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Abstract 

Modern warfare requires the understanding and 
management of increasingly complex assemblages of 
resources. The Advanced Battlefield Architecture for 
Tactical Information Selection (ABATIS) is introduced. 
It provides a framework for testing various display 
strategies. Its design, which uses object-oriented and 
hierarchical design methodologies, is flexible and 
extensible. It assures that a working program can be 
rapidly developed for comparing alternate display 
strategies. This report defines an overall architecture 
for battlefield visualization and then focuses on a 
detailed design of its display layer, called the Process 
Centered Display (PCD). The design is specified using 
the Object Modeling Technique ( O M )  notation. The 
complete class diagrams for the PCD are presented and 
an illustrative example is given. 

1. Introduction 

Despite major changes in the political makeup of the 
world's nations, armed forces will continue to be 
necessary for the foreseeable future. While their 
emphasis has shifted from strategic deterrence to smaller 
localized conflicts, events such as Operation Desert 
Storm clearly emphasize the need for large, well- 

coordinated forces. In a world of NATO forces 
assembled fiom many countries, the variety and number 
of resources important to the battlefield will only 
increase. New systems must be designed and 
implemented to help military decision-makers understand 
the battlefield situation quickly. 

There are a number of themes that should permeate 
any new s o h a r e  architecture for battlefield 
visualization. Most importantly, the architecture must 
facilitate understanding of the process of the battle, 
rather than simply the current location of various forces. 
This requirement implies that the s o h a r e  must 
somehow "understand" how the user assimilates 
battlefield state information into a process-centered 
viewpoint. One aspect of this problem is the assembling 
of individual units of information into context-rich, 
higher-level composites. Another is the presentation of 
this derived information in a way that is intuitive to the 
human user. The former aspect involves artificial 
intelligence and knowledge-based design techniques. The 
latter aspect is the focus of the work shown herein. 

In this report, the focal point is the software design 
aspects of the battlefield visualization architecture. 
Object-Oriented Design (OOD) is used to achieve 
flexibility and extensibility. Design patterns are used to 
guide the software architect in the proper use of common 
object-oriented structures. They also suggest solutions 
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that truly allow the system to be flexible and extensible, 
capabilities demanded by the purpose for this 
architecture. 

Based on these principles, the overall Advanced 
Battlefield Architecture for Tactical Information 
Selection (ABATIS) is presented. This architecture will 
be refined and implemented to conduct experiments 
quantieing the effectiveness of various display 
strategies. 

2. Battlefield Visualization 

2.1 Definition and Objectives 

Battlefield visualization implies much more than the 
display of icons on a computer map. The goal is to 
present the user with an understanding of the battle. The 
processes underlying the battle must be exposed, as well 
as the past and desired future states of the battlefield. 
Presenting a display that is closer to the mental vision of 
the user helps accomplish these goals. 

These requirements guide the design of a battlefield 
visualization system in certain ways. To expose the 
process underlying the actions of a particular battlefield 
object, dynamic motion is perhaps the best tool in the 
designer's tool kit. The movement of objects on the 
display can correspond to the movement of physical 
objects on the battlefield. However, motion can be used 
to quantify variables other than physical displacement. 
Spinning motions, expansion and contraction, animated 
substructures, and color changes may all be used to 
indicate a change in some variable of interest for the 
object displaying these behaviors. 

Increasing the complexity of an object's representation 
carries certain risks. If the various representations are 
not orthogonal, they can interfere with one another and 
produce a confusing display. Even well designed object 
motion can suffer from being overly cryptic. If the user 
must make an effort to remember what a particular 
motion represents or has to look it up in a manual, the 
motion has failed to provide additional information in an 
easily accessible form. A mechanism is needed to insure 
that the user can easily grasp the new wealth of 
information being displayed. 

2.2 Current Systems 

Examples of two current systems that share some 
similarities with ABATIS are JANUS(A) [I]  and 
PCCADS 2000 [2]. JANUS(A) is "an interactive, 
computer-based, war-gaming simulation of combat 

operations conducted at the brigade and lower level in 
the United States Army" [3]. It consists of two opposing 
forces that are controlled by two players who interact 
with the system. Developed by the United States Army, 
JANUS(A) concentrates on ground combat. 

One problem with basing a new system on JANUS(A) 
is immediately apparent: it is composed entirely of 
algorithms and data written in a structured language. 
The programs which belong to JANUS(A) consist of 
approximately 200,000 lines of code written entirely in 
VAX-11 Fortran, a structured Digital Equipment 
Corporation (DEC) extension of ANSI standard 
FORTRAN-77 [4]. This technology seriously impedes 
any efforts to implement the OOD concepts required by 
ABATIS. 

Another shortcoming of JANUS(A) is its static script 
files. Motion parameters such as speed and direction of 
travel are not included in these scripts; only the static 
location of objects is provided at various points in time. 
Attempts to parse these files into ones that include 
motion information have had some success [ 5 ] ,  but 
clearly such a system is inappropriate for the dynamic 
experiments to be conducted with ABATIS. 

Another military system used for visualization is the 
Air Force's PCCADS 2000 cockpit display system [6 ] .  
This system is more similar to ABATIS due to an object- 
oriented design using PHIGS+ middleware for graphical 
functions. However, the PCCADS 2000 system 
specifies much more than a software architecture. The 
concerns of size, weight, power consumption, and 
rendering performance are absent in the requirements for 
ABATIS. PCCADS 2000 is optimized for terrain 
rendering in three dimensions, a display option that may 
not even be present in ABATIS. PCCADS 2000 
highlights many of the tradeoffs associated with software 
engineering and provides one possible way to implement 
such a system, but it is too specialized for reuse in 
ABATIS. 

2.3 Abatis Requirements 

Following the dictates of goal-driven design, 
ABATIS must accomplish a specific set of predefined 
goals. Put simply, ABATIS must allow the simulation of 
dynamic battlefield objects in a way that exposes their 
processes and is intuitive to understand. The ultimate 
simulation of these objects to evaluate various display 
strategies is of central importance. 

All major elements of the system should be 
hierarchical, allowing collections of objects to be 
composed and treated the same as individual objects. 
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Hierarchical structure is naturally encouraged by OOD 
through inheritance, and allows a relatively small set of 
objects to create a rich base of composite objects that are 
equally adequate as the basis for the rest of the software. 

Finally, the system must be extensible. By definition, 
the comparison of various display strategies requires 
more than one such strategy to exist. ABATIS must be 
designed to allow these different strategies to be 
substituted for one another at runtime. New strategies 
should be easy to add, and have little or no impact on the 
rest of the software. 

2.4 Design Patterns 

Experience with early object-oriented programming 
led to the design of architectural frameworks, i.e., 
reusable software structures for a particular application 
domain. Database frameworks, word processing 
frameworks, and Graphical User Interface frameworks 
have all been applied with great success. The 
hdamental  problem with frameworks is their limited 
generality. Their association with a particular domain of 
interest restricts their use in other areas. 

Despite its domain dependency, a framework has to be 
general enough to be reusable. Designing good 
frameworks has helped expose recurring patterns of 
interaction or structure that meet this goal. Abstracting 
the common mechanisms used to implement frameworks 
and other complex object-oriented software has led to the 
idea of design patterns. A commonly accepted pattern 
definition follows: 

'2 design pattern names, abstracts, and identges the 
key aspects of a common design structure that makes 
it useful for creating a reusable object-oriented 
design. The design pattern identiJies the participating 
classes and instances, theiv voles and collaborations, 
and the distribution of responsibilities. Each design 
pattern focuses on a particular object-oriented design 
problem or issue." [7] 

3. System Architecture 

A software architecture is a definition of a software 
system in terms of its oomponents and thcir intcraotions. 
The architecture defines the system's structure, topology, 
and semantics. A good object-oriented architecture 
provides a correspondence between the objects and 
requirements of a particular domain and the software that 
implements them. 

3.1 Abatis Architecture 

A specific architecture is now proposed for ABATIS. 
The architecture given is for a complete system, capable 
of processing raw information and using it to drive the 
process centered display (PCD). In this use, ABATIS 
is not a simulator, but an actual battlefield tool to be used 
by those in command. As is common in software 
engineering, the architecture is arranged into levels of 
abstraction, and separated into physical and procedural 
layers, Figure 1. 

Physical Layers i Procedural Layers 
Pmcess CeiiteredDirplav \ : 

Visualization and Pmcesr 
D y ~ m i e s  Contml 

MetaDhor Obtect Base 

T< Knowledge Mapping 
and Abstraction 

/ \ :  

Battlefield Object Clusters ri-7 Ffl 
1 I .  

Figure 1 ABATIS High-Level Architecture 

The physical layers comprise: 

Data base: contains intelligence data collected 
through various sources, e.g., imagery, 
HUMINT, JSTARS, etc. This is "raw" data. 
Battlefield Object Clusters: collection of 
battlefield objects abstracted through the 
process of intelligence production (please refer 
to the description of procedural layers below). 
Metaphor Object Base: metaphors are model 
engines that embody procedural mechanisms 
for display of battlefield state. 
Process Centered Display: the visualization 
interface with graphical elements created for 

underlie. 
the purpose of the processes that the metaphors 

The procedural layers of the architecture enable the 
transitions through the physical levels. Through 
intelligence production, data can be clustered, 
categorized, and amalgamated into objects that will 
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eventually underlie the metaphors. Knowledge 
abstraction and mapping procedures will facilitate this by 
providing mechanisms that will associate metaphors with 
the battlefield object clusters. The Visualization and 
Process Dynamics Control is a set of procedures and 
rules governing the change of graphical elements states 
on the PCD. 

The effort described in this paper focuses on the 
detailed design specifications of the process centered 
display. Our approach is to prototype the remaining 
elements of the architecture through simulation. 
Simulating the model components at first allows the PCD 
to be developed and tested independently. This produces 
a battlefield visualization testbed that is useful for 
conducting experiments concerning which visualization 
techniques are the most effective. 

Such a testbed may be incrementally developed by 
substituting real-world data for simulated data in stages. 
The procedural and physical layers are organized as 
separate objects that communicate by sending 
commands. The source of those commands can be a 
simulator, or some other existing military software 
system adapted to that function. 

The clear migration path from the simulator to a 
complete battlefield system is a good example of code 
reuse, a major goal of object-oriented design (OOD). 
Code reuse helps insure that the maximum benefit is 
derived from every line of debugged code. 

3.2 Model Base 

The three lowest physical layers are the basis for the 
construction of a model base intended to dynamically 
control the PCD. The lowest level is the raw data as it is 
acquired from the battlefield. This data has many 
different formats, and may be valid for varying times in 
the past. For example, some data may be current, while 
other data comes from sources that may be an hour old. 
Data at this level is relatively unorganized and 
unstructured. 

Through the procedural application of intelligence 
production, the raw data is clustered or processed in 
some other way to produce the first level of abstraction. 
Battlefield object clusters are more closely related to the 
types of objects that commanders consider when making 
tactical decisions. If a conventional user interface were 
applied to this level of the model, a display showing 
battlefield state but not battlefield processes would result. 

The key to ABATIS is the metaphor object base. The 
goal of this highest level of the model is to capture the 
process of the battle. The battlefield objects are used to 

create metaphor objects. If these objects accurately 
reflect the thought processes of the system's users, they 
encourage a deeper understanding of the battle that 
should result in better performance when predicting 
future events. 

As previously suggested, the initial work on ABATIS 
involves constructing a simulator metaphor object base. 
This metaphor object base should present the same 
interface to the Process Centered Display (PCD) as the 
final, working version. In other words, they are of the 
same type. The simulator model implements an algorithm 
for updating metaphor objects based on a simulation 
scenario, while the working version does so based on the 
knowledge mapping and abstraction process. 

3.3 Process Centered Display 

As implied by the last letter in ABATIS, the process 
centered display is highly concerned with the selection of 
tactical information display strategies. Multiple views of 
a particular situation are possible within this system. 
The creation of metaphors, their animation, and the task 
of updating them to reflect changes in the model (or 
actions by the user) are the responsibility of the PCD. 

Some of these responsibilities are common to many 
GUI designs. Providing concrete software solutions for 
the animation of metaphor depictions is an important 
design task that is presented later in this report. 

4. ABATIS-PCD Architecture 

The Process Centered Display (PCD) must display 
the battlefield so that in addition to the current state of 
the battle, the processes by which battlefield objects 
evolve are also made apparent. Understanding how a 
display can meet these requirements leads to an object- 
oriented software architecture that may be used in a full 
implementation of ABATIS, or in a battlefield 
visualization emulator. 

The PCD is developed using goal-driven design. An 
optimum design will result by focusing on the project 
goals and allowing them to define which methods and 
tools to employ. This is in contrast to first constraining 
the design by implementation language and then seeing 
if an acceptable design is still possible. 

4.1 PCD Goals 

The main goal of the PCD is to convey the processes 
that are occurring on the battlefield. Since battlefield 
processes evolve and change as the battle unfolds, the 

23 1 



software architecture must also support dynamic change 
and evolution at runtime. Given the vast range of 
possible battlefield scenarios and objects, the architecture 
must also be flexible enough to allow the quick creation 
of new library objects from old ones. 

A secondary goal is to focus on the possibility of 
using motion, color changes, or other types of animation 
to convey information. Some uses of animation are 
obvious, such as moving a symbol upward on the screen 
when an actual battalion moves North. However, 
abstract quantities can also be tied to motion. A simple 
example would be allowing the strength of a ground 
force to be represented by the speed of rotation of its 
symbol. When done in a way that matches the intuitive 
notions of the user, such a presentation of information 
becomes a metaphor. The metaphor correlates familiar 
experiences with the actions of symbols on the computer 
display. 

A final goal is to allow arbitrary levels of complexity 
in both the battlefield objects and their associated process 
dynamics. This complexity is needed to accurately 
model the intricate dynamics of a real battlefield and its 
metaphorical representation. 

Mutually compatible solutions for reaching these 
goals exist and can be incorporated into a single 
architecture. The architecture for the ABATIS Process 
Centered Display, or ABATIS-PCD, is presented in later 
sections. 

4.2 ABATIS-PCD Requirements 

The software architecture for the ABATIS-PCD has 
to incorporate the ability to display complex, 
evolutionary processes as well as simple, repetitive 
changes. Every graphical element has some sort of 
behavior associated with it. Here, a behavior is anythmg 
that can cause a change in how an element is displayed. 
If a graphical element changes its color, then some 
behavior must have initiated that color change. 
Similarly, an element that is moving in a straight line has 
a behavior for moving in straight lines associated with it. 
A graphical element without any behaviors may be 
visible, but it will be static in appearance until some 
behavior is initiated. 

Considering possible battlefield displays, it becomes 
quickly apparent that groups of graphical elements with 
a common behavior may be desirable. Thus, it is 
insufficient to simply associate behaviors with graphical 
elements; a more abstract construct is needed. This 
construct is named an Actor. As with their metaphorical 
counterparts, Actors in ABATIS-PCD come in a variety 

of "skill levels". Some Actors may be completely static, 
while others exhibit behaviors so subtle and evolutionary 
that they suggest information to the user in novel ways. 

The algorithms associated with the data vary widely 
in complexity. When viewed fiom the object-oriented 
perspective of Actors, however, the basic software 
constructs are more similar than different. The problem 
domain encourages thinking of the various graphical 
components as largely autonomous but occasionally 
interacting. This suggests an object-oriented approach. 

4.3 Process Centered Display Design 

The process centered display should have a single 
object that interfaces the PCD with the external software 
components. This allows the same interface to be 
presented to a directly implemented simulation scenario, 
or the knowledge synthesis engine of a full-blown 
ABATIS implementation. Since this object coordinates 
the activities of Actors, it is called a Director. 

Actors are objects that combine the ability to change 
with some means of visual representation. The objects 
that cause Actors to change are Behaviors. They are 
abstracted into their own objects to promote flexibility. 
Rather than writing new code to implement a new 
Behavior into every Actor that might need it, separate 
Behavior objects can be attached to any Actor 
dynamically. For similar reasons, the visual 
representation of an Actor is also abstracted into its own 
object. These objects are names Grels, a contraction of 
"graphical elements". Dynamically altering an Actor's 
Behaviors and Grels allows the process represented by 
the Actor to change easily. 

The essential components of the process centered 
display are shown in Figure 2. Another object, the 
Viewport, is also shown. This is a class of objects 
present in most graphical user interfaces, and provides a 
means of separating the Grels from the direct methods 
used to display them on a particular system. 

The design of the rest of the process centered display 
is motivated by an emerging conceptual tool known as 
Design Patterns [SI. Object-oriented design has matured 
to the point where a survey of successful object-oriented 
programs reveals certain recurring architectural 
similarities. Analyzing these similarities and abstracting 
them into Design Patterns creates a catalog of software 
constructs. Selecting the correct Design Patterns f?om 
the catalog to use in a particular piece of software is still 
a matter of judgement and skill for the software architect. 
If that selection is done well, however, the patterns 
provide a well-documented framework from which to 
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develop the architecture. 

L- 7T -- 
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Figure 2 ABATIS-PCD Essential Components 
Class Diagram 

The first design pattern to be used in ABATIS-PCD 
is named Composite, and will be applied to Actors. As 
stated in the section on PCD Goals, the Actors need to 
support hierarchical construction. Said another way, the 
software interface for an individual Actor should be the 
same as for a group of Actors. This technique is often 
seen in CAD software, where individual CAD elements 
may be grouped together and manipulated in concert 
using the same commands as are used for individual 
elements. The Composite pattern provides the concrete 
mechanism for implementing the idea of constructing 
objects hierarchically. Unlike the inheritance hierarchy 
which is fixed at compile time, the composition 
hierarchy may be altered or extended during the 
program's execution. This allows the potential for Actors 
to be dynamically modified by the Director, as well as by 
one another. 

Composition is necessary in ABATIS-PCD because 
it ultimately allows the creation of metaphors for 
battlefield processes. Simple Actors have simple 
Behaviors and Grels, which are inadequate for the 
purposes of battlefield visualization. Allowing Actors to 
be combined into more complex aggregates provides a 
structure for making the processes and representations 
for Actors to become more complex as well. If designed 
well, the Composite Actors become metaphors for other 
systems in the mind of the user. They can assist in the 
comprehension of the current battlefield state and the 

likelihood of specific future states. 
An abstract representation of the Composite pattern is 

shown in Figure 3 [9]. The class Component, from 
which the other classes are inherited, defines the 
interface for this type of object. The Leaf class 
implements the basic operation of this object. These are 
the lowest-level objects of this type, the ones that are 
desirable to build into composite structures. Finally, the 
Composite class allows Leaf and other Composite 
objects to be combined, creating the next level of the 
hierarchy. 

FiF' Delete( ) 

paildo 
_. -~ 

Figure 3 Composite Design Pattern Class 
Diagram 

In the case of ABATIS-PCD, the Component objects 
correspond to Actors. Derived from this class are the 
classes ActorLeaf and ActorComposite. As more 
ActorLeaf objects are defined, a library of them is built 
which may be used to carry out various simulations. 
Similarly, a library of ActorComposites results from 
building the ActorLeafs into more complicated 
structures. The implementation of the Composite pattern 
to ABATIS-PCD Actors is shown in Figure 4. 

Vars, shown in the attributes section of the Actor, is 
a data structure that contains information about the actor 
that might affect the way it is displayed on the screen. 
Examples of the kinds of variables in this data structure 
are the actor's position, color, size, and orientation. This 
same data structure will be used to hold information 
about Grels, as will be seen later. Therefore, the 
information it contains must be compatible with both 
object types. Actors also store their class name and 
individual object name. Methods for accessing this 
information are not shown in the diagram, but can be 
easily imagined and should be implemented in many of 
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the classes of ABATIS-PCD. This allows the director to 
fmd and deliver objects to specific Actors, and to delete 
specific Behaviors and Grels. 

Figure 4 Composite Actor Class Diagram 

The ActorLeaf class does not support the methods 
AddActor and DelActor. These methods are used by the 
Actorcomposite to maintain its list of Actors. By 
definition, ActorLeafobjects are atomic and do not have 
such a list. 

It must now be determined whether or not any other 
objects in the ABATIS-PCD software architecture 
should also take advantage of the Composite pattern. 
Since Behaviors and Grels are attached to Actors, and 
Actors may be hierarchically composed, this mechanism 
alone could be used to build up hierarchical Behaviors 
and Grels. However, there is another reason to consider 
using this pattern. Utilizing the Composite structure can 
make libraries of objects easier to create and maintain. 
While a complex tree of behaviors may act no differently 
than a simple list of them, the lists are often more 
cumbersome for the programmer when creating 
simulations. Therefore, a similar structure is proposed 
for the Behaviors and Grels. Figure 5 is a class diagram 
for Behaviors, and Figure 6 is one for Grels. 

Finally, it has been mentioned previously that the 
Director maintains a list of Actors, and each Actor 
maintains a list of Behaviors and another list of Grels. 
While a list data structure may indeed be used to store 
information about a collection of objects, the 
architecture should not be constrained to a particular data 
structure. It may also be convenient to traverse the 

collection of Behaviors or Actors or Grels in more than 
one way. Traversing the list in ascending versus 
descending alphabetical order is an example of two 
different ways of accessing the collection. Rather than 
hard-coding the means for accessing members of a 
collection, this idea may be abstracted into separate 
objects. Such an object, which provides a common 
interface for traversing groups of other objects, is called 
an Iterator. 

QrelCempoBLc 

AddGrcl( ) 
DdQr.cl( ) p: OdChdd( ) 

Figure 5 Composite Grel Class Diagram 

I 

Figure 6 Composite Behavior Class Diagram 

Iterators have the class relationships shown in Figure 
7 [lo]. Other program objects use only the abstract 
classes Aggregate and Iterator. These are abstract 
because no objects of this type are ever actually created; 
only the derived classes are instantiated. Once again, 
inheritance is being used to specify an interface in the 
parent classes which is used by all of the derived child 
classes. Here, ConcreteAggregate inherits from 
Aggregate, while ConcreteIterator inherits ffom Iterator. 
When the ConcreteAggregate creates the 
ConcreteIterator at the request of some other client 
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object, the ConcreteAggregate passes the ,iterator a 
reference to itself so that the iterator has an aggregate 
with which to work. 

I 

i 

Figure 7 lterator Design Pattern Class 
Diagram 

This Design Pattern is applied to all of the classes that 
support goup structures, namely Actors, Behaviors, and 
Grels. Should one choice for the data structure used to 
hold a group (such as a linked list or a hash table) 
demonstrate weaknesses in access speed or some other 
performance variable, it may be easily changed by 
defining new concrete classes for aggregates and 
iterators. Since all of the information concerning which 
type of data structure is used has been encapsulated into 
new objects, changing that data structure will have no 
effect on the rest of the system. 

One final new class is needed. A Grel specifies the 
shape of a graphical element, such as a square. However, 
depending on the capabilities of the Viewport, a square 
may have different representations. An example is a 3D 
view as opposed to a 2D view. A new class, placed 
between the Grel and the Viewport, can change how the 
Grel should be "painted" onto the Viewport. Due to this 
function, the new class is called an Artist. Its primary 
function is to make old Grels work with new Viewports, 
although they could also be changed during execution if 
desired. 

Figure 8 shows the main class diagram for the 
ABATIS-PCD. Along with the other diagrams 
presented, it completely specifies the class relationships 
in the PCD. The Director has an ActorGroup. The 
members of this group are accessed by requesting an 
iterator (in this case, an AGIterator) and using it to get 
each Actor. The Actors each have a BehaviorGroup and 
a GrelGroup to store the two important items of 
information about an Actor: how it acts, and how it 

looks. These groups each have their own iterators to 
give transparent access to the members of the group. 
Behaviors update the state of an Actor or its Grels, while 
Grels draw themselves on Viewports with the help of 
Artists. 

1 I i 

Figure 8 Main PCD Class Diagram 

4.4 Example 

A simple example will help illustrate the mechanisms 
by which Actors are created, animated, and controlled. 
Extensions to this example are then suggested for 
implementation in a prototype system. However, the 
ultimate goal of the ABATIS-PCD will be to 
accommodate virtually any idea for Actor behavior and 
appearance. It is envisioned that with a basic catalog of 
models, simple simulations will be quickly implemented 
and evaluated. This process generates new ideas for 
display dynamics, including ones that may not have been 
envisioned when the system architecture 
was developed. Only a flexible system will adapt 
gracehlly to these new requirements. It is at this level of 
development that the design methods used in ABATIS- 
PCD will be most beneficial. 

Consider the representation for a battalion in 
ABATIS-PCD. While the goal of the system is to help 
develop innovative display mechanisms, it can also easily 
accommodate current symbols. Figure 9 shows an Actor 
for one particular type of battalion and its corresponding 
representation. 

The battalion has no behaviors associated with it as 
shown. There are three Grels in the GrelGroup. One 
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draws the rectangular box, another draws the diagonals 
of the box in the shape of an "X", and the third makes 
two marks on the top of the box. If desired, these Grels 
could be given names that correspond more closely to 
their symbolic meanings. 

Assume that the Director is told to create this actor. 
The object is instantiated, and the Director tells the 
Actor to draw itself. At this point, the default display 
color might be white. The Actor passes along the draw 
request to the Grels, which use their Artists and 
Viewports (not shown in Figure 9) to paint pixels on the 
screen. 

Now assume that it is determined that the battalion is 
friendly to the "blue" forces and not the "red". This 
information causes a message to be sent to the Director 
saying that the battalion should be permanently changed 
to the color blue. This behavior, called TurnBlue, is 
directed (hence the Director's name) to the proper 
battalion, where it is attached to the BehaviorGroup. At 
the next 
screen update time, the Director tells all Actors to update 
their behaviors. The battalion checks its group of 
behaviors and sees that it now has one, so the behavior is 
updated by passing it the Actor. Each Behavior decides 
for itself intemally whether it acts upon the 
characteristics of the Actor or the Grels. In this case, the 
TumBlue Behavior changes the color of all Grels to blue. 

Figure 9 Battalion Actor 

Upon completion, the TumBlue object returns control 
to the Actor. However, this particular behavior is 
designed to only be executed once, so the return value 
tells the Actor (the battalion in this case) to delete the 
TumBlue behavior. However, the next time the Director 
asks for all Actors to display themselves, this battalion 
will change from white to blue. 

A more enduring behavior is one that causes the Actor 
to move to a new location in a specified amount of time. 
This behavior is created and sent to the battalion through 
the Director in much the same way as the TurnBlue 

behavior. Based on the parameters given it when 
created, the MoveTo behavior calculates how much the 
Actor should move each display frame and makes the 
required changes to the Actor's location. Each time the 
display is updated, the Actor (and its Grels, which base 
their locations on the Actor's) move in a straight line 
towards the destination. At the completion of the move, 
the MoveTo behavior also destroys itself. A more 
complicated behavior, MoveToBSpline, could be given 
parameters that accomplish the move along more 
complicated curved paths than a straight line. Since 
these behaviors do not care (or even know) whether the 
Actor they are moving is a single "leaf' object or a 
complex Composite of many other Actors, the same 
behavior can be used to animate a simple box on the 
screen as well as a complex assemblage of graphical 
elements. 

Finally, consider the behavior Rotate. This behavior 
modifies the orientation of an Actor to successive 
positions to make it spin on the screen. The rate of spin 
may indicate some parameter of interest to the user. This 
behavior never destroys itself, although it could be 
removed by sending the appropriate request to the 
Director. 

This simple example, while actually useful and 
certainly part of any prototype implementation, shows 
how varied the actions of Behaviors can be. From one- 
time changes to temporary Behaviors to ones that last as 
long as the Actor does, the important point is to notice 
and utilize the flexibility of this system. None of these 
examples use hierarchical construction, a technique that 
will unlock the true power of ABATIS-PCD. 

5. Future Directions 

A prototype implementation of the ABATIS-PCD has 
been written in C++. This prototype incorporates all of 
the ideas of the design presented in this report. The 
simulation scenario is directly implemented at present. 
Different views of the same simulation can be displayed 
in multiple windows, and two simulations can be run 
side-by-side for comparison. 

The next stage in the development of this prototype 
will allow new variations of simulations to be created 
without compiling any code. Pop-up menus can be 
created to add Actors, Behaviors, and Grels using an 
entirely graphical interface. Once created, the simulation 
would be saved to disk and retrieved later when running 
cognitive experiments. It may also be possible to process 
scripts from other systems, such as JANUS, into 
scenarios that are readable by ABATIS. 

236 



ABATIS provides an opportunity to rapidly develop 
a battlefield visualization simulator that may ultimately 
be reused in a display system. Its reliance on design 
pattems guides the future stages of development, and 
promotes reliable and extensible operation. Modem 
techniques are needed to meet the challenge of displaying 
the modern battlefield. ABATIS address those needs, 
and will accommodate new requirements that may 
become evident in the future. 
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