware for the
various required data profiles.

In this paper, we present an overview of a new data-
adaptive approach to enable the rapid design and
implementation of highly configurable applications. In
order to enable runtime reconfiguration and adaptive
communication requirements of this approach, we present
an efficient and flexible hardware/software communication
middleware to support the seamless communication
between hardware and software tasks at runtime. This
communication middleware abstracts the communication
and interfacing details required to efficiently transfer data
between tasks, for which a task’s implementation is not
known a priori but rather will be determined at runtime. We
highlight the flexibility of this interface and present an
initial case study and results demonstrating the
performance capabilities and area requirements.

We first provide a summary of related work in Section
II. In Section III, we provide an overview of our data-
adaptable methodology and demonstrate how this
methodology can be utilized for highly configurable
applications. In Section IV, we present a hardware/software
communication middleware that provides seamless runtime
communication between software and hardware tasks
within our data-adaptable computing approach. In Section
V, we present several experimental results highlighting the
performance improvements that can be achieved using the
presented communication middleware for JPEG image
compression. Finally, we present our conclusions and
provide an overview of future research direction in Section
VI.

II. RELATED WORK
Runtime reconfigurable and self-adaptive systems –

extensively summarized in [2] and [29] – provide the
opportunity to reconfigure an FPGA to implement
hardware circuits for specific data profiles as needed by the
target application given the current input data. In [31], a
self-adaptive approach is presented that dynamically selects
between software and hardware implementations for
specific application kernels by profiling and monitoring
function parameters. Alternatively, [30] proposes an
adaptive design methodology that combines dynamic
mapping of tasks between software and hardware
alternatives with adaptive computing techniques that
eliminates the need to re-execute computations that do not
change for different application inputs.

Although these advancements are substantial, the
design methods still produce restricted hardware
implementations for specific application tasks and do not

consider the entire application configurability. To support
highly configurable applications, a design methodology is
needed to capture and implement the entire application
design and configuration space in order to produce
suitable hardware and software partitions that are capable
of meeting the required performance based on the
expected data. Such a methodology, complete with new
models of composition and system synthesis to inform
existing tools and practices, would rapidly accelerate the
availability of technologies currently in prototype to reach
deployment.

Much research has also focused on developing
methods for efficient communication or runtime
management of hardware and software tasks implemented
with reconfigurable systems, such as FPGAs. ReconOS
[18][19][20] provides operating system support for
scheduling and synchronizing hardware and software
threads. Within this framework, each hardware threads is
coupled with a software threads through which the OS
can schedule the execution of hardware threads by
scheduling the associated software thread. BORPH [25]
provides a framework for supporting reconfigurable
FPGAs within traditional operating systems by
encapsulating hardware tasks in a custom executable
format. This executable format provides both the
configuration and interfacing details for hardware threads
such that the operating system can manage the
reconfiguration of the available FPGA resources. Within
this framework, communication between software and
hardware threads is supported through message passing
protocols.

Complimentarily, by providing mechanisms for
supporting POSIX synchronization constructs, e.g.
mutexes, semaphores, POSIX threads can be implemented
within both hardware and software [1]. Within this
approach, distributed memory is utilized such that each
hardware thread has a physically local memory that can
be accessed by other software and hardware threads.
Efficient communication can thereby be facilitated
through pointers without out the need to copy data values.

Similar to our hardware/software communication
middleware, several approaches have likewise utilized
FIFOs to facilitate communication between software and
hardware tasks. Both Williams et al. [34] and Xie et al.
[35] propose utilizing tightly coupled FIFO-based
communication, in which the processor has direct access
to these FIFOs. For example, the Fast Simple Link (FSL)
[32] supported within the Xilinx MicroBlaze processor
provides an efficient communication link for fast
communication between the microprocessor and directly
connected components. In the former approach, software
device drivers are utilized to provide access FIFOs
through the FSL to efficiently communicate between
hardware and software tasks. In the latter approach, a
shared pool of FIFOs is utilized to communicate between
multiple software tasks within multiprocessor systems,

35

where the FSL links are utilized to access the shared
FIFOs. For many applications, multiple tasks may compete
for access to shared FIFOs. To support streaming
applications exhibiting such multi-consumer, multi-
producer access to shared buffers, Faure et al. [3] proposed
a communication framework incorporating locking
mechanism to enable both software and hardware tasks to
access these shared buffers simultaneously.

III. DATA-ADAPTABLE APPROACH OVERVIEW
Figure 1 provides a conceptual overview of data-

adaptable computing, presenting a particular configuration
of software and hardware processing tasks along with
alternative hardware task implementations that are
available – though not currently in use – for an example
streaming application. This example system consists of four
tasks, Task A-D, where each task performs a different
processing step of the overall application. For each
processing task, hardware coprocessors may be available
for a few specific data profiles that a designer identified as
common data profiles needed within the target application
domain, for which maximum performance is essential. The
data profile of the incoming data provides and specifies the
necessary information indicating which algorithms, or
configurations of those algorithms, are needed to process
the data correctly. For example, in most multimedia
applications, the data profile of the incoming data is
contained within the header of the incoming data stream or
input file.

At runtime, the data profile of the current data input can
be leveraged to determine if a suitable hardware
implementation is available for any of the application’s
tasks, and will adapt the execution of the combined
hardware/software implementation to use those
coprocessors when possible. If a coprocessor is not

available, a generic, non-accelerated software
implementation can be utilized. Thus, data-adaptable
computing seeks to maximize performance by adapting
the execution at runtime by utilizing data profile specific
hardware coprocessors, when available, required for the
current input data being processed.

For the example system presented, Figure 2
demonstrates the resulting software and hardware
configurations for three different instances of incoming
data that need to be processed, where the data profile for
these distinct data inputs are indentified as Profile K,
Profile P, and Profile Q. If the incoming data are
identified with Profile K, only Task C can be accelerated
using the hardware coprocessor, indicating that all other
tasks will be performed in software. On the other hand,
for Profile P, hardware coprocessors are available for all
tasks within the applications, providing the best possible
performance. Finally, in the case of Profile Q, although
many hardware coprocessors are available for Task D, the

Figure 1. Hardware tasks are updated based upon the detected data profile of the incoming data stream. In this example, Task A will be reconfigured, as a
hardware coprocessor is available for the newly detected tile size of 1024x1024. Hardware for Task C is no longer available and a software implementation

will be utilized instead.

Figure 2. Overview of data-adaptability, in which the data profile of the
incoming data stream determines which hardware tasks/coprocessors, if

any, can be utilized to speedup performance.

HW (FPGA)

…01011…
(Profile K)

SW

Task A
(HW 1)

Task A
(HW 4)

Task A
(HW 3)

Task B
(HW 1)

Task B
(HW 2)

Task D
(HW 1)

Task D
(HW 2)

Task D
(HW 3)

Task C
(HW)

Task A Task B Task D Task C

…10111…
(Profile P)

…00011…
(Profile Q)

Input stream

...10110000011

Output stream

10011111000...

µP

Reconfigurable FPGA

Task A
(512x
512)

Task
B

(5/3)

Task
C

(Casual)

Current Data Profile:
14-bit
- Task A (512x512, 4:4:2)
- Task B (Wavelet 5/3)
- Task C (Casual)
- Task D

New Input
stream

...000010100100

New Data Profile:
14-bit
- Task A (1024x1024, 4:4:2)
- Task B (Wavelet 5/3)
- Task C (Error Resilient)
- Task D

Task A
(1024x
1024)

HW Task Implementations (Off-chip)

Task
A

Task

A

Task
A

Task
C

Task

A

Task
A

Task

A
Task

B

Task
A

Task

A

Task
A Task

A

Task
D

Task
A

36

required coprocessor for this profile is different from the
coprocessor needed for other profiles.

Implementing such a data-adaptable solution using
traditional hardware based implementations is infeasible.
Instead, FPGAs are perfectly suited for our data-adaptable
approach as an FPGA can be dynamically reconfigured as
needed based on the data profile of the incoming data.

Figure 1 further provides an overview of the data-
adaptable hardware/software based implementation,
targeting a system-on-a-chip (SOC) integrating a
microprocessor and FPGA performing a JPEG2000
decompression/compression of an image stream. An initial
input stream summarized as a 14-bit data profile is shown
in its configuration. In this profile, Task A operates on
512x512 tiles of data, Task B takes the output of this task
and performs a 5/3 wavelet transformation, and Task C
applies a compression scheme to the output data stream. At
some point, the input stream changes, and a new data
profile is recognized. This new data stream uses 1024x1024
tiles for the first task, and the various other tasks – although
not specified for a particular tile size – may also need to
operate on the new 1024x1024 tiles. The existing hardware
profile may not be suitable for the new tile size.
Alternatives for computation of the new data stream are a
new hardware implementation, if it exists, or the base
software implementation. Since the existing hardware
implementation is no longer needed, the reconfigurable
hardware upon which it is running can be freed for use by
hardware implementations of the new tile size.

By detecting the data profile of the incoming data
stream, the data-adaptable approach can reconfigure the
hardware implemented within the FPGA to best match the
newly detected data profile. As previously mentioned, the
data stream will normally contain all necessary information
regarding the configuration of necessary computational

elements. If a hardware coprocessor is not available for a
specific task, the base configurable software
implementation will be utilized for those tasks. As such,
the approach is data-adaptable in that the system is able to
adapt its execution based upon the data characteristics of
the incoming data.

Importantly, it is the complexity of highly
configurable applications that prevents the system
designer from developing this data/profile reconfiguration
strategy by hand. Given the combinatorial complexity of
highly configurable applications, a designer would likely
resort to ad hoc methods to cover the entire data profile
space of interest. Our objective is to automate this profile
space coverage through the specification and modeling of
the configurable data and design parameters, and allow
synthesis of hardware/software configurations that have
the strength of hardware point solutions, with the
flexibility to reconfigure themselves for optimal
performance based on the incoming data stream.

To facilitate a hierarchical description of the target
application as a set of independent communicating and
configurable tasks, we have developed a new modeling
technique termed communicating sequential dataflow
tasks (CSDT). The CSDT model supports a rich set of
semantics for specifying data profile generics and
providing an execution model directly supporting the
varying requirements imposed by data configurability.
Our CSDT model – built using the Generic Modeling
Environment [17] – supports a hierarchical framework for
top-down implementation of a target application and its
data configurability. This design environment is not tied
to a particular language, but rather provides formalisms
for the semantics visually tied to a graphical metamodel.

Within the CSDT model, tasks are independently
modeled with communication specified through abstract

Figure 3: Data-adaptable hardware/software codesign methodology in which the data model compilation will create a minimal set of configured hardware
coprocessors and communication interfaces needed to support the designer-specified CSDT model and data profiles.

Data Adaptable Codesign
Compilation and Synthesis

App (CSDT Model)
(e.g. JPEG2000)

Data
Profile

Data
Profile 1

Data
Profile 1 Data

Profile N
Data

Profile 2

Application SW

RGB, 640x480,
16-bit, K-L T,
5/3, SQ, Casual,
Quality

HW Coprocessor Configurations

Task
A

Task

A

Task

A

Task
A

Task

C

Task
A

Task

A

Task

A Task
B

Task
A

Task

A

Task

A Task
A

Task

D

 Task

D

Hardware Tasks with HW/SW
Communication Middleware

HW/SW Communication
Middleware and Runtime Manager

37

communication channels that provide a bounded data
storage and synchronization mechanisms. By utilizing
abstract models of communication, designers are not
burdened with specifying exact requirements for every
communication channel for all possible data
configurability. Instead, the CSDT modeling framework
provides mechanisms for specifying the relation between
data profiles and communication requirements.

Figure 3 provides an overview of the proposed data-
adaptable codesign methodology. The input to the
methodology is the CSDT model of the target application
and a set of designer-specified data profiles. The data
profiles define the specific configured instances of the
target application that must be supported by the
reconfigurable implementation. Given the CSDT model
and data profiles, the data-adaptable codesign methodology
will generate a set of hardware tasks utilizing the
hardware/software communication middleware to abstract
all communication between tasks. Similarly, the software
application will utilize the communication middleware for
all communication between tasks.

IV. HARDWARE/SOFTWARE COMMUNICATION
MIDDLEWARE

Within the CSDT model, all communication is specified
using specific communication channels between tasks using
software bounder buffers or hardware FIFOs. For software
task implementations, a basic set of APIs is provided to
allow the task to read data from its input buffer or write
data to its output buffer, in which each buffer is defined by
a specific channel ID. However, the actual location of the
input and output buffers may change at runtime. For
example, communication between two software tasks will
likely utilize bounded buffers implemented in software and
guarded with mutexes to control synchronization. In
contrast, communication between two hardware tasks will
use a hardware FIFO providing true simultaneous read and
write access.

To abstract these communication details for the
software and hardware task implementations, the
hardware/software communication middleware utilizes a
runtime manager to direct and synchronize data transfer to
and from the appropriate software or hardware task
implementation. This runtime decision is determined by
both the data profile of the incoming data along with the
availability of a hardware task required for the current data
profile. To support these dynamic communication
requirements, a communication middleware spanning
across software and hardware boundaries is required. Given
the target channel ID and the currently available hardware
tasks, the runtime communication manager will
automatically determine which software buffer or hardware
FIFO is needed for the current read or write operation. For
software-to-software transfers, standard guarded buffers are
utilized, for which the runtime manager simply maintains a
mapping of channel ID to specific software buffers.

Alternatively, for software-to-hardware, hardware-to-
hardware, and hardware-to-software communication, the
runtime manager must also interface with and configure
each hardware task for the current communication
requirements defined by the input data profile. One the
primary components within the hardware/software
communication middleware is a hardware/software
communication framework facilitating seamless runtime
communication between software and hardware tasks
suitable. Figure 4 presents an overview of the
hardware/software communication framework for
hardware tasks consisting of several abstracted
communication components.

This communication framework supports both
memory-mapped communications over the system bus
and streaming data interfaces between tasks implemented
in hardware. The flexibility provided by this
communication framework allows application designers
to choose the best method of communication to achieve
optimal performance for the target application. This
framework further provides support for streaming data
communication between adjacent and non-adjacent
hardware tasks implemented within an FPGA. As such,
the common interface utilized by all hardware task
implementations provides a clear delineation between
individual hardware tasks while allowing hardware tasks
to be placed within any reconfigurable region of the target
FPGA – thereby providing near seamless support for
dynamic reconfiguration.

The hardware/software communication middleware
consists of seven components including: 1) the main IP
core (User IP) implementing the hardware tasks desired
functionality, 2) a FIFO for providing data input to the
hardware task, 3) a streaming interface to receive
incoming data from hardware or software tasks (FIFO
In), 4) a streaming interface for writing data to an
adjacent hardware task’s FIFO (FIFO Out), 5) memory-
mapped interface for directly accessing the system bus
(Bus Interface), 6) an interface for providing memory-

Figure 4. Hardware/software communication framework consisting of
several abstracted communication components for hardware IP cores.

System Bus (PLB)

User IP
(HW Task)

FI
FO

Bus Interface (Memory Mapped)

FI
FO

 In

Bu
s2

FI
FO

FIFO
 O

ut
FIFO

2Bus

Fpout_wren
Fpout_wdata
Fpout_full

Fpin_wren
Fpin_wdata

Fpin_full

38

mapped access to the FIFO (Bus2FIFO), and 7) an
interface for using burst bus-based communication to non-
adjacent hardware tasks (FIFO2Bus).

The User IP component defines the specific
computation required for each tasks implemented within
hardware. Within the DARES framework, the User IP
supports the same computation – or subset of computations
– as that supported by the original software tasks. Again,
within the reconfigurable framework, the profile on
incoming data will guide whether specific tasks will be
executed in software or hardware at runtime. The User IP
component can be created either manually by hardware
designers or by utilizing high-level synthesis tools
[3][4][10][12]. For all of the User IP cores considered
within this paper, we utilized the ImpulseC CoDeveloper
high-level synthesis tool [12] to automate the creation of
hardware tasks from the original software code.

To support the communication abstraction, the input
data for all hardware tasks is stored within the task’s FIFO,
which serves as the primary method for supporting the

stream based communication between software and
hardware tasks. The width of a task’s FIFO is currently
constrained to the width of the system bus. For the target
systems considered within this paper, the system bus and
FIFO width is limited to 32 bits. The depth of a task’s
FIFO must be at least as large as the size of data that
needs to be processed during each execution of the
hardware task.

Using the Xilinx IP Core Generator, a properly sized
FIFO can be created for each hardware task. The specific
FIFO implementation used within the hardware/software
communication middleware requires independent
synchronous read and write ports, a first word fall through
to minimize communication latency, along with status
signals indicating the current number of data items in the
FIFO, if the FIFO is empty, and if the FIFO is full.

The FIFOIn and FIFOOut components provide
streaming interfaces for transferring data between
connected hardware tasks within the FPGA. This provides
the fastest method of communication between tasks,

Figure 5. Hardware/software communication scenarios for software and hardware tasks: (a) software task to software task using memory based FIFO, (b)
software task to software task using hardware FIFO, (c) software task to hardware task, (d) adjacent hardware task to hardware task, (e) non-adjacent

hardware task to hardware task, and (f) hardware task to software task using memory based FIFO.

(a) SW to SW (SW Buffer)

µP Mem

...

Task

Task

Task

(c) SW to HW (HW FIFO)

µP Mem

...

Task

Task

Task

(d) HW to HW (adjacent)

µP Mem

...

Task

Task

 Task

(e) HW to HW (non-adjacent)

µP Mem

...

Task

Task

 Task

(f) HW to SW (SW Buffer)

µP Mem

...

Task

Task

 Task

µP Mem

...

Task

Task

Task

(b) SW to SW (HW FIFO)

39

achieving a maximum throughput of one cycle per data
transfer – assuming the sending tasks can provide data at
this rate and the receiving task’s FIFO is not full.

Additionally, access to a task’s FIFO is also provided
through a set of memory-mapped registers using the Bus
Interface and Bus2FIFO components. These interfaces
have been designed to support both single data read and
write operations as well as burst DMA operations.
Specifically, the Bus2FIFO interface is utilized to
synchronize write access to the task’s FIFO given possible
contention for writing to the FIFO through the memory-
mapped registers and FIFOIn interfaces. We note that
although no contention between the Bus2FIFO and FIFOIn
will occur within the DARES methodology, the current
framework manages any contention by giving priority to
the FIFOIn interface. In addition, the Bus2FIFO
component synchronizes FIFO read and write accesses
during DMA transfers to achieve a maximum throughput of
one access per cycle as long as the DMA transfer can
provide data fast enough and the task’s FIFO is not full.

Output from the current task is transmitted to the
FIFOOut interface. The FIFOOut interface will determine
if the data needs to be written to the adjacent connected
hardware task by directly writing the data to the FIFOIn
interface of the adjacent hardware task or to a memory-
mapped location for non-adjacent hardware and software
tasks. For adjacently connected hardware tasks, the
interfaces provided by the FIFOIn and FIFOOut utilize a
subset of signals available from the receiving task’s FIFO,
including write control, write data, and FIFO full signals.
For non-adjacent communication, the Bus2FIFO
component utilizes burst data transfer over the system bus
to transfer data to non-adjacent hardware tasks or software
buffers in memory for software tasks.

The hardware/software communication middleware
provides bus-based communication between hardware tasks
and other systems components for non-streaming
communication. The User IP can directly access the system
bus using the Bus Interface component. This interface can
be particularly useful for configuring and initializing
hardware cores, as well as providing support for interfacing
with system inputs and outputs.

The communication middleware was designed to
support seamless communication between software and
hardware tasks. Figure 5 provides an overview of supported
communication methods between tasks, including:

o SW to SW (SW Buffer): software task to software
task using memory based buffer

o SW to SW (HW FIFO): software task to software
task using memory-mapped access to hardware
task’s FIFO

o SW to HW (HW FIFO): software task to hardware
task using hardware task’s FIFO

o HW to HW (adjacent): hardware task to hardware
task using streaming FIFOIn and FIFOOut
interfaces for adjacently connected hardware tasks

o HW to HW (non-adjacent): hardware task to
hardware task using burst data transfers for non-
adjacent hardware tasks

o HW to SW (SW Buffer): hardware task to software
task using DMA burst transfer to memory based
buffer

V. EXPERIMENTAL RESULTS
Although our intended goal is to apply this framework

to support data adaptability for JPEG2000 image
compression and decompression, we currently focus our
initial development efforts on the less complex JPEG
standard. Specifically, we consider a multithreaded
software implementation for JPEG image compression.
The initial multithreaded software implementation utilizes
six POSIX threads for file input, discrete cosine transform
(dct), quantization (qnt), zig-zag ordering (zz), run-length
encoding (rle), and output encoding and file output.
Communication between software tasks are implemented
using software bounded buffers, to which access is
guarded by mutexes. The initial multithreaded software
application was implemented on a Xilinx ML507
development board incorporating a Virtex-5 FX FPGA.
The software was executed on the PowerPC processor of
the FPGA at the maximum operating frequency of 400
MHz with a processor local bus (PLB) frequency of 100
MHz. All software tasks were executed using the Xilinx
XilKernel 4.0.

Within the JPEG encoding application, four of the
software tasks, dct, qnt, zz, and rle, were identified and
implemented as hardware tasks using the presented
hardware/software communication middleware. The User
IP component for each of these hardware tasks was
directly created from the original software code using the
ImpulseC CoDeveloper high-level synthesis tool. We note
that the interface utilized by ImpulseC does not directly
connect with the hardware/software communication
framework. Hence, additional logic was utilized to
interface and synchronize the ImpulseC generated cores
with our communication framework. Figure 6 provides an
overview of the resulting hardware/software
implementation for the JPEG encoder in which
communication between software and hardware tasks is
managed by our communication middleware.

Figure 6. Hardware core implementation for JPEG encoding application.

µP
(JPEG)

Mem

qnt

 dct

rle

zz

40

Table I presents the area requirements reported in look-
up tables (LUTs) and flip-flops (FFs) for the hardware
communication middleware framework (HWCM) and each
of the four hardware task implementations for the JPEG
encoding application. The hardware communication
middleware framework requires a total of 1649 LUTs and
FFs, of which the majority of the required logic is due o the
FIFO component needed to store data locally. For each of
the four hardware tasks, the hardware communication
framework correspond to between 23% and 35% of the
total logic required for the tasks hardware circuit. For the
quantization tasks, the large percentage required for the
communication framework is primarily due to the
simplicity of the quantization operation. Thus, the User IP
component for this hardware task only requires 65% of the
total logic for that task. However, for more complex
operations, such as run-length encoding, the hardware
required for the User IP core can be as much as 77% of the
total area required. Overall the communication framework
requires only 19% of the total logic resources required for
all hardware tasks.

Several factors can affect the overall performance of the
resulting hardware/software implementations. First, within
the data-adaptable approach, only those kernels that match
the current data profile can be accelerated using the
hardware task implementations. We evaluated the
performance of all possible hardware tasks combinations to
analyze the potential performance benefits of the approach.

Second, for many applications the communication of
data between tasks – especially between hardware and

software tasks – limits the overall speedup that can be
achieved. For these applications, a higher system bus
frequency may help to improvement the overall
performance by reducing the communication latency. At
the same time, as the hardware tasks operate at the same
speed as the system bus, the performance the hardware
tasks can be further improved. However, using the Xilinx
Virtex-5 FX FPGA, the ratio of the processor to clock
frequency is restricted to specific ratios. Increasing the
system bus frequency incurs a tradeoff of reduced
processor frequency. Therefore, we consider two
alternative processor to bus frequency ratios, including a
4:1 ratio in which the processor executes at 400 MHz and
the system bus executes at 100 MHz and a 2:1 ratio in
which the processor executes at only 250 MHz with the
system bus operating at 125 MHz.

Lastly, we consider the impact of the using direct
memory access (DMA) for transferring data between
software and hardware tasks. Using the processor local
bus within the target systems, individual bus transaction
can incur wait times of up to 36 cycles. Transferring data
one word at a time between tasks can significantly limit
the overall throughout. For the JPEG encoding
application, most of the hardware tasks operate on well
defined blocks of data that allow data to be transferred
using burst operations via DMA. To evaluate the
performance benefits with and without DMA support, we
consider three options for transferring data between tasks,
including using individual write operation for each data
transfer, using DMA to transfer one block of data between
tasks, and using DMA to transfer four blocks of data
between tasks during each transfer.

Figure 7 presents the normalized execution time for
the JPEG encoding application for all combinations of the
tasks implemented within hardware considering processor
and system bus frequencies of (a) 400 MHz and 100 MHz
and (b) 250 MHz and 125 MHz, respectively. All
execution times are normalized to the original
multithreaded software execution on the processor
operating at the maximum frequency of 400 MHz. All

TABLE I. AREA REQUIREMENTS REPORTED IN LOOK-UP TABLES (LUTS)
AND FLIP-FLOPS (FFS) FOR THE HARDWARE COMMUNICATION

MIDDLEWARE FRAMEWORK (HWCM) AND FOUR HARDWARE TASK
IMPLEMENTATIONS FOR THE JPEG ENCODING APPLICATION.

HARDWARE TASKS
AREA HWCM

DCT QNT ZZ RLE TOTAL

LUTS 843 4811 2603 3037 4850 19,693
FFS 806 1895 2145 2247 2226 13,866

% HWCM 24% 35% 31% 23% 19%

Figure 7. Normalized execution time for the JPEG encoding application for various combinations of the tasks implemented within hardware with processor
and system bus frequencies of (a) 400 MHz and 100 MHz and (b) 250 MHz and 125 MHz. All execution times are normalized to the original software

execution on the processor operating at the maximum frequency of 400 MHz.

(a) (b)

41

execution times were determined using physical
measurements from the Virtex-5 FX FPGA development
board.

Overall, the highest performance is achieved by
utilizing all hardware tasks (dct+wnt+zz+rle) using
operating frequencies of 400/100 MHz and DMA transfers
of one block. This configuration yields a 6.3X speedup
over the initial software application. Notably, for this set of
hardware tasks, four block DMA transfers achieve lower
performance. than using individual blocks for all but the
fastest implementation. For all other implementations,
transferring four blocks simultaneously results in increased
performance. This difference in performance is primarily
due to cache coherency and setup times involved within
these DMA operations. As such a tradeoff exists between
the reduced bus transaction wait times and the DMA setup
and cache coherence times.

Although the 250/125 MHz implementation provides
higher performance for data transfer and hardware task
execution, these performance benefits are outweighed by
the reduced processor frequency. For those tasks
implemented in software, this slowdown significantly
impacts the overall performance. While the best
performing design for this configuration again utilizes all
hardware tasks (dct+wnt+zz+rle), the overall speedup is
only 4.6X – a 1.4X slowdown compared to the 400/100
MHz implementation.

We further examine the situation in which only a subset
of hardware tasks are available for the current data profile.
For scenarios in which the data profile only allows two
hardware tasks to be utilized, performance speedups of
1.9X to 4.1X and 1.3X to 3.0X can be achieved for the
400/100 MHz and 250/125 MHz alternatives, respectively.
For these scenarios, the size of DMA transfers can have
significant performance impacts. For example, using the
qnt and zz hardware tasks (qnt+zz), four block DMA
transfers achieve a 1.6X speedup compared to the single
block DMA transfers. Furthermore, for some
implementations (dct+rle, qnt+rle, and zz+rle), individual
data transfer provide higher performance compared to
using DMA – as mush as 1.1X improvement. This
performance improvement using individual data transfers is
due to the variable size output produced by the rle task.
Because the transfer sizes cannot be predicted in advance
for rle, the latencies required reading this data using DMA
transfer is increased, which affects the overall performance.

VI. CONCLUSIONS
The trend toward increased flexibility and

configurability in emerging applications presents
demanding challenges for implementing systems that
incorporate such capabilities. For embedded applications,
hardware solutions that reduce power consumption or
increase speed may be infeasible if expected to cover the
entire configuration space. This paper described a new
approach to managing this complexity through a data-

adaptable computing. We presented a hardware/software
communication middleware that provides seamless
support for runtime communication between hardware
and software tasks and demonstrated that performance
improvement of greater than 6X can be achieved with
small additional logic resources.

While we have highlighted the potential benefits of
the data-adaptable methodology and hardware/software
communication middleware, important future work
remains. Following efforts are focused on applying this
technique to JPEG2000 image compression and
decompression, which are both highly configurable and
significantly more complex compared to JPEG
compression. We are also developing a runtime
reconfiguration framework to dynamically reconfigure the
FPGA in response to changes in data profiles leveraging
the hardware/software communication framework.
Additionally, future work includes developing analytical
models that can be utilized to determine the best
communication method between tasks, without requiring
long simulations or exhaustive prototyping efforts.

ACKNOWLEDGEMENTS
This work was supported in part by the National

Science Foundation under Grant CNS-0915010.

REFERENCES
[1] Anderson, E., J. Agron, W. Peck, J. Stevens, F.

Baijot, E. Komp, R. Sass, D. Andrews. Enabling a
Uniform Programming Model Across the
Software/Hardware Boundary. Symposium on Field-
Programmable Custom Computing Machines, pp. 89-
98, 2006.

[2] Banerjee, P., Mittal, G., Zaretsky, D., and Tang, X.
BINACHIP-FPGA: A Tool to Map DSP Software
Binaries and Assembly Programs onto FPGAs. In
Proceedings of the Embedded Signal Processing
Conference (GSPx), 2004.

[3] Buyukkurt, B., Z. Guo, W. A. Najjar. Impact of Loop
Unrolling on Area, Throughput and Clock frequency
in ROCCC: C to VHDL Compiler for FPGAs.
International Workshop on Applied Reconfigurable
Computing, 2006.

[4] C-to-Verilog, www.ctoverilog.com, 2010.
[5] Digital Imaging and Communications in Medicine

(DICOM), National Electrical Manufacturers
Association, 2008.

[6] Faure, E., A. Greiner, D. Genius. A Generic
Hardware/Software Communication Mechanism for
Multi-Processor System on Chip, Targeting
Telecommunication Applications. Conference on
Reconfigurable Communication-Centric SoCs
(ReCoSoC), pp. 237-242, 2006.

[7] Gajski, D., F. Vahid, S. Narayan, J. Gong. SpecSyn:
An Environment Supporting the Specify-Explore-
Refine Paradigm for Hardware/Software System

42

Design. IEEE Transactions on VLSI Systems (TVLSI),
Vol. 6, No. 1, pp. 84-100, 1998.

[8] Garcia, P., K. Compton, M. Schulte, E. Blem, W. Fu.
An Overview of Reconfigurable Hardware in
Embedded Systems. EURASIP Journal on Embedded
Systems, Vol. 2006, No. 1, pp. 1-19, 2006.

[9] Guo, Z., Buyukkurt, B., Najjar, W., Vissers, K.
Optimized Generation of Data-Path from C Codes. In
Proceedings of the Design Automation and Test in
Europe Conference (DATE), pp. 112-117, 2005.

[10] Gupta, S., N. Dutt, R. Gupta, A. Nicolau. SPARK: A
High-Level Synthesis Framework for Applying
Parallelizing Compiler Transformations. International
Conference on VLSI Design, pp. 461-466, 2003.

[11] Henkel, J., R. Ernst. A Hardware/Software Partitioner
Using a Dynamically Determined Granularity. Design
Automation Conference (DAC), pp. 691-696, 1997.

[12] Impulse Accelerated Technologies. Impulse
CoDeveloper, www.impulseaccelerated.com, 2010.

[13] ISO/IEC 14496. Information technology -- Coding of
Audio-Visual Objects, 2004.

[14] Jidin, R., D. Andrews, W. Peck, D. Chirpich, K. Stout,
J. Gauch. Evaluation of the Hybrid Multithreading
Programming Model using Image Processing
Transforms. International Parallel and Distributed
Processing Symposium (IPDPS), 2005.

[15] Joint Photographic Experts Group. JPEG2000 Image
Compression Standard, www.jpeg.org/jpeg2000/.

[16] Krishnan, K., M. W. Marcellin, A. Bilgin, M. S.
Nadar. Efficient Transmission of Compressed Data for
Remote Volume Visualization. IEEE Transactions on
Medical Imaging, Vol. 25, No. 9, pp. 1189-1199, 2006.

[17] Lédeczi, Á., Á. Bakay, M. Maroti, P. Volgyesi, G.
Nordstrom, J. Sprinkle, G. Karsai. Composing
Domain-Specific Design Environments. IEEE
Computer, Vol. 34, No. 11, pp. 44-51, 2001.

[18] Lubbers, E., M. Platzner. Cooperative Multithreading
in Dynamically Reconfigurable Systems. Field
Programmable Logic and Applications (FPL), pp. 551-
554, 2009.

[19] Lubbers, E., M. Platzner. A Portable Abstraction Layer
for Hardware Threads. Field Programmable Logic and
Applications (FPL), pp. 17-22, 2008.

[20] Lubbers, E., M. Platzner. ReconOS: An RTOS
Supporting Hardware and Software Threads. Field
Programmable Logic and Applications (FPL), pp. 441-
446, 2007.

[21] Olson, J., J. Rozenblit, C. Talarico, W. Jacak.
Hardware/Software Partitioning using Bayesian Belief
Networks. IEEE Transactions on Systems, Man and
Cybernetics, Vol. 37, No. 5, pp. 665-668, 2007.

[22] Rozenblit, J., K. Buchenrieder. Codesign: Computer-
Aided Software/Hardware Engineering, IEEE Press,
1994.

[23] Schelkens, P., Munteanu, A., Barbarien, J., Galca, M.,
Giro-Nieto, X., Cornelis, J. Wavelet coding of

volumetric medical datasets. IEEE Transactions on
Medical Imaging, Vol. 22, No. 3, pp. 441-458, 2003.

[24] Schulz, S., J. Rozenblit, M. Mrva, K. Buchenrieder.
Model-Based Codesign. IEEE Computer, Vol. 32,
No. 8, pp. 60-68, 1998.

[25] So, H., R. Brodersen. A Unified Hardware/Software
Runtime Environment for FPGA-based
Reconfigurable Computers using BORPH. ACM
Transactions on Embedded Computing Systems
(TECS), Vol. 7, No. 2, Article 14, pp. 1-28, 2008.

[26] SMPTE 421M-2006, VC-1 Compressed Video
Bitstream Format and Decoding Process, 2006.

[27] Stitt, G., F. Vahid, S. Nematbakhsh. Power Savings
and Speedups from Partitioning Critical Loops to
Hardware in Embedded Systems. ACM Transactions
on Embedded Computing Systems (TECS), Vol. 3,
No. 1, pp. 218-232, 2004.

[28] Taubman, D., M. W. Marcellin, JPEG 2000: Image
Compression Fundamentals, Standards and Practice,
Kluwer International Series in Engineering and
Computer Science, Secs 642, 2001.

[29] Santambogio, M. From Reconfigurable Architecture
to Self-Adaptive Autonomic Systems. International
Conference on Computational Science and
Engineering, 2009.

[30] Santambogio, M., Memik, S., Rana, V., Acar, U.,
Sciuto, D. A Novel SOC Design Methodology
Combining Adaptive Software and Reconfigurable
Hardware. International Conference on Computer-
Aided Design (ICCAD), 2007.

[31] Sima, V., Bertels, K. Runtime Decision of Hardware
or Software Execution on a Heterogeneous
Reconfigurable Platform. International Symposium
on Parallel and Distributed Processing (IPDPS),
2009.

[32] Venkataramani, G., W. Najjar, F. Kurdahi, N.
Bagherzadeh, W. Bohm. A Compiler Framework for
Mapping Applications to a Coarse-grained
Reconfigurable Computer Architecture. Conference
on Compiler, Architecture and Synthesis for
Embedded Systems (CASES), pp. 116-125, 2001.

[33] Special Section on JPEG 2000 Digital Imaging, IEEE
Trans. on Consumer Electronics, Vol. 49, pp. 771-
888, 2003.

[34] Williams, J., N. Bergmann, X. Xie. FIFO
Communication Models in Operating Systems for
Reconfigurable Computing. Field-Programmable
Custom Computing Machines (FCCM), pp. 277-278,
2005.

[35] Xie, X., J. Williams, N. Bergmann. Asymmetric
Multi-Processor Architecture for Reconfigurable
System-on-Chip and Operating System Abstractions.
Field-Programmable Technology (FPT), pp. 41-48,
2007.

[36] Xilinx, Inc. Fast Simplex Link (FSL),
www.xilinx.com/products/ipcenter/FSL.htm, 2010.

43

