
AUTOMATED VALIDATION OF SYSTEM REQUIREMENTS FOR EMBEDDED SYSTEMS DESIGN

Yarisa Jaroch, Steven Cunning, and Jerzy W. Rozenblit
Dept. of Electrical and Computer Engineering

The University of Arizona
Tucson, Arizona 85721-0104

e-mail: {yarisa/scunning/jr@ece.arizona.edu}

KEYWORDS: codesign, requirements testing, validation,
embedded systems

1 ABSTRACT

Advancements in technology have increased the
diversity and complexity of embedded systems. At the same
time there is an increasing need for reducing the cost of
embedded systems development and testing. The system
requirements state what the customer wants the system to
do. These requirements are the basis for planning a
project. In the computer-based systems world, the
requirements are analyzed and allocated to software and
hardware. In many cases, either hardware, software, or
various combinations can be used to meet the required
performance and functionality. This is where other factors
such as cost and flexibility influence the decision as to
whether a requirement will be allocated to one or the other.
The final design must meet the given requirements. If a tool
is available to support the validation of the design against
the systems requirements, then the time associated with the
design process can be shortened. Our approach is to use
model-based codesign to develop test scenarios based on
the system requirements and use modeling and simulation to
validate the design against the requirements. The approach
will be demonstrated using an elevator controller model.

2 INTRODUCTION

Recognizing the need for better approaches and
techniques for the design of embedded systems, the field of
codesign has evolved (Buchenrieder and Rozenblit 1995);
codesign encompasses hardware design and software design.

In the traditional design approach, the customer
requirements are analyzed and used to develop the system
specification. From the system specification, the
requirements are partitioned into hardware and software
requirements. Then, the hardware and the software are
designed independently of each other. Upon completion of
the design, the hardware and the software are brought back

together during the integration phase. This approach is
shown in Figure 1.

While in the traditional approach the hardware and the
software are treated independently, in codesign the hardware
and the software are viewed as a whole and are developed
concurrently.

����������	

���
�
�

��
	��
���������	���

������������	����
���	�	������

�����������
��� ���	�������
���

��	����	���

Figure 1. Traditional Design Approach

Codesign emphasizes the importance of modeling,
simulation, and validation of the system before the hardware
and the software are developed. These activities allow the
developers to perform requirements allocation evaluations
and trade-off analysis early in the process, and with
knowledge of implications to the embedded system as a
whole.

In model-based codesign (Cunning et al. 1999), the
system requirements are used to design a model of the
system. This model is then used for simulation. The output
of the simulation is used to validate the model with respect
to the requirements specifications, and to evaluate design
alternatives. This approach can be depicted as shown in
Figure 2.

In this area, automation of model validation can be of
substantial help. Automatic model validation can

significantly reduce the time spent selecting the most
suitable hardware/software requirements allocations.

As indicated before, the model validation is done
through simulation. The simulation uses an experimental
frame (Zeigler 1990). Typically the experimental frame is
generated to test a particular requirement or related group of
requirements. In order to validate a design model against all
requirements, multiple experimental frames must be
generated. The experimental frame developed to support
model validation for model-based codesign is generic. The
uniqueness of the experimental frame is encapsulated by the
test cases defined and by the input/output modules. Since
the experimental frame is generic, the same frame can be
used with multiple test cases to validate the model thus
reducing the number of frames required.

Functional and Behavioral
Requirements Specification

and Modeling

Behavioral Simulation and
Model Refinement Loop

Structural Requirements
Specification and Modeling

Performance Simulation and
Model Refinement loop

Synthesis and
Implementation

Experimental
Frame
Base

Experimental
Frame

 Development

Experimental
Frame

translation

Experimental Frame
Development and Testing

Test
Generation

Figure 2. Model-Based Codesign Approach

3 VALIDATION OF REQUIREMENTS

Because the requirements are the basis for the project,
systems are tested to ensure requirements compliance.
Researchers are working towards developing a method for
test development using the requirements. For this to work,
requirements must be unambiguous. Currently many
companies specify their requirements using natural
languages. However, it is very difficult to capture
requirements that are not open to interpretation using natural
language. This is why requirements notations such as RLP
(Requirements Language Processor) (Davis 1982), PVS
(Prototype Verification System) (Butler 1996) and SCR
(Software Cost Reduction) (Heitmeyer et al. 1996) have
been developed.

Although many formal notations have been developed,
not one has caught on. Systems engineers and customers

prefer to maintain their requirements in a format that is
easily understood. Yet, formal notations can lead to early
detection of missing requirements and misunderstandings.

We propose a middle ground: the customer specifies the
requirements in natural language and the systems engineer
or the designer translates the requirements into a formal
requirement notation (Cunning and Rozenblit 1999). Our
goal is to obtain the benefits of both natural languages and
formal requirement notations without redefining the existing
requirements capture methods. Because the requirements
are precisely defined in a mathematical language, the
requirements can be used to develop test cases for
behavioral models of the system.

Our experimental frame development and testing
approach consists of several steps as shown in Figure 3.
First, the requirements are received by the customer in
English sentences and manually translated into the
requirements model. The requirements model uses SCR to
capture the requirements. The step of translating the
requirements from English sentences into SCR uncovers
missing and incomplete requirements. Once the
requirements model is complete, the scenario generation
algorithm is used to develop test scenarios from the
requirements model. The test scenarios are then translated
into ATLAS test programs (See section 0). Using the test
programs, experimental frames are synthesized. The
experimental frames are then used to apply stimuli to the
design model and to gather the design model responses. The
results of the simulation are stored for further analysis.

Text-based
Requirements

Manual Translation

Requirements Model
(SCR)

Extract
Functions

Executable Scenario
Generator

Scenario Generation
Algorithm

Test Scenarios

Experimental Frame
Suite

ATLAS test program

Design
Model

(Statemate)

ATLAS program synthesis

Temporal
Requirements

stimulus

response

Experimental Frame synthesis

Figure 3. Test Scenario Generation and Use

Automation of the steps encompassed by the dotted line
in Figure 3 represent the focus of this paper. These steps
will be described in detail in the remaining sections.

4 MODELING AND SIMULATION

As stated earlier, simulation is used to validate the
design models with respect to the requirements
specifications, and to evaluate design alternatives.

An experimental frame is a representation of the
environments in which the model resides (Zeigler 1990).
The frame subjects the model to the environment input
stimuli. It records the model responses to the stimuli and
collects data about such responses. Finally, it controls the
experimentation by placing constraints on the model and by
monitoring these constraints.

In practice, the experimental frames consist of a
generator, a transducer and an acceptor. The generator
produces the environment stimuli for the model. The
transducer calculates metrics such as throughput and
turnaround time. The acceptor controls the simulation.

Figure 4 shows a graphical view of a simulation using
experimental frames. Simulation using experimental frames
allows for different conditions of the environment to be
represented. Also, the same experimental frame can be used
for simulation of a different model of the same system
(assuming the model inputs and outputs are unchanged).
This last feature is very important in modeling were
developers might want to evaluate multiple designs to
determine which one is best suited.

Figure 4. Simulation using an Experimental Frame

5 ATLAS

ATLAS, or C/ATLAS – Common/Abbreviated Test
Language for All Systems, is the language chosen to
communicate the test scenarios. Choosing an existing
language saves the time of developing a practical and
unambiguous language. Moreover the use of a standard
language provides the opportunity for additional uses of the
developed test cases. ATLAS is maintained by IEEE
Standard 716-1995. For background information on
ATLAS see IEEE ATLAS 2000 interest group 1997.

The ATLAS procedural statements of interest provides
two statements: APPLY and WAIT FOR. The APPLY
statement indicates which signals should be set and the value
they should be set to. The WAIT FOR has two variations:
WAIT FOR time and WAIT FOR EVENT event MAX-
TIME time. The first one states the time to wait before
performing the next statement while the second one is used
to wait for an event. The time associated with the second
WAIT FOR is used to specify the maximum amount of time
to wait for the specified event. An example of the APPLY
and WAIT FOR statements follow.

C $
C Set up initial input values $
C $
 000301 APPLY, ’BLOCK’, ’OFF’ $
 000302 APPLY, ’RESET’, ’OFF’ $
 000303 APPLY, ’TREF’, ’FALSE’ $
C $
C Start the test scenario $
C $
 000401 WAIT FOR 1 sec $
 000402 APPLY, ’WATERPRESSURE’, 50.0 $
 000403 WAIT FOR EVENT, ’SI_ON’, MAX-TIME 5 sec $
 000404 APPLY, ’WATERPRESSURE’, 150.0 $
 000405 APPLY, ’TESTPRESSURE’, ’UP’ $

6 EXPERIMENTAL FRAME TOOL SET

The experimental frame tool set was developed for the
Statemate modeling tool (Harel 1990). Statemate uses state
charts to design the system and it supports complex reactive
systems. This tool was chosen because of it’s modeling and
simulation capabilities, and because of the popularity of
Statemate in industry.

The experimental frame tool set approach begins with
the design of the system model based on the system
requirements. After the design is complete, the input and
output information is gathered from Statemate and saved
into the data dictionary file. The data dictionary file and the
ATLAS test scenario file are then used to generate the
experimental frames input/output modules and the
simulation input file, a translated version of the test
scenarios. When the input/output modules have been
generated, the input/output modules and the model code are

used to couple the model and the experimental frame for the
simulation. The simulation is then executed using the
simulation input file. During simulation, the input/output
changes are saved.

The experimental frame tool set approach is shown in
Figure 5. The tools are mapped to the approach as follows:
the data dictionary tool implements the “Get I/O Info. from
Statemate”, the preprocess tool implements the “Generate
I/O modules for EF”, and the experimental frame
implements the “Setup EF for simulation”.

Design System

•System RequirementsInputs

Outputs

Get I/O
Info. from Statemate

•Statemate Model
•Code for the model

•Statemate Model

•Data Dictionary File

Generate I/O
modules for EF

•Data Dictionary File
•ATLAS File (Test Scenario)

Setup EF
for Simulation

•Simulation Input File (Test Scenario)
•I/O modules

•I/O modules
•Code for the model

•Coupled EF and Model

Simulation

•Coupled EF and Model
•Simulation Input File

•Simulation Results

Figure 5. Experimental Frame Tool Set Approach

As stated before, the test scenarios are documented
using ATLAS. In selecting ATLAS, time expressions were
evaluated to determine which timing constraints could be
represented. Dasarathy (Dasarathy 1985) classifies timing
constraints into:

Maximum - No more than t amount of time may
elapse between the occurrence of one event and
the occurrence of another.

Minimum - No less than t amount of time must elapse
between these two events.

Durational -An event must occur for t amount of time.

There are four kinds of maximum and minimum timing constraints.
The constraints are:

S-S Combination - time between the occurrence of two
stimuli.

S-R Combination - time between the arrival of a stimuli and
system response

R-S Combination - time between the system response and the
next stimulus from the environment.

R-R Combination - time between two responses.

The current work supports S-S and R-S timing
constraints dynamically while S-R and R-R timing
constraints are supported through post simulation analysis.
S-S and R-S are constraints on the input stimuli (i.e. the
environment) while the S-R and R-R are constraints on the
response from the system.

6.1 Data Dictionary Tool

As mentioned in the previous section, one of the inputs
to the experimental frame is the Statemate model. Before
simulation, the Statemate model is used to generate a list of
all the inputs and outputs, and their types. The advantage of
this method is that it guarantees the experimental frame
input/output modules will interface correctly with the design
model.

In Statemate the inputs and outputs are defined in the
data dictionary. Although Statemate provides a report
generation tool which provides the contents of the data
dictionary, the tool is available only from within the
graphical user interface. Since, the goal of this work is to be
able to automate the experimental frame synthesis, the tool
provided was not ideal. For this reason a new tool was
developed using the Statemate dataport feature. The
dataport feature provides a library of C routines, which can
be used to access the Statemate data for a particular model.
The tool output follows the same format as Statemate’s
report generation tool when the report generation tool is set
to ASCII.

The tool output looks as follows:

SIGNALNAME
Defined in chart: CHART
Type: Data-item
Usage: UsageType
--

6.2 Preprocessing Tool

The preprocessing tool serves a dual purpose. First, it
generates the input and output modules used with the
generic experimental frame. Second, it replaces inputs and
outputs name strings in the test file with numbers. The
purpose of replacing strings with numbers is to decrease the
execution time of the simulation since string comparisons
are much more time consuming than integer comparisons.

The inputs to the preprocessing tool are the ATLAS test
scenario file and the file generated with the data dictionary
tool. The outputs are the preprocessed test file and the input
and output modules of the experimental frame.

When the preprocess tool is executed, it first reads the
data dictionary output file, and then reads the ATLAS test
scenario file. While the tool parses the ATLAS file, it saves
the definition of all the events. It also creates a new file

called preprocessed, which is the file the experimental frame
expects. In this file all strings have been replaced. Before
adding a statement to change an input, the preprocess tool
verifies that the input is defined in Statemate. If it is not
defined in Statemate, it issues an error message. When the
preprocess tool finds a statement commanding the generator
to wait for a particular event, it finds the definition of the
event and it adds it to the preprocessed file. The preprocess
tool also verifies that the signal related to the event and
enumerations in use are in Statemate. Similar to the input
and output signals, the enumeration types inside the ATLAS
file are indexed to remove string comparisons.

After the ATLAS file has been parsed, the preprocess
tool proceeds to generate the input and output modules of
the experimental frame. These modules are contained
within the files io.h and add_to_cbk.h. The contents and
structure of these files are explained in the next section.

6.3 Experimental Frame

The experimental frame developed here connects to the
design model code generated by Statemate for a model using
the hooks put in place by Statemate. The code generated by
Statemate provides a series of user files where code can be
added to supplement the Statemate code. The advantage of
this is that the model as defined within Statemate does not
have to be modified to support simulation with the external
experimental frame. Also, because the experimental frame
code is not physically linked to the model, the same code
can be used with different design models.

While studying Statemate with the idea of a generic
experimental frame, we found that in Statemate, a different
function call must be used for each type of signal. In order
to keep the experimental frame generic and model
independent, the concept of I/O modules was developed and
applied. The I/O modules encapsulate the uniqueness of the
model but provide a common interface to the generator and
the transducer. The generator would then call set_input
from I/O for any input and I/O would determine the type of
the input and call the appropriate Statemate routine. The file
io.h generated by preprocessed contains the I/O modules.

The file io.h contains four types of routines: set_input,
print_xxx, setup_initial_values and enum_map. Print_xxx is
not one but many routines. One for each input and output
from the model. They encapsulate the type of each signal in
order to write it’s value to the simulation output file.
Setup_initial_values initializes the test scenario before the
simulation begins. The information for setting the initial
values is read from the ATLAS file.

Because, the time needed for string comparisons is
longer than the time for integer comparisons all the signals
and the enumerations were coded. Set_input contains a

mapping from the coded input to the actual Statemate input.
Similarly, enum_map converts the coded enumeration into
the appropriate enumeration value.

6.3.1 Generator

The generator applies stimuli to the model. The
generator reads the preprocessed file and determines
whether the statement read is a WAIT FOR or APPLY. If
the statement is an APPLY, the generator invokes set_input.
If the statement is a WAIT FOR time, the generator waits
until the time has elapsed before reading and executing the
next statement. If the statement is a WAIT FOR event
MAX-TIME time, the generator waits until the event has
occurred or the time has elapsed before reading and
executing the next statement.

To wait for an event, the generator uses the Statemate
callback feature. A callback binds a procedure to a signal.
Every time the signal changes value the routine gets
executed. This routine sets a flag the generator can see
when the flag is set, the generator compares the value of the
signal against the event definition. If the criteria for the
event is met or the time indicated has elapsed, the generator
proceeds to the next statement.

6.3.2 Acceptor

The acceptor controls the simulation. In essence the
simulation control is based on the contents of the test
scenario file. The file indicates when to apply the stimuli
and when to wait. The simulation is terminated when the
last statement in the preprocessed file has been executed.
Therefore, is recommended that there is a WAIT FOR
statement at the end of the test scenario. Ending on a WAIT
FOR with an appropriate duration allows the simulation to
continue long enough track changes to the system based on
the last APPLY statement.

6.3.3 Transducer

The transducer records the model’s stimuli from the
generator and records the models output response. The data
is time stamped and saved in the simulation output file. The
transducer concept is implemented by a combination of
procedures, the first being set_input. Every time set_input is
called, it writes out which signal is being set and the value it
is being set to. The transducer also relies on the Statemate
callback feature. Each of the print_xxx routines is bound to
the appropriate signal. Every time a signal changes value,
the appropriate print_xxx routine is called, recording the
signal name, the value it changed to, and the time it changed.
The Statemate callback is initialized using the routine
cbk_init contained in the add_to_cbk.h file.

7 EXPERIMENTAL RESULTS

The approach described in this document was tested
using an elevator model. The following sections describe
the model and the results after the execution of the
simulations.

The elevator model represents a simple elevator in a
three story building. At the first floor there is a button to
signal when someone wants to go up. At the second floor
there are two buttons, one to indicate someone wants to go
up and the other one to indicate someone wants to go down.
The third floor has one button to indicate someone wants to
go down. Inside the elevator there are three buttons, one for
each floor. Also, the elevator has sensors to detect when it
arrives to a floor.

For the test scenario, the elevator is assumed to be
stationary in the first floor and no one has pressed an
elevator button. When the simulation starts, someone on the
second floor requests the elevator to go up. Shortly after the
elevator is going up, a new request is received from the first
floor. When the elevator doors open, the person climbs into
the elevator and request the third floor.

A portion of the ATLAS file for the scenario is shown
below.

...
C $
C Start the test scenario $
C $
 000401 WAIT FOR, 0 sec $
 000402 APPLY, ’FLOOR_REQUESTS.FLOOR_2_UP’, 1 $
 000403 WAIT FOR EVENT, ’GOING_UP’, MAX-TIME 2 sec $
 000404 APPLY, ’FLOOR_REQUESTS.FLOOR_1_UP’, 1 $
 000405 WAIT FOR EVENT, ’AT_2_FLOOR’, MAX-TIME 5 SEC $
 000406 WAIT FOR EVENT, ’DOOR_OPENED’, MAX-TIME 2.2 sec $
 000407 APPLY, ’RIDER_REQUESTS.FLOOR_3_REQUEST’, 1 $
 000408 WAIT FOR EVENT, ’AT_1_FLOOR’, MAX-TIME 20 sec $
 000409 WAIT FOR EVENT, ’STOPPED’, MAX-TIME 2 sec $

A sample portion of the data dictionary tool output follows.

DIRECTION
Defined in chart: ELEVATOR
Definition: {UP,DOWN,STATIONARY}
Data type: Enum-type

CUR_FLOOR
Defined in chart: ELEVATOR_ACTIVITIES
Usage: Variable
Data type: Integer min=1 max=3

CURRENT_DIRECTION
Defined in chart: ELEVATOR_CONTROL
Usage: Variable
Data type: DIRECTION

The final simulation output is shown below:

Begin Simulation @ 0.703660
DELAY_TIME = 7 @ 0.704757
CURRENT_DIRECTION = 2 @ 0.704850
CUR_FLOOR = 1 @ 0.704872
-> FLOOR_REQUESTS.FLOOR_2_UP 1 @ 0.705744
FLOOR_REQUESTS.FLOOR_2_UP = 1.000000 @ 0.706162
GO_UP = 1.000000 @ 0.706298
CURRENT_DIRECTION = 0 @ 0.706332
GOING_UP = 1.000000 @ 0.706605
-> FLOOR_REQUESTS.FLOOR_1_UP 1 @ 0.706850
FLOOR_REQUESTS.FLOOR_1_UP = 1.000000 @ 0.707035
AT_FLOOR = 1.000000 @ 3.706632
CUR_FLOOR = 2 @ 3.706783
FLOOR_REQUESTS.FLOOR_2_UP = 0.000000 @ 3.707107
GOING_UP = 0.000000 @ 3.707144
DOORS_OPEN = 1.000000 @ 3.707540
-> RIDER_REQUESTS.FLOOR_3_REQUEST 1 @ 3.707999
RIDER_REQUESTS.FLOOR_3_REQUEST = 1.000000 @ 3.708435
GO_UP = 1.000000 @ 3.708585
DOORS_OPEN = 0.000000 @ 3.708767
GOING_UP = 1.000000 @ 3.708794
AT_FLOOR = 1.000000 @ 6.708878
CUR_FLOOR = 3 @ 6.709041
RIDER_REQUESTS.FLOOR_3_REQUEST = 0.000000 @ 6.709160
GOING_UP = 0.000000 @ 6.709189
CURRENT_DIRECTION = 1 @ 6.709235
DOORS_OPEN = 1.000000 @ 6.709400
DELAY_TIME = 6 @ 7.709719
DELAY_TIME = 5 @ 8.710001
DELAY_TIME = 4 @ 9.710282
DELAY_TIME = 3 @ 10.710586
DELAY_TIME = 2 @ 11.710890
DELAY_TIME = 1 @ 12.711199
DELAY_TIME = 0 @ 13.711507
DOORS_OPEN = 0.000000 @ 14.711752
CURRENT_DIRECTION = 2 @ 14.711782
GO_DOWN = 1.000000 @ 14.711893
CURRENT_DIRECTION = 1 @ 14.711927
GOING_DOWN = 1.000000 @ 14.712093
AT_FLOOR = 1.000000 @ 17.712219
CUR_FLOOR = 2 @ 17.712366
GO_DOWN = 1.000000 @ 17.712482
AT_FLOOR = 1.000000 @ 20.712736
CUR_FLOOR = 1 @ 20.712885
FLOOR_REQUESTS.FLOOR_1_UP = 0.000000 @ 20.713247
GOING_DOWN = 0.000000 @ 20.713284
CURRENT_DIRECTION = 0 @ 20.713329
DELAY_TIME = 7 @ 20.713785
DOORS_OPEN = 1.000000 @ 20.713818
CURRENT_DIRECTION = 2 @ 20.713846
End of Simulation Reached @ 20.715369

 The output of the scenario shows the responses of the
elevator to the floor requests in the test scenario. It also
shows the delay time associated with the elevator and the
current position of the elevator in the simulation.

8 CONCLUSIONS

The approach and the tools developed here demonstrate
automatic validation for embedded systems is possible. This
approach provides a new technique for the design of
embedded systems, and can save the industry significant

time and money since many hardware/software
incompatibilities can be discovered early in the design cycle.

Although model-based codesign is the foundation for
this work, the approach demonstrated can be applied not
only to model-based codesign but also to any model-based
method (Evans 1995). However, in order for this approach
to work, test scenarios must be developed in an
unambiguous language such as ATLAS.

Even though the work here uses Statemate, the same
ideas can be applied to other modeling environments.
Statemate was chosen because of it’s modeling and
simulation capabilities in order to prove the viability of our
approach.

REFERENCES

Buchenrieder, K. and J. W. Rozenblit. 1995. “Codesign: An
Overview”, in Codesign: Computer-Aided Software Hardware
Engineering, J. W. Rozenblit and K. Buchenrieder, Eds., IEEE
Press, New York, 1-15.

Butler, R. W. 1996. “An Introduction to Requirements Capture
Using PVS: Specification of a Simple Autopilot.” May 1996,
National Aeronautics and Space Administration, Langley Research
Center, Hampton, VA.

Cunning, S. J. and J. W. Rozenblit. 1999. “Test Scenario
Generation from a Structured Requirements Specification.”
Proceedings of the 1999 IEEE Conference and Workshop on
Engineering of Computer Based Systems (ECBS’99), Nashville,
TN, March 7-12, 166-172.

Cunning, S. J.; T. C. Ewing; J. T. Olson; J. W. Rozenblit; S.
Schulz. 1999. “Towards an Integrated, Model-Based Codesign
Environment.” Proceedings of the IEEE Conference and
Workshop on Engineering of Computer Based Systems (ECBS
‘99), Nashville, TN, March 7-12, 136-143.

Dasarathy, B. 1985. “Timing Constraints of Real-Time Systems:
Constructs for Expressing Them, Methods of Validating Them.”
IEEE Transactions on Software Engineering, Vol. SE-11, No. 1
(January): 80-86.

Davis, A. 1982. “The Design of a Family of Application-Oriented
Requirements Languages." IEEE Computer 15 (May), 21-28.

Evans, D. G. and D. Morris. 1995. “Applying Modeling to
Embedded Computer Systems Design.” In Codesign: Computer-
Aided Software Hardware Engineering, J. W. Rozenblit and K.
Buchenrieder, Eds., IEEE Press, New York, 98-116.

Harel, D. 1990. "STATEMATE: A Working Environment for the
Development of Complex Reactive Systems." IEEE Transactions
on Software Engineering, 16(4), 403-414.

Heitmeyer, C. L.; R. D. Jeffords; B. G. Labaw. 1996. “Automated
Consistency Checking of Requirements Specifications.” ACM

Transactions on Software Engineering and Methodology, 5(3),
(July), 231-261.

Zeigler, B. P. 1990. “Object-Oriented Simulation with
Hierarchical, Modular Models Intelligent Agents and
Endomorphic Systems”, Academic Press, Inc., California.

IEEE ATLAS 2000 interest group. 1997. “ATLAS 2000
Introductory Guide.” Rev. B, 13 February.

