
Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

APPLYING KNOWLEDGE-BASED SYSTEM DESIGN AND SIMULATION IN
INFORMATION SYSTEM REQUIREMENTS DETERMINATION

Kung-Chao Liu

Department of Management
Information Systems

The University of Arizona
Tucson, Arizona 85721

ABSTRACT

Knowledge-Based System Design and Simulation (KBSDS) is
a general system design framework that uses system entity struc-
ture, rule-based expert system techniques, and hierarchical system
modeling and simulation. KBSDS has been successfully applied
in a number of areas. In order to appraise the applicability of KB-
SDS in information system development, a spectrum of paradigms
for use in the early stages of information system development was
carefully selected and compared with KBSDS. This paper reviews
and compares KBSDS and the representative paradigms of infor-
mation system requirements determination. The comparisons favor
the usability of KBSDS in information system requirements deter-
mination.

1. INTRODUCTION

Knowledge-Based System Design and Simulation (KBSDS) is
a general system design framework emerging from artificial intel-
ligence and system simulation [Rozenblit and Zeigler 19881. The
instruments used in KBSDS include system entity structure (SES),
rule-based expert system techniques, and hierarchical system mod-
eling and simulation. The SES represents the elements of a system
under study. The rule-based expert system technique is used for
selecting design configurations of the system. Hierarchical sys-
tem modeling and simulation is employed to model and evaluate
dynamic behavior of the system.

The major activities involved in the KBSDS design process
are [Rozenblit and Zeigler 19881: (1) specification of the SES
representing the structure of the problem, (2) formulation of the
production rules for use in an expert system to prune the SES
according to design constraints, (3) transformation of the pruned
SES into a hierarchical system model suitable for system simu-
lation, and (4) system simulation and evaluation of the results to
choose the most appropriate design.

KBSDS has been applied in a number of studies [Rozenblit
and Zeigler 1988; Sevinc and Zeigler 1988; Zeigler et al. 19881.
The results have shown that KBSDS is a sound conceptual basis
for integrated, model-based system development in the computer
engineering domain.

KBSDS has also been used in a research project in develop-
ment of information systems [Herniter et al. 19891. In particular,
Liu [I9901 used KBSDS as the basis of an environment for building
and evaluating prototypes of information systems modeled in the
data flow model. Preliminary results from Liu’s work indicate that
KBSDS could become a basis for theoretic concept development
in the domain of information system development.

Given the initial success of using KBSDS in developing infor-
mation systems, the question of the general applicability of KBSDS
in the domain of information system development arises. The pur-
pose of this paper is to investigate this question. We focus on
the early stages of information system development to keep our
work within reasonable complexity. The early-stage work has been
called requirements determination. Our process consists of select-
ing a spectrum of paradigms for information system requirements

Jerzy W. Rozenblit

Department of Electrical and
Computer Engineering

The University of Arizona
Tucson, Arizona 85721

determination and then comparing them with KBSDS to assess the
utility of KBSDS in the information system development domain.

In the following sections, we first review KBSDS, then outline
those representative information system development paradigms,
and finally describe the comparisons of the two to show what in-
formation system developers can and cannot expect from KBSDS.
We also discuss what developers can do to enhance KBSDS. Since
KBSDS is a hybrid of artificial intelligence and system simulation,
the comparisons in a way assert the applicability of both artificial
intelligence and system simulation in the field of information sys-
tem requirements determination.

2. KNOWLEDGE-BASED SYSTEM DESIGN AND
SIMULATION (KBSDS)

The KBSDS approach consists of three major conceptual el-
ements: the system entity structure, rule-based pruning, and the
DEVS formalism for discrete-event system modeling and simula-
tion.

2.1 System Entity Structure

A system entity structure (SES) represents the components of a
system and their decompositions, taxonomies, and couplings [Zei-
gler 1984; Rozenblit and Zeigler 19881. The components are called
entities, which have associated variables for representing their at-
mbutes. An entity may have several aspects, each denoting a de-
composition, and therefore having several entities. An entity may
also have several specializations, each representing a taxonomy of
the possible variants of the entity. Therefore, decompositions and
taxonomies can occur altemately to form large SESs. Besides, as-
pects can have coupling constraints attached to them. Coupling
constraints restrict the way in which entities under the aspects can
be joined together.

With the SES representation, designers can depict their per-
ception of the system under study. They record how the system
can be broken into components, how some components are substi-
tutes for each other, and how components can be related.

2.2 Rule-Based Pruning

Besides the declarative knowledge represented in SES, design-
ers specify a set of production rules for manipulating the entities
in a SES. These rules encode explicitly the criteria for selecting
entities and synthesizing appropriate system configurations from
selected entities.

Designers do not execute the selection rules and synthesis rules
themselves. Instead, they define a knowledge base employed by
a rule-based expert system [Rozenblit and Huang 19871. Output
from the expert system helps designers to determine a tailored SES
that represents a system configuration fulfilling all the selection and
synthesis criteria. The process of obtaining such a specific SES has
been called pruning [Rozenblit and Zeigler 19881.

2.3 DEW

407

K.C. Liu and J.W. Rozenblit

Stage Activities Instruments Results

SES Definition Defining generic SES SES SES representing problem domain

System Instance Definition Formulating selection and synthesis Expert system Selection and synthesis rules; SES
representing system configuration criteria; Pruning SES

model representing the system

mation data

Pp- p

7 p- p

Evaluation Analyzing simulation results Decision to iterate or not

DEVS is a formalism for discreteevent system modeling and
simulation [Zeigler 19841. Each sysem described in DEVS is
called a model. An atomic model is a self-contained state transition
machine that consists of timing functions, intemal and external
state transition functions, and output functions. The elegance of
DEVS is in that one can customize an atomic model by tailoring
or totally disabling any of the functions while still maintaining the
modularity of the model.

Because of the modularity of DEVS models, one can consmct
a composire model from atomic models or other composite models
in a hierarchical manner. Therefore, a model of a system can
be simply an atomic or a composite model type. Specifically, one
can realize all the terminal-level entities in a pruned SES as atomic
models and all the non-terminal-level entities as composite models.
The composite model for the root entity is the model of the system
being studied.

Experimental Frame (EF) [Zeigler 19841 is a specific type of a
composite model that manages the simulation settings for a model
under study. An EF is composed of three atomic models: Gener-
ator, Transducer, and Acceptor. A generator generates events for
the model being simulated. A mnsducer gathers statistics from
the model being simulated. An acceptor monitors the statistics and
terminates a simulation run according to pre-defined conditions. In
essence, an EF encodes performance measures used to evaluate the
system under study.

In a simulation environment, the EF and the model to be sim-
ulated are coupled to form a higher-level composite model. The
higher-level composite model is executed by a simulation run-time
system [Zeigler 19871. Rozenblit [1985] has shown that distributed
use of EFs is more desirable than centralized use. Since each EF
realizes some design objectives, designers benefit more from hav-
ing an EF for each component of the model of the system under
study.

Zeigler [1987] has implemented DEVS in Scheme. The re-
sultant DEVS-Scheme environment is a good platform for system
design. Designers can map DEVS models into equivalent DEVS-
Scheme program segments in a straightforward manner. Having
specified the programs for the terminal-level entities in a pruned
SES, the designers can synthesize the program for the whole sys-
tem by level.

2.4 Designphases

Given the instruments of KBSDS, a system designer follows
a five-stage procedure to develop system models:

1. SES Definition. Specifying the SES that represents the
designer’s perception of the problem domain and possible config-

urations of the system to be developed.
2. System Instance Definition. Formulating selection and

synthesis criteria in production rules and using them in an expert
system to prune the SES. The result is an SES instance representing
a configuration of the system under study.

3. Simulation Model Definition. Composing the DEVS
model in a hierarchical manner directed by the pruned SES. EFs
are added into every atomic and composite model for managing
the simulation process.

4. System Simulation. Running simulation and gathering the
information as specified in EFs.

5. Evalurrtion. Analyzing the simulation results and deciding
whether to go back to any of the previous stages and modify model
or EF components.

Table 1 summarizes the KBSDS approach to system develop-
ment.

3. INFORMATION SYSTEM REQUIREMENTS
DETERMINATION

Liu and Purdin [1990] investigated information system devel-
opers’ work and identified a development process that consists of
four stages: elicitation, specification, elaboration, and animation.
Elicitation is employed to acquire from the customer all the facts
related to the required system. Specification formalizes and spec-
ifies the system requirements in a clear and consistent manner.
Elaboration realizes the requirements. Animation demonstrates the
realization of the system for the customer.

In the research reported here, we focus on the requirements
determination work, that is, the elicitation and specification stages,
of gathering all the facts about the system to be developed and col-
lating them into a set of well organized specifications. The matters
of concern during requirements determination are: what to specify,
how to specify, and how to derive the requirements [Yadav et al.
19881.

3.1 What to Specify

The question of what to specify is about what constitutes
the requirements specification for an information system. Davis
[1988b] proposes a specification of three levels: mer needs, solu-
tion space, and external behavior.

User needs are the general information about the problem at
hand. The solution space is the set of all possible solutions. Cus-
tomers, developers, and others may all have some constraints on
the system to be developed. The constraints reduce the number of
possible solutions. Therefore, the solution space is not specified

408

Applying Knowledge-Based System Design and Simulation in Information System Requirements Determination

Davis

directly, but in terms of the constraints given. External behavior is
defined when the solution space is known and a specific solution is
chosen. (The term “external behavior” actually means everything
about a certain system as perceived from the user’s viewpoint.)

3.2 How to Specify

The question of how to specify is about the way of representing
the requirements specification. Davis [1988bI recommends using
Yeh and Zave’s [1980] principles of partitioning, abstraction, and
projection in all three levels of descriptions. Projection is a means
of reflecting a particular view of the system. Abstraction refers to
the process of focusing on features of the system that are salient
to a discussion, and then aading successive layers of detail to the
specification. Hierarchical and functional partitioning are viewed
as examples of abstraction.

In particular, the technique proposed by Harel et al. [1988]
receives high scores in Davis’ [1988a, 1988b] evaluation of tech-
niques for describing extemal system behavior. This technique
describes a system in three aspects: strucrural, functional, and
behuvioral. These aspects are the hierarchical decompositions of
a system’s physical components, functional activities, and control
activities, respectively. A functional activity is carried out by some
physical component and regulated by some control activity. This
relationship binds the three complementary aspects to form a com-
plete system description.

3.3 How to Derive

The question of how to derive the requirements focuses on
the way developers generate the requirements specification. This
is largely a matter of design problem solving [Carroll et al. 19791.
Adelson and Soloway [I9851 have synthesized a framework that
describes software developers’ design problem solving behaviors.
These behaviors are: forming a mental model, systematically ex-
panding the mental model, simulating the mental model, making
notes, representing constraints, and labeling and retrieving models.

When designers are given a problem, they first form mental
models of how they perceive the problem. A mental model is
usually something that helps to decompose the problem into smaller
ones and helps to organize those small parts together. Designers
expand their mental models into more and more details as time
elapses. From time to time, designers simulate mental models to
check whether they really represent solutions to the problem. Note
making helps designers to expand mental models systematically.

When the designers are not familiar with a (sub-)problem,

KBSDS

they represent constraints explicitly to clarify it and subsequently
decompose it. When they encounter a familiar (sub-)problem, they
mark it with the label of a retrievable model.

Partitioning, abstraction, and projec-
tion

3.4 Summary

In developing information systems, the developers first form a
model of the system under study and gradually expand the model
to a certain degree of detail. During the process, if the developers
encounter unfamiliar issues, they explicitly study the constraints.
If they encounter familiar issues, they just apply old models they
have accumulated. From time to time, the developers may simulate
the model to validate it.

The contents of the model include statements of the problem,
all the constraints that have surfaced, and the descriptions of a sys-
tem that fulfill all the objectives and constraints. The descriptions
of the system have smctural, functional, and behavioral facets.

4. THE USE OF KBSDS Ih’ INFORMATION SYSTEM
REQUIREMENTS DETERMINATION

The mapping between KBSDS and the works of Davis, Harel
et al., and Adelson and Soloway are in Tables 2, 3, and 4, respec-
tively.

Observing the comparisons presented in Tables 2, 3, and 4,
we see more similarities than differences. The major difference is
that KBSDS always leads to the development of constraints, which
are the combination of SES, attached variables, and selection and
synthesis rules. In other word, the KBSDS approach requires that
constraints be developed before the solutions could be derived.
This way of explicitly handling constraints shapes KBSDS into a
more solid approach to system development

However, developers have to consciously handle the process of
gradual expansion. Currently KBSDS does not provide computer-
aided tools to fully automate the iteration process because human
judgment is required in analyzing simulation results.

Based on the information system requirements determination
process portrayed in the previous section and the KBSDS process
summarized in Table 1, here is how information system developers
may use KBSDS. They first build an SES denoting the problem
under study and encode all the constraints in the form of attached
variables and selection and synthesis rules. Pruning mechanisms
help the developers choose an admissible configuration of the sys-
tem, which is one solution to the problem. After this, the devel-
opers proceed to specify the functional and behavioral descriptions
in DEVS models. Whenever applicable, they may remeve mod-
els from a model base instead of specifying every detail of each

Hierarchical and functional partitioning are instances of abstraction, which can be expressed
through decomposition relation of SES. Projection can be expressed through the aspect notion
offered by SES. Decomposition and aspect are governed by the axioms of SES.

User needs

Solution space

Extemal behavior

SES contains items of user needs. In some cases, extensions to SES [Hu et al. 19891 may be
desired.

SES, attached variables, and selection and synthesis rules form the constraints. Pruning mecha-
nisms help to reduce the solution space.

Extemal behavior is the combination of pruned SES, composite DEVS model, and EFs; s e e
Table 3.

409

K.C. Liu and J.W. Rozenblit

Harel et al.

Structural aspect

Table 3. Harel et al. [1988] versus KBSDS

KBSDS

SES can represent hierarchical decompositions of physical components. Each component is a
DEVS model. Information flows between components are couplings between DEVS models.

Functional aspect SES can represent hierarchical decompositions of functional activities. Each function is a DEVS
model. Data flows between functions are couplings between DEVS models; see Liu [1990] for
details.

Behavioral aspect SES can represent hierarchical decompositions of control activities. Each conml is a DEVS
model. Events between controls are couplings between DEVS models.

Relationship between functional and
structural aspects

Relationship between functional and
behavioral aspects

model. The developers may verify the specifications by perform-
ing simulation in DEVS-Scheme.

5. CONCLUDING REMARKS

We have compiled, from a set of seminal literature, the answers
to “what to specify, how to specify, and how to derive” infor-
mation system requirements during the early development stages.
We have compared KBSDS to this nonnative situation and shown
that KBSDS supports most of the activities happening therein. In
particular, the capabilities for specifying system requirements in
a theoretically supported means, accumulating model bases, and
simulating the system specification are found lacking in other ap-
proaches.

To use KBSDS more effectively, information system devel-
opers may want to tailor KBSDS. A good example is what Liu
[19901 has done to establish an environment for prototyping infor-
mation systems in the data flow model. He set up generic SES for

Axioms of SES handle th~s.

Axioms of SES handle this.

data flow modeling and suggested several sub-SESs that could be
attached to the generic SES to fit different purposes. Used with
an appropriate DEVS-Scheme model base, this prototyping envi-
ronment is a prototype of a computer-aided “turn-key” system for
information system development.

Beyond this, we envision a future picture of the KBSDS ap-
proach to information system development: (1) There will be more
KBSDS-based computer-aided system development environments,
and (2) more specialized tools, such as graphical interfaces, will
be added in for further customizing the KBSDS approach.

ACKNOWLEDGMENTS

The Department of Management Information Systems at The
University of Arizona has provided K. C. Liu the resources for
conducting this research. The work of J. W. Rozenblit has been
partially supported by McDonnell Douglas Corporation.

I
Adelson and Soloway

Forming mental model

Expanding mental model

Simulating mental model

p

Representing constraints

Labeling and retrieving models

410

KBSDS

SES, production rules, DEVS models together is the representation of the system. This helps
designers to organize their ideas explicitly.

This is implied in the iteration of the KBSDS procedure.

KBSDS helps designers to run the simulation mechanically. This should provide more insights
than running simulation mentally.

may be necessary.

See “Solution space” in Table 2.

A base of DEVS models and their retrieving mechanisms [Rozenblit et al. 19901 facilitate reuse
of models. Axioms of SES also help.

Applying Knowledge-Based System Design and Simulation in Information System Requirements Determination

REFERENCES

Adelson, B. and E. Soloway (1985), “The Role of Domain Ex-
perience in Software Design,” IEEE Tramactions on Soffware
Engineering SE-11, 1351-1360.

Carroll, J.M., J.C. Thomas, and A. Malhoaa (1979). “Clinical-

Zeigler, B.P. (1987), “Hierarchical, Modular Discrete-event Mod-
elling in an Object-oriented Environment,” Simulation 49,219-
230.

Zeigler, B.P., F.E. Cellier, and J.W. Rozenblit (1988), “Design of a
Simulation Environment for Laboratory Management by Robot
Organizations,” Journal of Intelligent and Robotic System I,

experimental Analysis of Design Problem Solving,” Design 299-309.
Studies I , 84-92.

Davis, A.M. (1988a). “A Comparison of Techniques for the Spec-
ification of External Behavior of Systems,” Communications
of the ACM 31, 1098-1 115.

Davis, A.M. (1988b), “A Taxonomy of the Early Stages of the
Software Development Life Cycle,” The Journal of System
and Software 8, 297-31 1.

Harel, D., H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sher-
man, and A. Shtul-Trauring (1988), “STATEMATE: A Work-
ing Environment for the Development of Complex Reactive
Systems,” In Proceedings of the 10th International Conference
on Software Engineering, 3 9 U 0 6 .

Hemiter, B.C., K.C. Liu, and M.O. Pendergast (1989), “Using Ar-
tificial Intelligence Based System Simulation in Management
Information Systems Research: Three Case Studies,” In Ad-
vances in AI and Simulation: Proceedings of the Society for
Computer Simulation Multiconference on AI and Simulation,
R. Uttamsingh and A.M. Wildberger, Eds. The Society for
Computer Simulation Intemational, San Diego, CA, 147-152.

Hu, J., Y. Huang, and J.W. Rozenblit (1989), “FRASES-A knowl-
edge representation scheme for engineering design,” In Ad-
vances in AI and Simulation: Proceedings of the Sociery for
Computer Simulation Multiconference on AI and Simulation,
R. Uttamsingh and A.M. Wildberger, Eds. The Society for
Computer Simulation International, San Diego, CA, 141-146.

Liu, K.C. (1990), “An Environment for Information System Proto-
typing: A System Simulation Approach,” In Advances in Com-
puting and Information: Proceedings of International Confer-
ence on Computing and Information, ICCI’90, S.G. Akl, F .
Fiala, and W.W. Koczkodaj, Eds. Canadian Scholars’ Press,
Toronto, Canada, 236-239.

Liu, K.C. and T.D.M. Purdin (1990). “A Generational View of
Information System Development,” Manuscript submitted for
publication.

Rozenblit, J.W. (1985), “Experimental Frames for Distributed Sim-
ulation Architectures,” In Distributed Simulation 1985: Pro-
ceedings of the Conference on Distributed Simulation 1985, P.
Reynolds, Ed. The Society for Computer Simulation, La Jolla,
CA, 14-20.

Rozenblit, J.W., J. Hu, T.G. Kim, and B.P. Zeigler (1990), “Knowl-
edge Based System Design Environment: Foundational Con-
cepts and Implementation,” Journal of Operations Research
Society, in press.

Rozenblit, J.W. and Y.M. Huang (1987), “Constraint-driven Gener-
ation of Model Structures,’’ In Proceedings of the I987 Winter
Simulation Conference, A. These, H . Grant, and W.D. Kelton,
Eds. 604-611.

Rozenblit, J.W. and B.P. Zeigler (1988), “Design and Modeling
Concepts,” In International Encyclopedia of Robotics Appli-
cations and Automation, Wiley, New York, 308-322.

Sevinc, S . and B.P. Zeigler (1988). “Entity Structure Based Design
Methodology: A LAN Protocol Example,” IEEE Transactions
on Software Engineering 14, 375-383.

Yadav, S.B., R.R. Bravoco, A.T. Chatfield, and T.M. Rajkumar
(1988), “Comparison of Analysis Techniques for Information
Requirement Determination,” Communications of the ACM 31,
109CL1097.

Yeh, R.T. and P. Zave (1980). “Specifying Software Require-
ments,” Proceedings of the IEEE 68, 1077-1085.

Zeigler, B.P. (1984), Multifacetted Modelling and Discrete Event
Simulution, Academic, New York.

411

