
The Advanced Battlefield Architecture for Tactical Information Selection
(ABATIS)

J. Sean Keane, Jerzy W. Rozenblit
Department of Electrical and Computer Engineering

University of Arizona
Tucson, AZ 85721-0104

and

Michael Barnes
ARL Field Unit - Ft. Huachuca

Ft. Huachuca, AZ 856 13-7000
ATTN: AMSRL-HR-MY

Abstract

Modern warfare requires the understanding and
management of increasingly complex assemblages of
resources. The Advanced Battlefield Architecture for
Tactical Information Selection (ABATIS) is introduced.
It provides a framework for testing various display
strategies. Its design, which uses object-oriented and
hierarchical design methodologies, is flexible and
extensible. It assures that a working program can be
rapidly developed for comparing alternate display
strategies. This report defines an overall architecture
for battlefield visualization and then focuses on a
detailed design of its display layer, called the Process
Centered Display (PCD). The design is specified using
the Object Modeling Technique (O M) notation. The
complete class diagrams for the PCD are presented and
an illustrative example is given.

1. Introduction

Despite major changes in the political makeup of the
world's nations, armed forces will continue to be
necessary for the foreseeable future. While their
emphasis has shifted from strategic deterrence to smaller
localized conflicts, events such as Operation Desert
Storm clearly emphasize the need for large, well-

coordinated forces. In a world of NATO forces
assembled fiom many countries, the variety and number
of resources important to the battlefield will only
increase. New systems must be designed and
implemented to help military decision-makers understand
the battlefield situation quickly.

There are a number of themes that should permeate
any new s o h a r e architecture for battlefield
visualization. Most importantly, the architecture must
facilitate understanding of the process of the battle,
rather than simply the current location of various forces.
This requirement implies that the s o h a r e must
somehow "understand" how the user assimilates
battlefield state information into a process-centered
viewpoint. One aspect of this problem is the assembling
of individual units of information into context-rich,
higher-level composites. Another is the presentation of
this derived information in a way that is intuitive to the
human user. The former aspect involves artificial
intelligence and knowledge-based design techniques. The
latter aspect is the focus of the work shown herein.

In this report, the focal point is the software design
aspects of the battlefield visualization architecture.
Object-Oriented Design (OOD) is used to achieve
flexibility and extensibility. Design patterns are used to
guide the software architect in the proper use of common
object-oriented structures. They also suggest solutions

This research is sponsored by the Army Research Laboratory in Ft. Huachuca, Arizona under contract W26236-5048-7002

228
0-8186-7889-5/97 $10.00 0 1997 IEEE

that truly allow the system to be flexible and extensible,
capabilities demanded by the purpose for this
architecture.

Based on these principles, the overall Advanced
Battlefield Architecture for Tactical Information
Selection (ABATIS) is presented. This architecture will
be refined and implemented to conduct experiments
quantieing the effectiveness of various display
strategies.

2. Battlefield Visualization

2.1 Definition and Objectives

Battlefield visualization implies much more than the
display of icons on a computer map. The goal is to
present the user with an understanding of the battle. The
processes underlying the battle must be exposed, as well
as the past and desired future states of the battlefield.
Presenting a display that is closer to the mental vision of
the user helps accomplish these goals.

These requirements guide the design of a battlefield
visualization system in certain ways. To expose the
process underlying the actions of a particular battlefield
object, dynamic motion is perhaps the best tool in the
designer's tool kit. The movement of objects on the
display can correspond to the movement of physical
objects on the battlefield. However, motion can be used
to quantify variables other than physical displacement.
Spinning motions, expansion and contraction, animated
substructures, and color changes may all be used to
indicate a change in some variable of interest for the
object displaying these behaviors.

Increasing the complexity of an object's representation
carries certain risks. If the various representations are
not orthogonal, they can interfere with one another and
produce a confusing display. Even well designed object
motion can suffer from being overly cryptic. If the user
must make an effort to remember what a particular
motion represents or has to look it up in a manual, the
motion has failed to provide additional information in an
easily accessible form. A mechanism is needed to insure
that the user can easily grasp the new wealth of
information being displayed.

2.2 Current Systems

Examples of two current systems that share some
similarities with ABATIS are JANUS(A) [I] and
PCCADS 2000 [2]. JANUS(A) is "an interactive,
computer-based, war-gaming simulation of combat

operations conducted at the brigade and lower level in
the United States Army" [3]. It consists of two opposing
forces that are controlled by two players who interact
with the system. Developed by the United States Army,
JANUS(A) concentrates on ground combat.

One problem with basing a new system on JANUS(A)
is immediately apparent: it is composed entirely of
algorithms and data written in a structured language.
The programs which belong to JANUS(A) consist of
approximately 200,000 lines of code written entirely in
VAX-11 Fortran, a structured Digital Equipment
Corporation (DEC) extension of ANSI standard
FORTRAN-77 [4]. This technology seriously impedes
any efforts to implement the OOD concepts required by
ABATIS.

Another shortcoming of JANUS(A) is its static script
files. Motion parameters such as speed and direction of
travel are not included in these scripts; only the static
location of objects is provided at various points in time.
Attempts to parse these files into ones that include
motion information have had some success [5] , but
clearly such a system is inappropriate for the dynamic
experiments to be conducted with ABATIS.

Another military system used for visualization is the
Air Force's PCCADS 2000 cockpit display system [6] .
This system is more similar to ABATIS due to an object-
oriented design using PHIGS+ middleware for graphical
functions. However, the PCCADS 2000 system
specifies much more than a software architecture. The
concerns of size, weight, power consumption, and
rendering performance are absent in the requirements for
ABATIS. PCCADS 2000 is optimized for terrain
rendering in three dimensions, a display option that may
not even be present in ABATIS. PCCADS 2000
highlights many of the tradeoffs associated with software
engineering and provides one possible way to implement
such a system, but it is too specialized for reuse in
ABATIS.

2.3 Abatis Requirements

Following the dictates of goal-driven design,
ABATIS must accomplish a specific set of predefined
goals. Put simply, ABATIS must allow the simulation of
dynamic battlefield objects in a way that exposes their
processes and is intuitive to understand. The ultimate
simulation of these objects to evaluate various display
strategies is of central importance.

All major elements of the system should be
hierarchical, allowing collections of objects to be
composed and treated the same as individual objects.

229

Hierarchical structure is naturally encouraged by OOD
through inheritance, and allows a relatively small set of
objects to create a rich base of composite objects that are
equally adequate as the basis for the rest of the software.

Finally, the system must be extensible. By definition,
the comparison of various display strategies requires
more than one such strategy to exist. ABATIS must be
designed to allow these different strategies to be
substituted for one another at runtime. New strategies
should be easy to add, and have little or no impact on the
rest of the software.

2.4 Design Patterns

Experience with early object-oriented programming
led to the design of architectural frameworks, i.e.,
reusable software structures for a particular application
domain. Database frameworks, word processing
frameworks, and Graphical User Interface frameworks
have all been applied with great success. The
hdamental problem with frameworks is their limited
generality. Their association with a particular domain of
interest restricts their use in other areas.

Despite its domain dependency, a framework has to be
general enough to be reusable. Designing good
frameworks has helped expose recurring patterns of
interaction or structure that meet this goal. Abstracting
the common mechanisms used to implement frameworks
and other complex object-oriented software has led to the
idea of design patterns. A commonly accepted pattern
definition follows:

'2 design pattern names, abstracts, and identges the
key aspects of a common design structure that makes
it useful for creating a reusable object-oriented
design. The design pattern identiJies the participating
classes and instances, theiv voles and collaborations,
and the distribution of responsibilities. Each design
pattern focuses on a particular object-oriented design
problem or issue." [7]

3. System Architecture

A software architecture is a definition of a software
system in terms of its oomponents and thcir intcraotions.
The architecture defines the system's structure, topology,
and semantics. A good object-oriented architecture
provides a correspondence between the objects and
requirements of a particular domain and the software that
implements them.

3.1 Abatis Architecture

A specific architecture is now proposed for ABATIS.
The architecture given is for a complete system, capable
of processing raw information and using it to drive the
process centered display (PCD). In this use, ABATIS
is not a simulator, but an actual battlefield tool to be used
by those in command. As is common in software
engineering, the architecture is arranged into levels of
abstraction, and separated into physical and procedural
layers, Figure 1.

Physical Layers i Procedural Layers
Pmcess CeiiteredDirplav \ :

Visualization and Pmcesr
D y ~ m i e s Contml

MetaDhor Obtect Base

T< Knowledge Mapping
and Abstraction

/ \ :

Battlefield Object Clusters ri-7 Ffl
1 I .

Figure 1 ABATIS High-Level Architecture

The physical layers comprise:

Data base: contains intelligence data collected
through various sources, e.g., imagery,
HUMINT, JSTARS, etc. This is "raw" data.
Battlefield Object Clusters: collection of
battlefield objects abstracted through the
process of intelligence production (please refer
to the description of procedural layers below).
Metaphor Object Base: metaphors are model
engines that embody procedural mechanisms
for display of battlefield state.
Process Centered Display: the visualization
interface with graphical elements created for

underlie.
the purpose of the processes that the metaphors

The procedural layers of the architecture enable the
transitions through the physical levels. Through
intelligence production, data can be clustered,
categorized, and amalgamated into objects that will

230

eventually underlie the metaphors. Knowledge
abstraction and mapping procedures will facilitate this by
providing mechanisms that will associate metaphors with
the battlefield object clusters. The Visualization and
Process Dynamics Control is a set of procedures and
rules governing the change of graphical elements states
on the PCD.

The effort described in this paper focuses on the
detailed design specifications of the process centered
display. Our approach is to prototype the remaining
elements of the architecture through simulation.
Simulating the model components at first allows the PCD
to be developed and tested independently. This produces
a battlefield visualization testbed that is useful for
conducting experiments concerning which visualization
techniques are the most effective.

Such a testbed may be incrementally developed by
substituting real-world data for simulated data in stages.
The procedural and physical layers are organized as
separate objects that communicate by sending
commands. The source of those commands can be a
simulator, or some other existing military software
system adapted to that function.

The clear migration path from the simulator to a
complete battlefield system is a good example of code
reuse, a major goal of object-oriented design (OOD).
Code reuse helps insure that the maximum benefit is
derived from every line of debugged code.

3.2 Model Base

The three lowest physical layers are the basis for the
construction of a model base intended to dynamically
control the PCD. The lowest level is the raw data as it is
acquired from the battlefield. This data has many
different formats, and may be valid for varying times in
the past. For example, some data may be current, while
other data comes from sources that may be an hour old.
Data at this level is relatively unorganized and
unstructured.

Through the procedural application of intelligence
production, the raw data is clustered or processed in
some other way to produce the first level of abstraction.
Battlefield object clusters are more closely related to the
types of objects that commanders consider when making
tactical decisions. If a conventional user interface were
applied to this level of the model, a display showing
battlefield state but not battlefield processes would result.

The key to ABATIS is the metaphor object base. The
goal of this highest level of the model is to capture the
process of the battle. The battlefield objects are used to

create metaphor objects. If these objects accurately
reflect the thought processes of the system's users, they
encourage a deeper understanding of the battle that
should result in better performance when predicting
future events.

As previously suggested, the initial work on ABATIS
involves constructing a simulator metaphor object base.
This metaphor object base should present the same
interface to the Process Centered Display (PCD) as the
final, working version. In other words, they are of the
same type. The simulator model implements an algorithm
for updating metaphor objects based on a simulation
scenario, while the working version does so based on the
knowledge mapping and abstraction process.

3.3 Process Centered Display

As implied by the last letter in ABATIS, the process
centered display is highly concerned with the selection of
tactical information display strategies. Multiple views of
a particular situation are possible within this system.
The creation of metaphors, their animation, and the task
of updating them to reflect changes in the model (or
actions by the user) are the responsibility of the PCD.

Some of these responsibilities are common to many
GUI designs. Providing concrete software solutions for
the animation of metaphor depictions is an important
design task that is presented later in this report.

4. ABATIS-PCD Architecture

The Process Centered Display (PCD) must display
the battlefield so that in addition to the current state of
the battle, the processes by which battlefield objects
evolve are also made apparent. Understanding how a
display can meet these requirements leads to an object-
oriented software architecture that may be used in a full
implementation of ABATIS, or in a battlefield
visualization emulator.

The PCD is developed using goal-driven design. An
optimum design will result by focusing on the project
goals and allowing them to define which methods and
tools to employ. This is in contrast to first constraining
the design by implementation language and then seeing
if an acceptable design is still possible.

4.1 PCD Goals

The main goal of the PCD is to convey the processes
that are occurring on the battlefield. Since battlefield
processes evolve and change as the battle unfolds, the

23 1

software architecture must also support dynamic change
and evolution at runtime. Given the vast range of
possible battlefield scenarios and objects, the architecture
must also be flexible enough to allow the quick creation
of new library objects from old ones.

A secondary goal is to focus on the possibility of
using motion, color changes, or other types of animation
to convey information. Some uses of animation are
obvious, such as moving a symbol upward on the screen
when an actual battalion moves North. However,
abstract quantities can also be tied to motion. A simple
example would be allowing the strength of a ground
force to be represented by the speed of rotation of its
symbol. When done in a way that matches the intuitive
notions of the user, such a presentation of information
becomes a metaphor. The metaphor correlates familiar
experiences with the actions of symbols on the computer
display.

A final goal is to allow arbitrary levels of complexity
in both the battlefield objects and their associated process
dynamics. This complexity is needed to accurately
model the intricate dynamics of a real battlefield and its
metaphorical representation.

Mutually compatible solutions for reaching these
goals exist and can be incorporated into a single
architecture. The architecture for the ABATIS Process
Centered Display, or ABATIS-PCD, is presented in later
sections.

4.2 ABATIS-PCD Requirements

The software architecture for the ABATIS-PCD has
to incorporate the ability to display complex,
evolutionary processes as well as simple, repetitive
changes. Every graphical element has some sort of
behavior associated with it. Here, a behavior is anythmg
that can cause a change in how an element is displayed.
If a graphical element changes its color, then some
behavior must have initiated that color change.
Similarly, an element that is moving in a straight line has
a behavior for moving in straight lines associated with it.
A graphical element without any behaviors may be
visible, but it will be static in appearance until some
behavior is initiated.

Considering possible battlefield displays, it becomes
quickly apparent that groups of graphical elements with
a common behavior may be desirable. Thus, it is
insufficient to simply associate behaviors with graphical
elements; a more abstract construct is needed. This
construct is named an Actor. As with their metaphorical
counterparts, Actors in ABATIS-PCD come in a variety

of "skill levels". Some Actors may be completely static,
while others exhibit behaviors so subtle and evolutionary
that they suggest information to the user in novel ways.

The algorithms associated with the data vary widely
in complexity. When viewed fiom the object-oriented
perspective of Actors, however, the basic software
constructs are more similar than different. The problem
domain encourages thinking of the various graphical
components as largely autonomous but occasionally
interacting. This suggests an object-oriented approach.

4.3 Process Centered Display Design

The process centered display should have a single
object that interfaces the PCD with the external software
components. This allows the same interface to be
presented to a directly implemented simulation scenario,
or the knowledge synthesis engine of a full-blown
ABATIS implementation. Since this object coordinates
the activities of Actors, it is called a Director.

Actors are objects that combine the ability to change
with some means of visual representation. The objects
that cause Actors to change are Behaviors. They are
abstracted into their own objects to promote flexibility.
Rather than writing new code to implement a new
Behavior into every Actor that might need it, separate
Behavior objects can be attached to any Actor
dynamically. For similar reasons, the visual
representation of an Actor is also abstracted into its own
object. These objects are names Grels, a contraction of
"graphical elements". Dynamically altering an Actor's
Behaviors and Grels allows the process represented by
the Actor to change easily.

The essential components of the process centered
display are shown in Figure 2. Another object, the
Viewport, is also shown. This is a class of objects
present in most graphical user interfaces, and provides a
means of separating the Grels from the direct methods
used to display them on a particular system.

The design of the rest of the process centered display
is motivated by an emerging conceptual tool known as
Design Patterns [SI. Object-oriented design has matured
to the point where a survey of successful object-oriented
programs reveals certain recurring architectural
similarities. Analyzing these similarities and abstracting
them into Design Patterns creates a catalog of software
constructs. Selecting the correct Design Patterns f?om
the catalog to use in a particular piece of software is still
a matter of judgement and skill for the software architect.
If that selection is done well, however, the patterns
provide a well-documented framework from which to

232

develop the architecture.

L- 7T --
Y

Figure 2 ABATIS-PCD Essential Components
Class Diagram

The first design pattern to be used in ABATIS-PCD
is named Composite, and will be applied to Actors. As
stated in the section on PCD Goals, the Actors need to
support hierarchical construction. Said another way, the
software interface for an individual Actor should be the
same as for a group of Actors. This technique is often
seen in CAD software, where individual CAD elements
may be grouped together and manipulated in concert
using the same commands as are used for individual
elements. The Composite pattern provides the concrete
mechanism for implementing the idea of constructing
objects hierarchically. Unlike the inheritance hierarchy
which is fixed at compile time, the composition
hierarchy may be altered or extended during the
program's execution. This allows the potential for Actors
to be dynamically modified by the Director, as well as by
one another.

Composition is necessary in ABATIS-PCD because
it ultimately allows the creation of metaphors for
battlefield processes. Simple Actors have simple
Behaviors and Grels, which are inadequate for the
purposes of battlefield visualization. Allowing Actors to
be combined into more complex aggregates provides a
structure for making the processes and representations
for Actors to become more complex as well. If designed
well, the Composite Actors become metaphors for other
systems in the mind of the user. They can assist in the
comprehension of the current battlefield state and the

likelihood of specific future states.
An abstract representation of the Composite pattern is

shown in Figure 3 [9]. The class Component, from
which the other classes are inherited, defines the
interface for this type of object. The Leaf class
implements the basic operation of this object. These are
the lowest-level objects of this type, the ones that are
desirable to build into composite structures. Finally, the
Composite class allows Leaf and other Composite
objects to be combined, creating the next level of the
hierarchy.

FiF' Delete()

paildo
_. -~

Figure 3 Composite Design Pattern Class
Diagram

In the case of ABATIS-PCD, the Component objects
correspond to Actors. Derived from this class are the
classes ActorLeaf and ActorComposite. As more
ActorLeaf objects are defined, a library of them is built
which may be used to carry out various simulations.
Similarly, a library of ActorComposites results from
building the ActorLeafs into more complicated
structures. The implementation of the Composite pattern
to ABATIS-PCD Actors is shown in Figure 4.

Vars, shown in the attributes section of the Actor, is
a data structure that contains information about the actor
that might affect the way it is displayed on the screen.
Examples of the kinds of variables in this data structure
are the actor's position, color, size, and orientation. This
same data structure will be used to hold information
about Grels, as will be seen later. Therefore, the
information it contains must be compatible with both
object types. Actors also store their class name and
individual object name. Methods for accessing this
information are not shown in the diagram, but can be
easily imagined and should be implemented in many of

233

the classes of ABATIS-PCD. This allows the director to
fmd and deliver objects to specific Actors, and to delete
specific Behaviors and Grels.

Figure 4 Composite Actor Class Diagram

The ActorLeaf class does not support the methods
AddActor and DelActor. These methods are used by the
Actorcomposite to maintain its list of Actors. By
definition, ActorLeafobjects are atomic and do not have
such a list.

It must now be determined whether or not any other
objects in the ABATIS-PCD software architecture
should also take advantage of the Composite pattern.
Since Behaviors and Grels are attached to Actors, and
Actors may be hierarchically composed, this mechanism
alone could be used to build up hierarchical Behaviors
and Grels. However, there is another reason to consider
using this pattern. Utilizing the Composite structure can
make libraries of objects easier to create and maintain.
While a complex tree of behaviors may act no differently
than a simple list of them, the lists are often more
cumbersome for the programmer when creating
simulations. Therefore, a similar structure is proposed
for the Behaviors and Grels. Figure 5 is a class diagram
for Behaviors, and Figure 6 is one for Grels.

Finally, it has been mentioned previously that the
Director maintains a list of Actors, and each Actor
maintains a list of Behaviors and another list of Grels.
While a list data structure may indeed be used to store
information about a collection of objects, the
architecture should not be constrained to a particular data
structure. It may also be convenient to traverse the

collection of Behaviors or Actors or Grels in more than
one way. Traversing the list in ascending versus
descending alphabetical order is an example of two
different ways of accessing the collection. Rather than
hard-coding the means for accessing members of a
collection, this idea may be abstracted into separate
objects. Such an object, which provides a common
interface for traversing groups of other objects, is called
an Iterator.

QrelCempoBLc

AddGrcl()
DdQr.cl() p: OdChdd()

Figure 5 Composite Grel Class Diagram

I

Figure 6 Composite Behavior Class Diagram

Iterators have the class relationships shown in Figure
7 [lo]. Other program objects use only the abstract
classes Aggregate and Iterator. These are abstract
because no objects of this type are ever actually created;
only the derived classes are instantiated. Once again,
inheritance is being used to specify an interface in the
parent classes which is used by all of the derived child
classes. Here, ConcreteAggregate inherits from
Aggregate, while ConcreteIterator inherits ffom Iterator.
When the ConcreteAggregate creates the
ConcreteIterator at the request of some other client

234

object, the ConcreteAggregate passes the ,iterator a
reference to itself so that the iterator has an aggregate
with which to work.

I

i

Figure 7 lterator Design Pattern Class
Diagram

This Design Pattern is applied to all of the classes that
support goup structures, namely Actors, Behaviors, and
Grels. Should one choice for the data structure used to
hold a group (such as a linked list or a hash table)
demonstrate weaknesses in access speed or some other
performance variable, it may be easily changed by
defining new concrete classes for aggregates and
iterators. Since all of the information concerning which
type of data structure is used has been encapsulated into
new objects, changing that data structure will have no
effect on the rest of the system.

One final new class is needed. A Grel specifies the
shape of a graphical element, such as a square. However,
depending on the capabilities of the Viewport, a square
may have different representations. An example is a 3D
view as opposed to a 2D view. A new class, placed
between the Grel and the Viewport, can change how the
Grel should be "painted" onto the Viewport. Due to this
function, the new class is called an Artist. Its primary
function is to make old Grels work with new Viewports,
although they could also be changed during execution if
desired.

Figure 8 shows the main class diagram for the
ABATIS-PCD. Along with the other diagrams
presented, it completely specifies the class relationships
in the PCD. The Director has an ActorGroup. The
members of this group are accessed by requesting an
iterator (in this case, an AGIterator) and using it to get
each Actor. The Actors each have a BehaviorGroup and
a GrelGroup to store the two important items of
information about an Actor: how it acts, and how it

looks. These groups each have their own iterators to
give transparent access to the members of the group.
Behaviors update the state of an Actor or its Grels, while
Grels draw themselves on Viewports with the help of
Artists.

1 I i

Figure 8 Main PCD Class Diagram

4.4 Example

A simple example will help illustrate the mechanisms
by which Actors are created, animated, and controlled.
Extensions to this example are then suggested for
implementation in a prototype system. However, the
ultimate goal of the ABATIS-PCD will be to
accommodate virtually any idea for Actor behavior and
appearance. It is envisioned that with a basic catalog of
models, simple simulations will be quickly implemented
and evaluated. This process generates new ideas for
display dynamics, including ones that may not have been
envisioned when the system architecture
was developed. Only a flexible system will adapt
gracehlly to these new requirements. It is at this level of
development that the design methods used in ABATIS-
PCD will be most beneficial.

Consider the representation for a battalion in
ABATIS-PCD. While the goal of the system is to help
develop innovative display mechanisms, it can also easily
accommodate current symbols. Figure 9 shows an Actor
for one particular type of battalion and its corresponding
representation.

The battalion has no behaviors associated with it as
shown. There are three Grels in the GrelGroup. One

235

draws the rectangular box, another draws the diagonals
of the box in the shape of an "X", and the third makes
two marks on the top of the box. If desired, these Grels
could be given names that correspond more closely to
their symbolic meanings.

Assume that the Director is told to create this actor.
The object is instantiated, and the Director tells the
Actor to draw itself. At this point, the default display
color might be white. The Actor passes along the draw
request to the Grels, which use their Artists and
Viewports (not shown in Figure 9) to paint pixels on the
screen.

Now assume that it is determined that the battalion is
friendly to the "blue" forces and not the "red". This
information causes a message to be sent to the Director
saying that the battalion should be permanently changed
to the color blue. This behavior, called TurnBlue, is
directed (hence the Director's name) to the proper
battalion, where it is attached to the BehaviorGroup. At
the next
screen update time, the Director tells all Actors to update
their behaviors. The battalion checks its group of
behaviors and sees that it now has one, so the behavior is
updated by passing it the Actor. Each Behavior decides
for itself intemally whether it acts upon the
characteristics of the Actor or the Grels. In this case, the
TumBlue Behavior changes the color of all Grels to blue.

Figure 9 Battalion Actor

Upon completion, the TumBlue object returns control
to the Actor. However, this particular behavior is
designed to only be executed once, so the return value
tells the Actor (the battalion in this case) to delete the
TumBlue behavior. However, the next time the Director
asks for all Actors to display themselves, this battalion
will change from white to blue.

A more enduring behavior is one that causes the Actor
to move to a new location in a specified amount of time.
This behavior is created and sent to the battalion through
the Director in much the same way as the TurnBlue

behavior. Based on the parameters given it when
created, the MoveTo behavior calculates how much the
Actor should move each display frame and makes the
required changes to the Actor's location. Each time the
display is updated, the Actor (and its Grels, which base
their locations on the Actor's) move in a straight line
towards the destination. At the completion of the move,
the MoveTo behavior also destroys itself. A more
complicated behavior, MoveToBSpline, could be given
parameters that accomplish the move along more
complicated curved paths than a straight line. Since
these behaviors do not care (or even know) whether the
Actor they are moving is a single "leaf' object or a
complex Composite of many other Actors, the same
behavior can be used to animate a simple box on the
screen as well as a complex assemblage of graphical
elements.

Finally, consider the behavior Rotate. This behavior
modifies the orientation of an Actor to successive
positions to make it spin on the screen. The rate of spin
may indicate some parameter of interest to the user. This
behavior never destroys itself, although it could be
removed by sending the appropriate request to the
Director.

This simple example, while actually useful and
certainly part of any prototype implementation, shows
how varied the actions of Behaviors can be. From one-
time changes to temporary Behaviors to ones that last as
long as the Actor does, the important point is to notice
and utilize the flexibility of this system. None of these
examples use hierarchical construction, a technique that
will unlock the true power of ABATIS-PCD.

5. Future Directions

A prototype implementation of the ABATIS-PCD has
been written in C++. This prototype incorporates all of
the ideas of the design presented in this report. The
simulation scenario is directly implemented at present.
Different views of the same simulation can be displayed
in multiple windows, and two simulations can be run
side-by-side for comparison.

The next stage in the development of this prototype
will allow new variations of simulations to be created
without compiling any code. Pop-up menus can be
created to add Actors, Behaviors, and Grels using an
entirely graphical interface. Once created, the simulation
would be saved to disk and retrieved later when running
cognitive experiments. It may also be possible to process
scripts from other systems, such as JANUS, into
scenarios that are readable by ABATIS.

236

ABATIS provides an opportunity to rapidly develop
a battlefield visualization simulator that may ultimately
be reused in a display system. Its reliance on design
pattems guides the future stages of development, and
promotes reliable and extensible operation. Modem
techniques are needed to meet the challenge of displaying
the modern battlefield. ABATIS address those needs,
and will accommodate new requirements that may
become evident in the future.

References

[11 U.S. Army TRADOC Analysis Command, WSMR,
JANUS(A) Version 2.0 Information Letter, March
1991.

[2] Pratt, David R., et al, "NPSNET: JANUS3D
Providing Three-Dimensional Displays for a Two-
Dimensional Combat Model", Fourth Annual
Conference on AI, Simulation, and Planning in High
Autonomy Systems, IEEE, September 1993, pp 3 1-
37.

[3] US. Army TRADOC Analysis Command, WSMR,
JANUSV) Documentation Manual. June 1986.

[4] US. Army TRADOC Analysis Command, WSMR,
JANUS(A) Version 2.0 Information Letter, March
1991.

[5] Pratt, David R., et al, "NPSNET: JANUS-3D
Providing Three-Dimensional Displays for a Two-
Dimensional Combat Model", Fourth Annual
Conference on AI, Simulation, and Planning in High
Autonomy Systems, IEEE, September 1993, pp 3 1-
37.

[6] Hancock, William R., et al, "Meeting the Graphical
Needs of the Electronic Battlefield", 13th Digital
Avionics Systems Conference, A I M E E E , 1994,
pp 465-470.

[7] Gamma, Erich, et al, Design Patterns: Elements of
Reusable Object-Oriented Sof iare, Addison-
Wesley, 1995, pp 3-4.

[8] Ibid.

[9] Ibid., pp 163-173.

[101 Ibid., pp 257-271

237

