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Abstract 

Self-supervised monocular depth estimation (SMDE) 

has recently received significant attention in computer vi-

sion. Leveraging the development of deep learning ap-

proaches, SMDE provides a solution to the applications of 

automation, navigation, and scene understanding. In this 

paper, we propose a novel training objective and learning 

network to perform a single image depth estimation in our 

convolutional neural network without the ground truth 

depth data. The proposed training objective enables the 

learning network to learn the stereo image correlation in 

training and estimates the image depth from a single input 

image in prediction. The proposed learning network 

ResVGG is a hybrid structure of Resnet50 and VGG-16. 

The proposed ResVGG has a similar performance as Res-

net50 but needs much less computational costs. We demon-

strate that our proposed method has competitive accuracy 

comparing to the current state-of-the-art on KITTI dataset 

and achieves the frame rates of 32 frame per second (FPS) 

in prediction using a single NVIDIA GTX 1080 GPU. Fur-

thermore, the proposed method can potentially support vis-

ual odometry depth estimation. 

Keywords: monocular depth estimation, deep learning, 

self-supervised. 

1. Introduction 

Depth estimation is one of the fundamental problems 

with a long history in computer vision. It also serves as the 

cornerstone for many machine perception applications, such 

as 3D reconstruction, auto-driving system, industrial ma-

chine vision, robotics interaction, etc. However, most re-

search is performed based on the availability of multiple 

observations in target scenes. The constraint of the multiple 

observations can be overcome by the supervised method 

because of the emerging deep learning technology (1-3). 

These methods aim to directly predict the pixel depth from 

a single image by learning the given ground truth depth 

data of a large amount of dataset. Despite the promising 

results of the monocular depth prediction, these methods 

suffer from the limitation of the quality and availability of 

the collected ground truth pixel depth. Hence, the 

self-supervised approaches learning the depth information 

from a single image has received increasing attention in 

recent research.  

 

In the task of monocular depth estimation, the input 

source is a monocular image (e.g., a left image). Then the 

corresponding another view (e.g., the right image), can be 

reconstructed by the estimated right depth and the input left 

image (left) using a warping function(4). Hence, the recon-

structed right view is supervised by an actual right image. 

The estimated depth can also be calibrated in the regression 

for the reconstructed right view. If the stereo image pairs 

 

Fig. 1.  The prediction results of our method on KITTI 

benchmark dataset. The first row shows the input image, 

the second row is ground truth disparities, and last row 

gives our results. Our method can successfully estimate 

the depth of different object structures, such as cars, 

bikes, signs, etc. 
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were available, the geometric cue between the stereo train-

ing image pairs can be further considered. To achieve this 

goal, the network first predicts the left and right depth sim-

ultaneously. Then the objective function is designed to learn 

the geometrical relationship, such as the stereo image cor-

relation, between the reconstructed left and right images. 

Several existing methods use this idea, but there are some 

limitations. For example, the stereo image correlation is not 

explicitly defined in the training objective (5), or the learn-

ing network architecture is too deep, e.g. Resnet50(6), to 

achieve real-time application(7,8) on a consumer GPU. We 

overcome these limitations by introducing the exact stereo 

image correlation in the training object and a new network 

backbone architecture. The proposed Self- supervised Cor-

relational Monocular Depth Estimation (CMODE) improve 

the prediction performance in both quantitative and qualita-

tive aspects. 

The example visual results of our work are presented 

in Fig. 1. The computational costs including parameters and 

computation time of the proposed method are much lower 

than the current existing method. Per prediction only needs 

around 30 milliseconds using a single NVIDIA GTX1080 

GPU. The main contributions are as follows: 

1. First, we propose a novel training objective function 

that the network can learn the stereo image correlation in 

training and estimate the depth from a single image without 

the ground truth data. 

2. Second, a new network architecture is proposed to 

largely reduce computational costs including parameters 

and computation efficiency. The proposed ResVGG net-

work performs similar to Resnet50 with much smaller ar-

chitecture and lower computation time. 

3. Third, we evaluate the our method and compare 

with the state-of-the-art on the challenging KITTI dataset. 

2. Related Works 

In the past few years, a large body of literature on 

depth estimation using learning-based methods have been 

proposed for either stereo view or single view. Most stereo 

estimation algorithms focus on calculating the similarity 

between each pixel in the left and right images. The depth 

estimation problem is generally converted to a 1D search 

problem for each pixel. The process of treating the match-

ing process as a supervised learning problem and training 

an objective function to predict the correspondences has 

shown superior results compared to the conventional hand-

crafted similarity searching approaches(9,10). A fully convo-

lutional deep neural network(11) named DispNet(12) has been 

proposed to directly predict the correspondences between 

two images. Then the disparity of each pixel can be directly 

predicted by minimizing the regression training loss. 

On the other hand, the monocular depth estimation has 

drawn more attention recently. An image depth estimation 

task is typically considered as a disparity estimation be-

tween the stereo image pairs. In the case of an object with 

deep depth in an image, the locations in the stereo image 

pair are almost identical because the object disparity be-

tween the left and right image planes are close to zero. A 

multi-scale deep network was firstly designed to directly 

estimate dense pixel depth from a single image(2). Other 

advantages of this approach, such as using a more robust 

loss function(13), incorporating strong scene prior(14), 

changing the loss function from regression to classification 
(15), have been adopted in other works. These methods 

above still require high quality and pixel aligned ground 

truth depth at training time to estimate the depth from a 

single image. However, the ground truth depth information 

 
Fig. 2. Network design of the proposed method (a) the fundamental architecture of U-Net network, (b) Left-right loss (7), 

(c) the proposed correlation layer loss. 
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is luxury to acquire in various real-world settings.  

Recently, several methods not requiring ground truth 

at training have been proposed, such as a geometry con-

straint based single view estimator using an image recon-

struction loss(5). The image reconstruction of this approach, 

however, is not fully differentiable. One of the more suc-

cessful algorithms is to use self-supervision in the form of 

synchronized stereo pairs. The training objective is to pose 

depth estimation as an image reconstruction process in 

training and perform monocular depth in prediction. The 

key of this approach is the warping function(4) that recon-

structs one image from a stereo pair onto the other using the 

predicted depth. The learning process calibrates the recon-

structed and actual image pairs. A successful example using 

left-right consistency and a bilinear sampler obtains a fully 

differentiable training loss(7) to generate an outstanding 

estimated depth. From this approach, there are several ex-

tensions, such as training with semi-supervised data(8) or 

involving temporal information(16). 

Instead of using rectified stereo image pairs as the 

training target, another approach of the self-supervision is 

to train the network with the adjacent temporal frames from 

the input monocular video sequence. From unstructured 

video sequences, a set of learning network(17) is proposed to 

estimate the image depth and camera pose simultaneously. 

The estimated camera pose is used to help constrain the 

depth estimation network in training only. Inspired by this 

approach, several methods have extended the application of 

the temporal information to achieve the goal of the 

self-supervised monocular depth estimation, such as in-

volving spatial and temporal dense information(18-20), struc-

ture-from-motion algorithm(21), or 3D Geometric Con-

straints(22). A different approach offering monocular se-

quence is to estimate the optical flow to calculate pixel’s 

3D information and then the image depth can be retrieved 

from a pixel’s 3D position. A recent approach yields prolific 

results using image correlation to estimate the image dis-

placement of the optical flow(23) and the image depth(12,19). 

Image correlation between left-right image pair can match 

the image features to extract object displacement and a set 

of dense layers are calculated. Learning the depth estima-

tion can benefit from the image correlation dense layers to 

predict a better shape of the object depth. Unfortunately, the 

conventional approaches having contracted the image cor-

relation based on the stereo images(12) is not feasible to be 

applied to the monocular application. A recent two-stage 

method(19) overcome the limitation of the stereo input re-

quired in computing image correlation by synthesizing the 

right view from the left view input, but it needs two sepa-

rate models, resulting high computational costs. Currently 

no model is available for considering the image correlation 

from a single image in a single model.  

In this work, we are interested in predicting the image 

depth from a single input image. We argue that the network 

can learn the image correlation information from the stereo 

training image set although image correlation is unavailable 

from the single input image in prediction. Based on this 

argument, we design a novel objective function to enable 

the depth network to learn the image correlation in training. 

Hence, the correlation information in stereo image pairs is 

embedded inside the learning network and the estimated 

depth from a single image can still retrieve the correlation 

information from the network. To further reduce the com-

putation costs, we propose a new network structure which 

has much lower computational costs but outperforms the 

current commonly used network structure. 

3. Methodologies 

3.1 Depth Estimation Using Correlation 

Our model is inspired by the works of (23, 7). We first 

review the image correlation, followed by the network de-

sign, and the overall object function. 

The proposed method aims to involve the stereo cor-

relation information into a monocular depth estimation task 

as shown in Fig. 2. The network of our proposal has two 

parts: prediction and training loss. The prediction part is the 

U-Net of Fig. 2(a), discussed in next section, and the train-

ing loss is the rest of the network across the Fig. 2(b) and 

(c). Except using the Left-right training loss(7), our work 

proposes a novel correlation loss shown in Fig. 2(c). The 

prediction network can learn the stereo correlation through 

the proposed correlation loss. In Fig. 2(c), we use the 

method of the correlation layer(23) to calculate the image 

correlation between the left and right-view image pairs. The 

main process of the correlation layer is to perform multi-

plicative patch comparisons between two images. Rather 

than computing the correlation between two feature maps 

as the conventional methods, we propose to measure the 

correlation between two RGB images directly. 
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Given a set of image pair L and R with the dimension 

of width (w), height (h), and channel (c), we consider a 

single comparison of two patches within the image pairs 

(Fig. 2(c)). The definition of the correlation between two 

patches centered at x1 in L image and x2 in R image is 

given by 

 c(x1, x2)= ෍ 〈L(x1+o),R(x2+o)〉

o∈[-k,k]×[-k,k]

 (1) 

 

which is a patch of a square shape of size K := 2k + 1 

and the function 〈∙,∙〉 is a convolution between two patches 

as the one in neural network. However, the weights are not 

trainable in the correlation layer since the two image patch-

es are known.  

Theoretically, it costs c×K2×w×h computations to 

compute c(x1, x2) within the image size w×h when we 

search whole images to compute the correlation c. However, 

in depth estimation applications, the displacement, disp, of 

an object between the left and right image is confined in a 

range, determined by the stereo camera configuration. 

Therefore, we only need to consider a neighborhood 

of size D:=2×disp +1 as the total displacement range while 

computing the correlation c. The stride of the convolution is 

the unit step in the calculation. We only need the 1D corre-

lation layer in this application because the depth estimation 

is a horizontal alignment problem. In short, the correlation 

layer yields the output size w×h×D and is fully differentia-

ble. 

3.2 3Depth Estimation Network 

The network architecture we propose is based on (7), 

which is a state-of-art depth estimator that considers the 

left-right consistency (LRC). The core network of (7) is an 

autoencoder architecture that is U-Net(24). Based on the au-

toencoder architecture, the unique design of U-Net is the 

skip connections inside the multi-scale feature maps shown 

in Fig. 3. During the encoding process of the left side net-

work, the output of each scale for the encoder feature layers 

is passed to the scale of the decoder feature layers, which is 

shown in the right-side network as the part of the input. The 

LRC method has the structure of U-Net and generates the 

multi-scale estimated depths from the output of each scale 

of the decoder feature layers. 

The most commonly used encoders in the selected 

UNet architecture are VGG-16(25) and Resnet50. The VGG 

backbone is adopted by (7) and performers well in both 

quantitative and qualitative result. Additionally, the compu-

tational efficiency of the VGG backbone in (7) can achieve 

over 30 FPS in our simulation setting. On the other hand, 

Resnet50 backbone was selected by (7) and (8) as well. The 

Resent50 backbone has better performance in both quanti-

tative and qualitative results than the VGG backbone, but 

the computational efficiency is only 23 FPS and the training 

model is much larger. In other words, the Resnet50 back-

bone has a better ability to detect the features of the scene 

to predict the image depth but the network architecture is 

more complicated. On the contrary, the VGG backbone has 

a smaller and simpler network architecture to accomplish 

the feature detection process although the detection result 

of the VGG backbone is not as good as Resnet50. In our 

experiments, we found that the Resnet50 backbone con-

verges the detection process in first two Resnet50 blocks 

and the rest of convolution layers are not necessary to keep 

using Resnet50 structure. Hence, we propose a hybrid ar-

chitecture, named ResVGG, to combine Resnet50 in the 

first half part and VGG in the second half part network ar-

chitecture. The proposed ResVGG architecture is shown in 

Table 1. In the simulation, the proposed ResVGG architec-

ture has competitive results comparing to ResNet50 in the 

evaluation and has much less parameters than both Res-

Net50 and VGG-16. In our design, the encoding blocks 

(enc blocks) from 1 to 4 are the Resnet50 backbone, while 

the rest enc blocks are the VGG backbone.  

 

Fig. 3. Network design of the proposed method (a) the 

fundamental architecture of U-Net network, (b) 

Left-right loss(7), (c) the proposed correlation layer loss. 

Table 1.  Proposed ResVGG encoder. 

Modules Layers Ch_I/O Scale 

enc_block_1 conv_7x7 3/64 2 

enc_block_2 maxpool_3x3 64/64 4 

enc_block_3 Res50_blockx3 64/64 8 

enc_block_4 Res50_blockx4 64/128 16 

enc_block_5 VGG_block_3x3 128/256 32 

enc_block_6 VGG_block_3x3 256/512 64 
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Rather than directly learning from the ground truth 

depth data, (7) is supervised by training L/R and recon-

structed L ෡ / R෡ stereo image pairs. The design scenario is 

shown in Fig. 2(b). Depth estimation methods typically 

predict the disparity first and then use the camera configu-

ration to calculate the corresponding depth(26). The disparity 

d can be converted back to the depth ^ d by the formula 

𝑑መ = 𝑏𝑓/𝑑 , where b is given baseline distance between 

cameras and f is the camera focus length. After the dispari-

ties are predicted (dl, dr) then the reconstructed image pairs 

(L ෡ ,  R෡) are converted from (dl, dr) and the training image 

pairs (L, R) using a warping sampler W(4). The assumption 

is that one side view image can be fully reconstructed by 

the other side view, which can be expressed by L ෡  = W(R, 

dl) and R෡ = W(L, dr). In the end, the desired output is the 

estimated left disparities (dl)of the input image (L). This 

method is considered as the self-supervised learning of the 

depth estimation because the learning process only relies on 

input images themselves and do not need ground truth. 

The proposed approach introduces left-right image 

correlation into the loss function of the network as shown in 

Fig.2(c). We aim to minimize the error of the correlations 

between the reconstructed images and the training images. 

The correlation layer identifies the object-location correla-

tion between images and is calculated by a correlation layer 

defined in the previous section. The ground truth Left-Right 

Correlation (Clr) is generated using the training images. On 

the other hand, the left-reconstruction Left-Rec-Right Cor-

relation (Clመr) and the right-econstruction Left-Right-Rec 

Correlation are also generated (C௟௥̂) based on the source 

and reconstructed images. Then we calculate and minimize 

the errors of (Clr, Clመr)and (Clr, C௟௥̂) pairs. 

3.3 Objective Function 

Although the U-net is not designed to learn the dispar-

ity, a well-designed loss function can help this network es-

timate the disparity successfully. There are four scales of 

the prediction output, and the corresponding loss Cs at each 

output scale is defined to form a total loss as C= ∑ Cs
 4
s=1 . 

Following (7) and (27), Cs is a weighted sum of three 

terms: appearance (Cap), disparity smoothness (Cds), and 

left-right correlation (Ccor). 

Cs=𝛼ap × Cap + 𝛼ௗ௦ × Cௗ௦ + 𝛼௖௢௥ × C௖௢௥  (2) 

The proposed loss in Eq. 2 is a convex combination. Each 

term in the objective function is in the range [0,1] and con-

sists of the left and right loss, e.g. left and right appearance 

loss (Cap
l , Cap

r ), because the network is designed to predict 

the left and right disparities simultaneously. The weights 

൫αap,αds,αcor൯ are determined during the optimization pro-

cess. 

In the first two terms, we follow the approach pre-

sented in (27) and make a change. The appearance loss 

(Cap) is a combination of the L1 difference and single scale 

SSIM(28), which is a method for evaluating the perceived 

image quality, between the training image pair L, R and the 

reconstructed image pair L ෡ ,  R෡ respectively. 

𝐶௔௣
௟ =

1

𝑁
෍ 𝛼௦௦௜௠

1 − 𝑆𝑆𝐼𝑀൫𝐼௜௝
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௟ ൯

2
௜,௝

 

                               +(1 − 𝛼௦௦௜௠)ห𝐼௜௝
௟ − 𝐼መ௜௝

௟ ห 

 

 

(3) 

The combination weights of the L1 and SSIM is 0.15 

and 0.85 (𝛼ssim = 0.85), and SSIM is designed based on a 

simplified 3×3 block filter. Disparity smoothness (Cds) is 

the term that encourages smoothness of the disparity with a 

L1 difference on the disparity gradients. 

𝐶ௗ௦
௟ =

1

𝑁
෍ห𝜕௫𝑑௜,௝

௟ ห𝑒
ିቚడೣூ೔ೕ

೗ ቚ
+ ห𝜕௬𝑑௜,௝

௟ ห𝑒
ିቚడ೤ூ೔ೕ

೗ ቚ

௜,௝

 
 

(4) 

This term is edge-aware and set for the depth disconti-

nuities, which often occur at image gradients 𝜕𝐼.  

The last term, left-right correlation (Ccor), forces the 

network to learn the image correlation in the training pro-

cess. We introduce the L1 between the training and repro-

duction image pairs,  

Ccor= ෍ห𝐶௞
௟௥ − 𝐶௞

௟መ௥ห + ห𝐶௞
௟௥ − 𝐶௞

௟௥̂ห

௞

 (5) 

where k is the layer of the correlation layers in the dis-

placement range D. The reconstructed left image is cali-

brated by the training image pair using the absolute correla-

tion difference in the first term, while the reconstructed 

right image repeats the same process in the second term. 

The total correlation loss is composed of the correla-

tion-calibration information of the reconstruction left and 

right images and network can learn this correlation to detect 

the object depth more accurate. To reduce the computation-

al load, we size-down the images by the down-scaling fac-

tor fds.  

4. Experiments 

In this section, the implementation details are ex-

plained then the proposed method is compared with the 

state-of-the-art in either supervised, semi-supervised, or 

unsupervised monocular methods of the single view and 

single network. The benchmark is based on KITTI(29), and 

Make3D(30) datasets in quantitative and qualitative results. 

Additionally, we also demonstrate the qualitative results of 
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the Cityscapes(31) dataset. The ablation is then analyzed, 

followed by the discussion of the limitation and potential 

application. 

Configuration Our algorithms were implemented in 

Tensorflow(32) using Python 3.5 under the Ubuntu environ-

ment with a single NVIDIA GTX 1080 GPU. All input im-

ages are resized to a 640_192 from the original size of the 

training image and the trainable weights are around 17.5 

million using the proposed ResVGG encoder backbone in 

the network. Training takes around 7.5 hours by 8 batches 

and 20 epochs on the KITTI training dataset. The predic-

tions happen in around 30 milliseconds (around 32 frames 

per second (FPS), which is fast and feasible for real-time 

applications. 

Parameter Settings The parameters of the correlation 

layer are defined as follows: To reduce the computational 

cost, we define the down-scaling factor fds = 8 to size down 

the 640×192 input image of the network to 80×24. Then we 

assume that the maximum disparity dmax of the image is set 

as dmax = 0.3×image width based on the stereo camera con-

figuration of the KITTI dataset. Based on this constraint, 

we chose the parameters k = 1, d = 20, s1 = 1, s2 = 2 for the 

correlation layer in the training loss function. Although the 

displacement disp is defined as 20, the effective search 

range is 40 by the s2 = 2. Then, the displacement range is D 

= 41. Furthermore, the weights in the objective function are 

determined during the optimization process. The αap and 

αcor are both set as 1, and the αds is related to the output 

scale and defined as 0.5/r, where r is the down-scaling fac-

tor of each layer in respect to the resolution of the input 

image. We use the Adam optimizer in Tensorflow(32). The 

total training flow involves a batch size 8 and 20 epochs. In 

our design, the training converges after 15 epochs and the 

improvement after 20 epochs is minor. Our performance is 

competitive with the reference methods even the training 

epochs are much less. We start from the initial learning rate 

of λ = 10-4 and decrease λ by half every ten epochs. During 

the training, the dataset is randomly augmented, including 

horizontal flipping, color/gamma/brightness adjustment by 

50% chance. 

Network Backbone In the evaluation, we show the 

simulation results in different kinds of backbones, including 

VGG-16, Resnet50, and proposed ResVGG, in U-Net. The 

computation costs of training and predicting process in each 

backbone are also summarized in the Ablation section. We 

show that the proposed ResVGG structure has competitive 

performance better than Resnet50 but less computational 

costs than VGG-16. 

Post-Processing We use a post-processing method to 

reduce the single-side halo effect designed by (7) in the last 

step. The visual artifacts, including the halo effect and bro-

ken shape, are largely reduced. 

5. Results  

We evaluate the performance of the proposed method 

on the KITTI benchmark. We use two different test splits, 

KITTI and Eigen Split, of KITTI dataset to do the ablation 

analysis of the variants of our method and the benchmark 

compared with the existing works. The KITTI dataset con-

tains 42,382 rectified stereo pairs in raw form from 61 

scenes. The typical image size of the KITTI dataset is 

1242×375 pixels and the stereo image pairs are well cali-

brated in the calibrated camera configuration. The depth 

labels have been collected from a Velodyne laser sensor and 

in the form of sparse 3D laser measurement. The parameter 

of the stereo setup is clearly defined in the dataset as well 

so the predicted disparities can be converted back to the 

corresponding depth. The evaluation metrics are from (24), 

which measure error in meters from the ground truth and 
the percentage of depth that are within some threshold from 

the correct value. We can expect that the error terms present 

the average error and lower value is better; the percentage 

of the correct value is an alias of accuracy and higher valuer 

is better. 

5.1 Ablation Study 

First, various design choices are evaluated to prove 

the improvement upon the proposed the training loss and 

network architecture. We first consider the baseline design 

using VGG-16 backbone and no correlation layer. Then 

results of the design of backbones with the correlation layer 

followed. All the models are trained from the scratch on 

KITTI training dataset using KITTI split and tested on the 

KITTI stereo 2015 test dataset. The quantitative results and 

the computational cost analysis are shown in Tables 2 and 3. 

First, the design with the correlation layer outperforms the 

baseline. However, the training time increase 10%. Then, 

the Resnet50 backbone largely improves the performances 

but also needs significant computational resources. The 

proposed ResVGG backbone has results close to Resnet50 

and needs much less parameters than Resnet50 even VGG. 

The prediction frame rate of ResVGG remains over 33 FPS 

and is fast enough for real-time applications. 
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5.2 State-of-the-art comparison  

In this section, the proposed method is compared to 

existing supervised and unsupervised works. The quantita-

tive results are shown in Table. 4 and the qualitative sam-

ples are shown in Fig. 4. In the comparison, we use the 

Eigen test split(2) of 697 images which covers a total of 29 

scenes. To fairly compare all the methods, we evaluate at 

the input image resolution and use the same crop as (2). The 

simulation results are given by (5, 7, 8) and we rerun the 

given models to get the results in an equivalent training 

condition, which is in a batch size 8 and 20 epochs. Our 

method of being pre-trained on the Cityscapes dataset has a 

competitive result comparing to the current state-of-the-arts 

but needs much less computation cost. Furthermore, our 

method of the low-resolution input image is still competi-

tive among other methods. In the qualitative examination, 

the prediction examples in Fig. 4 also show that our method 

can better estimate the depth map. 

5.3 Limitations and Potentials 

Although the correlation layer in the objective function 

can successfully improve the image depth clarity, the pro-

posed method still has some limitations in identifying the 

depth of the low-contrast object. The features of the 

low-contrast object are much less significant in the predic-

tion. Without actual stereo images as the input, the 

low-contrast object is less likely to be predicted well. The 

possible solution is to involve the per-pixel minimum error 

(16) to optimize the error regression process in the low dif-

ference area. 

On the other hand, the proposed method can potentially 

be generalized to the visual odometry based depth estima-

tion because the correlation layer is originally designed to 

estimate the optical flow. Furthermore, the proposed 

ResVGG network architecture can be applied to other fields, 

such as object detection, image segmentation, etc., which 

originally use Resnet50 as the base network architecture.  

6. Conclusions 

A novel model is presented in this work to deal with 

the self-supervised monocular depth estimation problem 

from a single image. We proposed a new loss function to 

enable our network to learn the stereo-image correlation 

and a new network architecture to reduce the computational 

costs. Our method is competitive comparing to the current 

state-of-the-art in quantitative and qualitative results with 

the much less computation cost. We demonstrate that our 

model is robust to the low-resolution input image and can 

still keep high quality output with 33 FPS in prediction un-

der a single consumer GPU. Our future work is to extend 

our method to consider video sequence and support visual 

odeometry based depth estimation in real-time. 
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Table 2. Quantitative results of different variants of our approach on the KITTI Stereo 2015 test dataset. Best results are 

shown in bold, and seconds are in italic. The first row is the baseline design using VGG-16 backbone and no correlation 

layer; the following three rows are VGG-16/Resnet50/ResVGG with proposed correlation layer. The proposed correla-

tional training object can effectively improve the performance, and the proposed ResVGG has very close performance as 

Resnet50. 

Approach 
ARD SRD RMSE RMSE(log) 𝛿<1.25 𝛿<1.252 𝛿<1.253 

Lower is better Higher is better 

No Cor / VGG 0.1259 1.3718 6.341 0.227 0.828 0.93 0.971 

Cor / VGG 0.119 1.0991 5.694 0.215 0.837 0.939 0.975 

Cor / Resnet50 0.1146 1.0065 5.46 0.203 0.848 0.945 0.98 

Cor / ResVGG 0.1165 1.0371 5.535 0.206 0.844 0.944 0.978 

 

Table 3.  Computational costs of different variants of 

our approach on the KITTI training dataset within 8 

batches and 20 epochs. The unit of training time is hour 

and of prediction is FPS. Best results shown in bold, 

second best in italic. 

Approach Parameters Train (hours) Predict (FPS) 

No_Cor_VGG 19806248 7 36.5 

Cor_VGG 19806248 7.8 36.5 

Cor_Resnet50 58452008 9.3 23.4 

Cor_ResVGG 17462824 7.2 33.4 
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