
 
 

Hardware/Software Communication Middleware for Data Adaptable Embedded 
Systems 

Sachidanand Mahadevan, Vijay Shankar Gopinath, Roman Lysecky, Jonathan Sprinkle, Jerzy Rozenblit, Michael 
W. Marcellin 

Department of Electrical and Computer Engineering 
University of Arizona, Tucson, AZ 

{sachi, vsg, rlysecky, sprinkle, jr, marcellin}@ece.arizona.edu 

Abstract—Recent trends toward increased flexibility and 
configurability in emerging applications present demanding 
challenges for implementing systems that incorporate such 
capabilities. The resulting application configuration space is 
generally much larger than any one hardware implementation 
can support. We present an overview of a new data-adaptive 
approach to rapid design and implementation of such highly 
configurable applications. In support of this data-adaptable 
approach, we demonstrate an efficient and flexible 
hardware/software communication middleware to support the 
seamless communication between hardware and software 
tasks at runtime. We highlight the flexibility of this interface 
and present an initial case study with results demonstrating 
the performance capabilities and area requirements.   
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I. INTRODUCTION 
Significant increases in application complexity often 

demand processing requirements that exceed the 
performance achievable by current processors. At the same 
time, there is a trend toward increased flexibility and 
configurability in emerging applications that presents 
demanding challenges for implementing systems that 
incorporate such capabilities. While software 
implementations provide the flexibility needed to support 
standards – as demonstrated by the typical practice of 
releasing reference software code for these standards – the 
computational requirements of such applications often 
exceed the performance achievable by current processors. 
Alternatively, hardware accelerated solutions can 
potentially provide the required performance for these 
applications but are severely limited in the application 
space that can be supported. 

JPEG2000 image coding standard precisely exhibits the 
aforementioned high degree of configurability and extreme 
computational demands. JPEG2000 offers flexibility at 
almost all stages of image compression including 
colorspace and bit-depth of the compressed image, options 
for wavelet transforms and quantization, support for both 
lossless and lossy compression, and Motion JPEG2000 for 
video support [15][28][33]. Many other emerging 
multimedia standards provide similar levels of 
configurability, including the MPEG-4 [13] and VC-1 [26] 
video encoding standards, among others. 

In an effort to alleviate the design cost of developing 
software and hardware solutions capable of supporting the 

entire configuration space, many modern standards define 
several profiles intended for specific purposes. A profile 
either defines specific settings for various configurable 
parameters within the standard or a subset of allowed 
options, thereby reducing the level of complexity needed 
to implement a specific profile in software and/or 
hardware. While application profiles may allow 
hardware-accelerated implementations to support a subset 
of the application space, the number and variability of 
profiles even within a particular application domain 
precludes traditional hardware-based implementations as 
a viable option for many applications. For example, 
medical imaging applications are increasingly using 
JPEG2000 to meet stringent image quality requirements 
and to accommodate the necessary high compression to 
store and transmit vast amounts of data [16][23]. 
However, it is not the case that all medical imaging 
applications can use the same application profiles, or even 
that the same medical imaging hardware will always be 
used to visualize the same kinds of images.  

Extensive research has demonstrated the benefits that 
can be obtained by hardware/software codesign and 
partitioning – with researchers and commercial vendors 
having achieved application speedups of 10X-1000X 
[2][7][9][11][21][22]. Hardware/software codesign 
provides a hybrid approach to design a system comprised 
of software running alongside custom hardware 
coprocessors or accelerators. However, a 
hardware/software implementation is still limited in the 
amount of configurability that can be supported in 
hardware due to area and cost constraints. Thus, a 
traditional hardware accelerated solution that supports all 
profiles even within a single domain is often infeasible, as 
hardware coprocessors must be generated for all profiles 
utilized within that domain. This is true for many 
configurable applications: a general hardware solution 
that covers the entire data profile space, or entire 
application standard, is infeasible since the combinatorial 
expansion of the design will not fit within a single 
affordable circuit. 

Field-programmable gate arrays (FPGAs) – and 
reconfigurable computing in general – offer an 
increasingly economical alternative to traditional 
hardware-based solutions. Several FPGAs are currently 
available that integrate microprocessors and 
reconfigurable logic within the same integrated circuit. As 
such, hardware/software codesign targeting dynamically 
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reconfigurable FPGAs can be utilized to meet the 
performance demands and flexibility of modern multimedia 
applications. However, existing hardware/software 
codesign methodologies do not provide an efficient method 
to directly represent and exploit such data configurability at 
the application level. Instead, current approaches would 
require costly manual efforts to develop hardware for the 
various required data profiles. 

In this paper, we present an overview of a new data-
adaptive approach to enable the rapid design and 
implementation of highly configurable applications. In 
order to enable runtime reconfiguration and adaptive 
communication requirements of this approach, we present 
an efficient and flexible hardware/software communication 
middleware to support the seamless communication 
between hardware and software tasks at runtime. This 
communication middleware abstracts the communication 
and interfacing details required to efficiently transfer data 
between tasks, for which a task’s implementation is not 
known a priori but rather will be determined at runtime. We 
highlight the flexibility of this interface and present an 
initial case study and results demonstrating the 
performance capabilities and area requirements.  

We first provide a summary of related work in Section 
II. In Section III, we provide an overview of our data-
adaptable methodology and demonstrate how this 
methodology can be utilized for highly configurable 
applications. In Section IV, we present a hardware/software 
communication middleware that provides seamless runtime 
communication between software and hardware tasks 
within our data-adaptable computing approach. In Section 
V, we present several experimental results highlighting the 
performance improvements that can be achieved using the 
presented communication middleware for JPEG image 
compression. Finally, we present our conclusions and 
provide an overview of future research direction in Section 
VI. 

II. RELATED WORK 
Runtime reconfigurable and self-adaptive systems – 

extensively summarized in [2] and [29] – provide the 
opportunity to reconfigure an FPGA to implement 
hardware circuits for specific data profiles as needed by the 
target application given the current input data. In [31], a 
self-adaptive approach is presented that dynamically selects 
between software and hardware implementations for 
specific application kernels by profiling and monitoring 
function parameters. Alternatively, [30] proposes an 
adaptive design methodology that combines dynamic 
mapping of tasks between software and hardware 
alternatives with adaptive computing techniques that 
eliminates the need to re-execute computations that do not 
change for different application inputs.  

Although these advancements are substantial, the 
design methods still produce restricted hardware 
implementations for specific application tasks and do not 

consider the entire application configurability. To support 
highly configurable applications, a design methodology is 
needed to capture and implement the entire application 
design and configuration space in order to produce 
suitable hardware and software partitions that are capable 
of meeting the required performance based on the 
expected data. Such a methodology, complete with new 
models of composition and system synthesis to inform 
existing tools and practices, would rapidly accelerate the 
availability of technologies currently in prototype to reach 
deployment. 

Much research has also focused on developing 
methods for efficient communication or runtime 
management of hardware and software tasks implemented 
with reconfigurable systems, such as FPGAs. ReconOS 
[18][19][20] provides operating system support for 
scheduling and synchronizing hardware and software 
threads. Within this framework, each hardware threads is 
coupled with a software threads through which the OS 
can schedule the execution of hardware threads by 
scheduling the associated software thread. BORPH [25] 
provides a framework for supporting reconfigurable 
FPGAs within traditional operating systems by 
encapsulating hardware tasks in a custom executable 
format. This executable format provides both the 
configuration and interfacing details for hardware threads 
such that the operating system can manage the 
reconfiguration of the available FPGA resources. Within 
this framework, communication between software and 
hardware threads is supported through message passing 
protocols.  

Complimentarily, by providing mechanisms for 
supporting POSIX synchronization constructs, e.g. 
mutexes, semaphores, POSIX threads can be implemented 
within both hardware and software [1]. Within this 
approach, distributed memory is utilized such that each 
hardware thread has a physically local memory that can 
be accessed by other software and hardware threads. 
Efficient communication can thereby be facilitated 
through pointers without out the need to copy data values.  

Similar to our hardware/software communication 
middleware, several approaches have likewise utilized 
FIFOs to facilitate communication between software and 
hardware tasks. Both Williams et al. [34] and Xie et al. 
[35] propose utilizing tightly coupled FIFO-based 
communication, in which the processor has direct access 
to these FIFOs. For example, the Fast Simple Link (FSL) 
[32] supported within the Xilinx MicroBlaze processor 
provides an efficient communication link for fast 
communication between the microprocessor and directly 
connected components. In the former approach, software 
device drivers are utilized to provide access FIFOs 
through the FSL to efficiently communicate between 
hardware and software tasks. In the latter approach, a 
shared pool of FIFOs is utilized to communicate between 
multiple software tasks within multiprocessor systems, 
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where the FSL links are utilized to access the shared 
FIFOs. For many applications, multiple tasks may compete 
for access to shared FIFOs. To support streaming 
applications exhibiting such multi-consumer, multi-
producer access to shared buffers, Faure et al. [3] proposed 
a communication framework incorporating locking 
mechanism to enable both software and hardware tasks to 
access these shared buffers simultaneously. 

III. DATA-ADAPTABLE APPROACH OVERVIEW 
Figure 1 provides a conceptual overview of data-

adaptable computing, presenting a particular configuration 
of software and hardware processing tasks along with 
alternative hardware task implementations that are 
available – though not currently in use – for an example 
streaming application. This example system consists of four 
tasks, Task A-D, where each task performs a different 
processing step of the overall application. For each 
processing task, hardware coprocessors may be available 
for a few specific data profiles that a designer identified as 
common data profiles needed within the target application 
domain, for which maximum performance is essential. The 
data profile of the incoming data provides and specifies the 
necessary information indicating which algorithms, or 
configurations of those algorithms, are needed to process 
the data correctly. For example, in most multimedia 
applications, the data profile of the incoming data is 
contained within the header of the incoming data stream or 
input file.  

At runtime, the data profile of the current data input can 
be leveraged to determine if a suitable hardware 
implementation is available for any of the application’s 
tasks, and will adapt the execution of the combined 
hardware/software implementation to use those 
coprocessors when possible. If a coprocessor is not 

available, a generic, non-accelerated software 
implementation can be utilized. Thus, data-adaptable 
computing seeks to maximize performance by adapting 
the execution at runtime by utilizing data profile specific 
hardware coprocessors, when available, required for the 
current input data being processed.  

For the example system presented, Figure 2 
demonstrates the resulting software and hardware 
configurations for three different instances of incoming 
data that need to be processed, where the data profile for 
these distinct data inputs are indentified as Profile K, 
Profile P, and Profile Q. If the incoming data are 
identified with Profile K, only Task C can be accelerated 
using the hardware coprocessor, indicating that all other 
tasks will be performed in software. On the other hand, 
for Profile P, hardware coprocessors are available for all 
tasks within the applications, providing the best possible 
performance. Finally, in the case of Profile Q, although 
many hardware coprocessors are available for Task D, the 

Figure 1. Hardware tasks are updated based upon the detected data profile of the incoming data stream. In this example, Task A will be reconfigured, as a 
hardware coprocessor is available for the newly detected tile size of 1024x1024. Hardware for Task C is no longer available and a software implementation 

will be utilized instead. 

Figure 2. Overview of data-adaptability, in which the data profile of the 
incoming data stream determines which hardware tasks/coprocessors, if 

any, can be utilized to speedup performance. 
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required coprocessor for this profile is different from the 
coprocessor needed for other profiles.  

Implementing such a data-adaptable solution using 
traditional hardware based implementations is infeasible. 
Instead, FPGAs are perfectly suited for our data-adaptable 
approach as an FPGA can be dynamically reconfigured as 
needed based on the data profile of the incoming data.   

Figure 1 further provides an overview of the data-
adaptable hardware/software based implementation, 
targeting a system-on-a-chip (SOC) integrating a 
microprocessor and FPGA performing a JPEG2000 
decompression/compression of an image stream. An initial 
input stream summarized as a 14-bit data profile is shown 
in its configuration. In this profile, Task A operates on 
512x512 tiles of data, Task B takes the output of this task 
and performs a 5/3 wavelet transformation, and Task C 
applies a compression scheme to the output data stream. At 
some point, the input stream changes, and a new data 
profile is recognized. This new data stream uses 1024x1024 
tiles for the first task, and the various other tasks – although 
not specified for a particular tile size – may also need to 
operate on the new 1024x1024 tiles. The existing hardware 
profile may not be suitable for the new tile size. 
Alternatives for computation of the new data stream are a 
new hardware implementation, if it exists, or the base 
software implementation. Since the existing hardware 
implementation is no longer needed, the reconfigurable 
hardware upon which it is running can be freed for use by 
hardware implementations of the new tile size. 

By detecting the data profile of the incoming data 
stream, the data-adaptable approach can reconfigure the 
hardware implemented within the FPGA to best match the 
newly detected data profile. As previously mentioned, the 
data stream will normally contain all necessary information 
regarding the configuration of necessary computational 

elements. If a hardware coprocessor is not available for a 
specific task, the base configurable software 
implementation will be utilized for those tasks. As such, 
the approach is data-adaptable in that the system is able to 
adapt its execution based upon the data characteristics of 
the incoming data. 

Importantly, it is the complexity of highly 
configurable applications that prevents the system 
designer from developing this data/profile reconfiguration 
strategy by hand. Given the combinatorial complexity of 
highly configurable applications, a designer would likely 
resort to ad hoc methods to cover the entire data profile 
space of interest. Our objective is to automate this profile 
space coverage through the specification and modeling of 
the configurable data and design parameters, and allow 
synthesis of hardware/software configurations that have 
the strength of hardware point solutions, with the 
flexibility to reconfigure themselves for optimal 
performance based on the incoming data stream. 

To facilitate a hierarchical description of the target 
application as a set of independent communicating and 
configurable tasks, we have developed a new modeling 
technique termed communicating sequential dataflow 
tasks (CSDT). The CSDT model supports a rich set of 
semantics for specifying data profile generics and 
providing an execution model directly supporting the 
varying requirements imposed by data configurability. 
Our CSDT model – built using the Generic Modeling 
Environment [17] – supports a hierarchical framework for 
top-down implementation of a target application and its 
data configurability. This design environment is not tied 
to a particular language, but rather provides formalisms 
for the semantics visually tied to a graphical metamodel. 

Within the CSDT model, tasks are independently 
modeled with communication specified through abstract 

Figure 3: Data-adaptable hardware/software codesign methodology in which the data model compilation will create a minimal set of configured hardware 
coprocessors and communication interfaces needed to support the designer-specified CSDT model and data profiles. 
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communication channels that provide a bounded data 
storage and synchronization mechanisms. By utilizing 
abstract models of communication, designers are not 
burdened with specifying exact requirements for every 
communication channel for all possible data 
configurability. Instead, the CSDT modeling framework 
provides mechanisms for specifying the relation between 
data profiles and communication requirements.  

Figure 3 provides an overview of the proposed data-
adaptable codesign methodology. The input to the 
methodology is the CSDT model of the target application 
and a set of designer-specified data profiles. The data 
profiles define the specific configured instances of the 
target application that must be supported by the 
reconfigurable implementation. Given the CSDT model 
and data profiles, the data-adaptable codesign methodology 
will generate a set of hardware tasks utilizing the 
hardware/software communication middleware to abstract 
all communication between tasks. Similarly, the software 
application will utilize the communication middleware for 
all communication between tasks.  

IV. HARDWARE/SOFTWARE COMMUNICATION 
MIDDLEWARE  

Within the CSDT model, all communication is specified 
using specific communication channels between tasks using 
software bounder buffers or hardware FIFOs. For software 
task implementations, a basic set of APIs is provided to 
allow the task to read data from its input buffer or write 
data to its output buffer, in which each buffer is defined by 
a specific channel ID. However, the actual location of the 
input and output buffers may change at runtime. For 
example, communication between two software tasks will 
likely utilize bounded buffers implemented in software and 
guarded with mutexes to control synchronization. In 
contrast, communication between two hardware tasks will 
use a hardware FIFO providing true simultaneous read and 
write access.  

To abstract these communication details for the 
software and hardware task implementations, the 
hardware/software communication middleware utilizes a 
runtime manager to direct and synchronize data transfer to 
and from the appropriate software or hardware task 
implementation. This runtime decision is determined by 
both the data profile of the incoming data along with the 
availability of a hardware task required for the current data 
profile. To support these dynamic communication 
requirements, a communication middleware spanning 
across software and hardware boundaries is required. Given 
the target channel ID and the currently available hardware 
tasks, the runtime communication manager will 
automatically determine which software buffer or hardware 
FIFO is needed for the current read or write operation. For 
software-to-software transfers, standard guarded buffers are 
utilized, for which the runtime manager simply maintains a 
mapping of channel ID to specific software buffers.  

Alternatively, for software-to-hardware, hardware-to-
hardware, and hardware-to-software communication, the 
runtime manager must also interface with and configure 
each hardware task for the current communication 
requirements defined by the input data profile. One the 
primary components within the hardware/software 
communication middleware is a hardware/software 
communication framework facilitating seamless runtime 
communication between software and hardware tasks 
suitable. Figure 4 presents an overview of the 
hardware/software communication framework for 
hardware tasks consisting of several abstracted 
communication components.  

This communication framework supports both 
memory-mapped communications over the system bus 
and streaming data interfaces between tasks implemented 
in hardware. The flexibility provided by this 
communication framework allows application designers 
to choose the best method of communication to achieve 
optimal performance for the target application. This 
framework further provides support for streaming data 
communication between adjacent and non-adjacent 
hardware tasks implemented within an FPGA. As such, 
the common interface utilized by all hardware task 
implementations provides a clear delineation between 
individual hardware tasks while allowing hardware tasks 
to be placed within any reconfigurable region of the target 
FPGA – thereby providing near seamless support for 
dynamic reconfiguration.  

The hardware/software communication middleware 
consists of seven components including: 1) the main IP 
core (User IP) implementing the hardware tasks desired 
functionality, 2) a FIFO for providing data input to the 
hardware task, 3) a streaming interface to receive 
incoming data from hardware or software tasks (FIFO 
In), 4) a streaming interface for writing data to an 
adjacent hardware task’s FIFO (FIFO Out), 5) memory-
mapped interface for directly accessing the system bus 
(Bus Interface), 6) an interface for providing memory-

Figure 4. Hardware/software communication framework consisting of 
several abstracted communication components for hardware IP cores. 
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mapped access to the FIFO (Bus2FIFO), and 7) an 
interface for using burst bus-based communication to non-
adjacent hardware tasks (FIFO2Bus).  

The User IP component defines the specific 
computation required for each tasks implemented within 
hardware. Within the DARES framework, the User IP 
supports the same computation – or subset of computations 
– as that supported by the original software tasks. Again, 
within the reconfigurable framework, the profile on 
incoming data will guide whether specific tasks will be 
executed in software or hardware at runtime. The User IP 
component can be created either manually by hardware 
designers or by utilizing high-level synthesis tools 
[3][4][10][12]. For all of the User IP cores considered 
within this paper, we utilized the ImpulseC CoDeveloper 
high-level synthesis tool [12] to automate the creation of 
hardware tasks from the original software code. 

To support the communication abstraction, the input 
data for all hardware tasks is stored within the task’s FIFO, 
which serves as the primary method for supporting the 

stream based communication between software and 
hardware tasks. The width of a task’s FIFO is currently 
constrained to the width of the system bus. For the target 
systems considered within this paper, the system bus and 
FIFO width is limited to 32 bits. The depth of a task’s 
FIFO must be at least as large as the size of data that 
needs to be processed during each execution of the 
hardware task.  

Using the Xilinx IP Core Generator, a properly sized 
FIFO can be created for each hardware task. The specific 
FIFO implementation used within the hardware/software 
communication middleware requires independent 
synchronous read and write ports, a first word fall through 
to minimize communication latency, along with status 
signals indicating the current number of data items in the 
FIFO, if the FIFO is empty, and if the FIFO is full. 

The FIFOIn and FIFOOut components provide 
streaming interfaces for transferring data between 
connected hardware tasks within the FPGA. This provides 
the fastest method of communication between tasks, 

Figure 5. Hardware/software communication scenarios for software and hardware tasks: (a) software task to software task using memory based FIFO, (b) 
software task to software task using hardware FIFO, (c) software task to hardware task, (d) adjacent hardware task to hardware task, (e) non-adjacent 

hardware task to hardware task, and (f) hardware task to software task using memory based FIFO. 
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achieving a maximum throughput of one cycle per data 
transfer – assuming the sending tasks can provide data at 
this rate and the receiving task’s FIFO is not full.  

Additionally, access to a task’s FIFO is also provided 
through a set of memory-mapped registers using the Bus 
Interface and Bus2FIFO components. These interfaces 
have been designed to support both single data read and 
write operations as well as burst DMA operations. 
Specifically, the Bus2FIFO interface is utilized to 
synchronize write access to the task’s FIFO given possible 
contention for writing to the FIFO through the memory-
mapped registers and FIFOIn interfaces. We note that 
although no contention between the Bus2FIFO and FIFOIn 
will occur within the DARES methodology, the current 
framework manages any contention by giving priority to 
the FIFOIn interface. In addition, the Bus2FIFO 
component synchronizes FIFO read and write accesses 
during DMA transfers to achieve a maximum throughput of 
one access per cycle as long as the DMA transfer can 
provide data fast enough and the task’s FIFO is not full. 

Output from the current task is transmitted to the 
FIFOOut interface. The FIFOOut interface will determine 
if the data needs to be written to the adjacent connected 
hardware task by directly writing the data to the FIFOIn 
interface of the adjacent hardware task or to a memory-
mapped location for non-adjacent hardware and software 
tasks. For adjacently connected hardware tasks, the 
interfaces provided by the FIFOIn and FIFOOut utilize a 
subset of signals available from the receiving task’s FIFO, 
including write control, write data, and FIFO full signals. 
For non-adjacent communication, the Bus2FIFO 
component utilizes burst data transfer over the system bus 
to transfer data to non-adjacent hardware tasks or software 
buffers in memory for software tasks.  

The hardware/software communication middleware 
provides bus-based communication between hardware tasks 
and other systems components for non-streaming 
communication. The User IP can directly access the system 
bus using the Bus Interface component. This interface can 
be particularly useful for configuring and initializing 
hardware cores, as well as providing support for interfacing 
with system inputs and outputs.  

The communication middleware was designed to 
support seamless communication between software and 
hardware tasks. Figure 5 provides an overview of supported 
communication methods between tasks, including: 

o SW to SW (SW Buffer): software task to software 
task using memory based buffer 

o SW to SW (HW FIFO): software task to software 
task using memory-mapped access to hardware 
task’s FIFO 

o SW to HW (HW FIFO): software task to hardware 
task using hardware task’s FIFO 

o HW to HW (adjacent): hardware task to hardware 
task using streaming FIFOIn and FIFOOut 
interfaces for adjacently connected hardware tasks 

o HW to HW (non-adjacent): hardware task to 
hardware task using burst data transfers for non-
adjacent hardware tasks  

o HW to SW (SW Buffer): hardware task to software 
task using DMA burst transfer to memory based 
buffer 

V. EXPERIMENTAL RESULTS 
Although our intended goal is to apply this framework 

to support data adaptability for JPEG2000 image 
compression and decompression, we currently focus our 
initial development efforts on the less complex JPEG 
standard. Specifically, we consider a multithreaded 
software implementation for JPEG image compression. 
The initial multithreaded software implementation utilizes 
six POSIX threads for file input, discrete cosine transform 
(dct), quantization (qnt), zig-zag ordering (zz), run-length 
encoding (rle), and output encoding and file output. 
Communication between software tasks are implemented 
using software bounded buffers, to which access is 
guarded by mutexes. The initial multithreaded software 
application was implemented on a Xilinx ML507 
development board incorporating a Virtex-5 FX FPGA. 
The software was executed on the PowerPC processor of 
the FPGA at the maximum operating frequency of 400 
MHz with a processor local bus (PLB) frequency of 100 
MHz. All software tasks were executed using the Xilinx 
XilKernel 4.0.  

Within the JPEG encoding application, four of the 
software tasks, dct, qnt, zz, and rle, were identified and 
implemented as hardware tasks using the presented 
hardware/software communication middleware. The User 
IP component for each of these hardware tasks was 
directly created from the original software code using the 
ImpulseC CoDeveloper high-level synthesis tool. We note 
that the interface utilized by ImpulseC does not directly 
connect with the hardware/software communication 
framework. Hence, additional logic was utilized to 
interface and synchronize the ImpulseC generated cores 
with our communication framework. Figure 6 provides an 
overview of the resulting hardware/software 
implementation for the JPEG encoder in which 
communication between software and hardware tasks is 
managed by our communication middleware. 

Figure 6. Hardware core implementation for JPEG encoding application. 
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Table I presents the area requirements reported in look-
up tables (LUTs) and flip-flops (FFs) for the hardware 
communication middleware framework (HWCM) and each 
of the four hardware task implementations for the JPEG 
encoding application. The hardware communication 
middleware framework requires a total of 1649 LUTs and 
FFs, of which the majority of the required logic is due o the 
FIFO component needed to store data locally. For each of 
the four hardware tasks, the hardware communication 
framework correspond to between 23% and 35% of the 
total logic required for the tasks hardware circuit. For the 
quantization tasks, the large percentage required for the 
communication framework is primarily due to the 
simplicity of the quantization operation. Thus, the User IP 
component for this hardware task only requires 65% of the 
total logic for that task. However, for more complex 
operations, such as run-length encoding, the hardware 
required for the User IP core can be as much as 77% of the 
total area required.  Overall the communication framework 
requires only 19% of the total logic resources required for 
all hardware tasks. 

Several factors can affect the overall performance of the 
resulting hardware/software implementations. First, within 
the data-adaptable approach, only those kernels that match 
the current data profile can be accelerated using the 
hardware task implementations. We evaluated the 
performance of all possible hardware tasks combinations to 
analyze the potential performance benefits of the approach.  

Second, for many applications the communication of 
data between tasks – especially between hardware and 

software tasks – limits the overall speedup that can be 
achieved. For these applications, a higher system bus 
frequency may help to improvement the overall 
performance by reducing the communication latency. At 
the same time, as the hardware tasks operate at the same 
speed as the system bus, the performance the hardware 
tasks can be further improved. However, using the Xilinx 
Virtex-5 FX FPGA, the ratio of the processor to clock 
frequency is restricted to specific ratios. Increasing the 
system bus frequency incurs a tradeoff of reduced 
processor frequency. Therefore, we consider two 
alternative processor to bus frequency ratios, including a 
4:1 ratio in which the processor executes at 400 MHz and 
the system bus executes at 100 MHz and a 2:1 ratio in 
which the processor executes at only 250 MHz with the 
system bus operating at 125 MHz.  

Lastly, we consider the impact of the using direct 
memory access (DMA) for transferring data between 
software and hardware tasks. Using the processor local 
bus within the target systems, individual bus transaction 
can incur wait times of up to 36 cycles. Transferring data 
one word at a time between tasks can significantly limit 
the overall throughout. For the JPEG encoding 
application, most of the hardware tasks operate on well 
defined blocks of data that allow data to be transferred 
using burst operations via DMA. To evaluate the 
performance benefits with and without DMA support, we 
consider three options for transferring data between tasks, 
including using individual write operation for each data 
transfer, using DMA to transfer one block of data between 
tasks, and using DMA to transfer four blocks of data 
between tasks during each transfer.  

Figure 7 presents the normalized execution time for 
the JPEG encoding application for all combinations of the 
tasks implemented within hardware considering processor 
and system bus frequencies of (a) 400 MHz and 100 MHz 
and (b) 250 MHz and 125 MHz, respectively. All 
execution times are normalized to the original 
multithreaded software execution on the processor 
operating at the maximum frequency of 400 MHz. All 

TABLE I. AREA REQUIREMENTS REPORTED IN LOOK-UP TABLES (LUTS) 
AND FLIP-FLOPS (FFS) FOR THE HARDWARE COMMUNICATION 

MIDDLEWARE FRAMEWORK (HWCM) AND FOUR HARDWARE TASK 
IMPLEMENTATIONS FOR THE JPEG ENCODING APPLICATION. 

HARDWARE TASKS 
AREA HWCM 

DCT QNT ZZ RLE TOTAL 

LUTS 843 4811 2603 3037 4850 19,693 
FFS 806 1895 2145 2247 2226 13,866 

% HWCM  24% 35% 31% 23% 19% 
 

Figure 7. Normalized execution time for the JPEG encoding application for various combinations of the tasks implemented within hardware with processor 
and system bus frequencies of (a) 400 MHz and 100 MHz and (b) 250 MHz and 125 MHz. All execution times are normalized to the original software 

execution on the processor operating at the maximum frequency of 400 MHz. 

(a) (b) 
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execution times were determined using physical 
measurements from the Virtex-5 FX FPGA development 
board.   

Overall, the highest performance is achieved by 
utilizing all hardware tasks (dct+wnt+zz+rle) using 
operating frequencies of 400/100 MHz and DMA transfers 
of one block. This configuration yields a 6.3X speedup 
over the initial software application. Notably, for this set of 
hardware tasks, four block DMA transfers achieve lower 
performance. than using individual blocks for all but the 
fastest implementation. For all other implementations, 
transferring four blocks simultaneously results in increased 
performance. This difference in performance is primarily 
due to cache coherency and setup times involved within 
these DMA operations. As such a tradeoff exists between 
the reduced bus transaction wait times and the DMA setup 
and cache coherence times.  

Although the 250/125 MHz implementation provides 
higher performance for data transfer and hardware task 
execution, these performance benefits are outweighed by 
the reduced processor frequency. For those tasks 
implemented in software, this slowdown significantly 
impacts the overall performance.  While the best 
performing design for this configuration again utilizes all 
hardware tasks (dct+wnt+zz+rle), the overall speedup is 
only 4.6X – a 1.4X slowdown compared to the 400/100 
MHz implementation. 

We further examine the situation in which only a subset 
of hardware tasks are available for the current data profile. 
For scenarios in which the data profile only allows two 
hardware tasks to be utilized, performance speedups of 
1.9X to 4.1X and 1.3X to 3.0X can be achieved for the 
400/100 MHz and 250/125 MHz alternatives, respectively. 
For these scenarios, the size of DMA transfers can have 
significant performance impacts. For example, using the 
qnt and zz hardware tasks (qnt+zz), four block DMA 
transfers achieve a 1.6X speedup compared to the single 
block DMA transfers. Furthermore, for some 
implementations (dct+rle, qnt+rle, and zz+rle), individual 
data transfer provide higher performance compared to 
using DMA – as mush as 1.1X improvement. This 
performance improvement using individual data transfers is 
due to the variable size output produced by the rle task. 
Because the transfer sizes cannot be predicted in advance 
for rle, the latencies required reading this data using DMA 
transfer is increased, which affects the overall performance.  

VI. CONCLUSIONS 
The trend toward increased flexibility and 

configurability in emerging applications presents 
demanding challenges for implementing systems that 
incorporate such capabilities. For embedded applications, 
hardware solutions that reduce power consumption or 
increase speed may be infeasible if expected to cover the 
entire configuration space. This paper described a new 
approach to managing this complexity through a data-

adaptable computing. We presented a hardware/software 
communication middleware that provides seamless 
support for runtime communication between hardware 
and software tasks and demonstrated that performance 
improvement of greater than 6X can be achieved with 
small additional logic resources.  

While we have highlighted the potential benefits of 
the data-adaptable methodology and hardware/software 
communication middleware, important future work 
remains. Following efforts are focused on applying this 
technique to JPEG2000 image compression and 
decompression, which are both highly configurable and 
significantly more complex compared to JPEG 
compression. We are also developing a runtime 
reconfiguration framework to dynamically reconfigure the 
FPGA in response to changes in data profiles leveraging 
the hardware/software communication framework. 
Additionally, future work includes developing analytical 
models that can be utilized to determine the best 
communication method between tasks, without requiring 
long simulations or exhaustive prototyping efforts. 
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