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1 Introduction 

Intelligent agents are a new paradigm for developing 
complex system applications. The most powerful 
tools for handling complexity in system develop- 
ment are modularity and abstraction. Agents repre- 
sent a powerll tool for making systems modular. 
Industrial application of agent technology were 
among the first to be developed, in such domain as 
process control, manufacturing and robotic systems. 
The agent systems are based on autonomous soft- 
ware-hardware components (technical agents) that 
cooperate within an environment to perform some 
task. An agent can be viewed as a self-contained, 
concurrently executing thread of control that encap- 
sulates some states and communicates with its envi- 
ronment and possibly other agents via some sort of 
message passing. 
The environment may contain other agents whose 
environments are disjoint with or only partially 
overlap with the environment of a given agent. In 
this paper we present the conflict management prob- 
lem in a multiagent robotic system. The multiagent 
robotic system consists of the group of autonomous 
agents on the first (lower) level of its hierarchy, and 
the management agents on the second (upper) level 
of the hierarchy [ 1,2,6,7,8]. 
A multiagent system has a hierarchal structure. 
This system is the group of cooperating agents co- 
ordinated by two managers, the contract and conflict 
managers. On the lower level, the robotic system 
consists of a group of independently acting robotic 
agents. Each of the robotic agents is under control of 
an intelligent software subagent. The intelligence of 
the software agents comes from the ability to solve 
subproblems locally and to propose a global solution 
as a result of communication andor interactions . 

between different agents. This group of agents con- 
stitutes the lower level of the multi-agent robotic 
system, i.e. the operating level [4,6]. 
The main goal of a multiagent system is to solve a 
common task that is split up into several subtasks, 
which in turn are distributed to the individual ro- 
botic agents by the contract manager. Task distribu- 
tion on the one side and task execution on the other 
side require two additional agents for cooperation 
and negotiation. 
The contract management agent considers task dis- 
tribution when a new job enters the system. The 
contract manager has to direct autonomous agents 
by specifying individual goals (subtasks) for each of 
them [11,12,13,14]. 
The conflict management agent is responsible coop- 
eration and negotiation while each agent performs 
its assigned subtask. As the individual behavior of 
all robotic agents involved in task achievement can- 
not be predicted in advance, the goals of two or 
more robotic agents can be in direct conflict with 
one another and a given task might not be com- 
pleted. In order to resolve a conflict situation, a ne- 
gotiation process among all conflict parties has to 
take place. The result of the negotiation should be a 
solution that results in goal achievement for all in- 
volved agents. 
Contract manager and conflict manager together 
form the management level, the higher level of the 
multi-agent system. 
In this paper we focus on the second unit of conflict 
management methods in a robotic system and pre- 
sent solutions for detecting and resolving conflicts 
between two or more robotic agents [3,4,5,6]. A 
multi-agent robotic system is presented in Fig. 1. 
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2 Robotic Agent The intermediate local planning layer, i.e. the action 
planning component, implements local goal-directed 
behavior. This layer operates with mental and plant 
models of the knowledge base. 
The topmost cooperative p l a m g  layer, i.e. the 
negotiation and communication component, enables 
the agent to plan or to cooperate with other agents 111 
order to resolve conflicts, as well as to acheve mul- 
tiagent plans. This layer operates with the social 
model of the knowledge base. 
All layers work asynchronously with different mod- 
els 111 the agent's knowledge base. The structure of 
the robotic agent is presented in Fig. 2. 

A robotic agent consists of many components that 
are grouped in a layered architecture. This architec- 
ture comprises four layers: the action execution 
layer (hardware component), the behavior-based 
layer (safety protection component), the planning 

Management level 

Fig. 1: Components of a multiagent system 

layer (action planning component), and the coop- 
erative planning layer (negotiation and communica- 
tion component) [4,6,9]. In this article we focus our 
presentation on robotic agents whose hardware 
components are represented by sensor-equipped 
robots. Each agent has a knowledge base, which is a 
set of models and methods needed for decision- 
making. 
The typical knowledge base contains different mod- 
els and their formal representations: a world model, 
a social model, a mental and a self-model. The 
world model represents knowledge about the sur- 
rounding environments of an agent, the social model 
represents knowledge about other agent acting in the 
system, the mental model represents the knowledge 
about the reactive behavior and risks associated with 
actions, and the self model contains the knowledge 
about construction, properties and structure of the 
agent's hardware component, for example a robot's 
manipulator. 
The reactive part of the agent is implemented by the 
behavior-based layer, i.e. the safety protection com- 
ponent, which contains a set of situation-action 
rules. These describe the agent's reactive skills for 
implementing fast situation recognition in order to 
react to time-critical situations. Thls component 
operates with the world model of the knowledge 
base and sensor signals from the hardware compo- 
nent. 

I I  
I 1 1 

Perceptlon I Communicatm . I Action 

Fig. 2: Structure of a robotic agent 

2.1 Social model: 
This model contains knowledge about negotiation 
protocols and joint planning, as well as knowledge 
about the other agents in the environment. 

2.2 Mental model: 
For safe realization of the preplanned action, we 
propose installing a security zone that determines 
the safe distance between an agent and dynamic 
obstacles. When a dynamic obstacle or other agent 
penetrates the security zone, a conflict i s  recognized 
and the rules of the mental model can be used to 
determine the new goal-directed behavior. The men- 
tal model of the agent contains the knowledge nec- 
essary for decision making when a new object is 
recognized inside the security zone. This model can 
be presented in form of simple rules as .follows. 
Case A: Agent realizes its goal and is not in con- 

jlict. 
IF the agent's current position is not in conflict with 
other agents and the agent realizes its goal THEN 
the action planning algorithm, as well as the current 
behavior, should not be changed. 
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Case B: Agent realizes its goal and a conflict with 
other agents are recognized. 
IF the agent’s current position is in conflict with one 
or more agent(s) and the agent realizes its goal 
THEN based on negotiation with the other agent, the 
distance to the other agent(s) should be increased 
and the distance to the goal decreased. The degree 
of importance of the first or second criterion is de- 
pends on the priority of the current action. 
Case C: Agent does not realize its goal. 
IF the agent does not realize its goal THEN the 
agent should always increase the distance to other 
agents. 
Such a model is easy to implement in the action- 
planning component. 

2.3 World model: 
The knowledge represented here is the geometrical 
model of the robotic agent environment [9,10]. 
Many different methods can be used for geometrical 
representation of the agent service space. The model 
is modified based on sensor data. Depending on the 
amount of knowledge, different plant and world 
models can be used in the negotiation and coordina- 
tion process. If only partial knowledge about the 
environment is available, the method is called nego- 
tiation among concurrently acting agents. If full 
knowledge is available, the method is called syn- 
chronized negotiation. 
2.4 Plant-model: Model of the agent‘s hardware 
component: 
The plant model contains the knowledge about con- 
struction, properties and structure of the hardware 
component of the agent. Here, knowledge of the 
kinematical properties of the robotic agent is pro- 
vided in order to decide about collision avoidance 
mode and avoidance path. Therefore, the forward 
and the inverse kinematics models of the robot 
should be known. These models can be created in 
different ways using various formal tools, e.g. sym- 
bolically computed models, numerical models or 
neural network-based models [9]. Depending on the 
amount of knowledge, different models of plant can 
be used for action planning. If we have only partial 
knowledge about the surrounding environment we 
can apply the learning-based neural network model 
of agent actor (robot). If we have N1 knowledge 
about the static environment we can use a finite state 
machine model of agent actor based on the discreti- 
zation of the actor’s joint space. The complete for- 
mal explanation of the FSM model of agent kine- 
matics is presented in [9,10]. 

3 Goals of Multiagent Robotic System 

The behavior of the multiagent system can be de. 
scribed as the set of actions performed by each indi- 
vidual agent. Each agent follows its specific goal. 
Different dependencies can occur between the goals 
of agents in a multiagent system. The set of all goals 
can change over time. Robotic agents should realize 
different manipulator motions to achieve the com- 
mon goal of the system. On the management level 
of an intelligent robotic system, the jobs are decom- 
posed into the several motions and the contract 
manager decides which robotic agent should execute 
which motion. The contract manager assigns the 
final position of motion to each agent, so that they 
can realize a job from the current task [9]. 
At each time instance, these final positions consti- 
tute the goal set of the system. The principal task of 
the intelligent robotic agent is the execution of a 
given path of movement so that the robot action 
does not result in a collision with dynamical objects, 
such as the other robotic agents. The problem of 
finding a safe motion for all active agents is a reach- 
ability problem: how to get from the set of start 
states to the set of goal states. The problem can be 
stated as: 
Find the sequence of global states and sequence of 
global inputs such that the last state achieves the 
$nalposition and all the states are feasible. 
Not all configurations of agents can be feasible. We 
say that the configuration (state) is collision-pee if it 
does not collide with any static obstacle in the world 

To test this condition, we have to have full knowl- 
edge about the surrounding static world, i.e., the 
geometrical model of the agent’s environment is 
completely known. Collision freeness does not de- 
termine if there is a collision with a dynamic obsta- 
cle, such as another agent. A conflict between two 
agents occurs if the distance between the agents is 
less than the security zone. We call a configuration 
feasible if it is collision and conflict free. 

[91. 

4 Local Planning Layer 

In order to solve this complex reachability problem, 
we are going to sequentially apply a graph searching 
procedure to the state transition graph of global state 
set, which is the Cartesian product of the state sets 
of each agent. 
Expanding the current state with the state transition 
function, then the successors of the current state etc. 
ad infinitum makes explicit the state transition graph 
that is implicitly defined by the current state and the 
transition function. As evaluation function we can 
use the weighted sum of the cost functions. 
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Using the standard A* procedure we can find the 
state trajectory (if it exists) from the current state to 
the goal state consisting only of feasible states. 
Let each agent's manipulator has n-DOF. With joint 
space discretisation the number of successors grows 
exponentially with n. Thus, it becomes essential to 
quickly check for the non-repeatability of the nodes 
generated, and their feasibility. 
If there is a conflict between different agents, the 
goal state set can be empty. In this case, there is no 
solution to the reachability problem [ 6,9]. 
To avoid this situation, we propose the decomposi- 
tion of the global search problem into sequential 
searches for each agent separately. This means that 
an unachevable simultaneous solution will be re- 
placed by a sequence of partial solutions that can be 
achieved one after another. 
Depending on the knowledge level, different plant 
and world models can be used to perform the nego- 
tiation and synchronization process among agents. 
4.1 M-step delay - sequential synchronization of 
agent group action 
We show how the f i t e  state machine model of 
agent behavior can be applied to solve the conflict 
avoidance problem by replacing the concurrent 
planning and realization of agent group actions with 
sequential one-step communication, planning and 
action realization. 
A round-robin procedure for time synchronization 
of agent action leads to the concurrent realization of 
actions with M-step delay and to a solution of the 
conflict avoidance problem by using the sequence of 
time-synchronized partial solution. Based on the 
current state of the job queues and messages from 
agents in the last full activity cycle, the conflict 
manager prepares the ordered list of agents and es- 
tablishes security zones, goals of motions, and the 
priority levels of agent actions. These priorities will 
the basis for the coordination in case of conflict be- 
tween agents. 
4.2 Action planning and action execution component 
individual agents 
The task of the motion-planning component is to 
plan the safe configuration of the robot's manipula- 
tor based on information coming from the conflict 
manager, the safety protection component, and the 
world model. To realize this task, the component 
calculates the changes of robot configuration to 
avoid the obstacle in the best possible way. The ac- 
tion planning process of an agent activated by con- 
flict manager, which sends a message including the 
agent's goal position and priority level, its security 
zone and its status (free or busy). 

The action planner of the agent generates the new 
movement based on mental model rules in the fol- 
lowing steps: 
step 1 The action planner requests the current posi- 
tions of other agents in the common environment, 
step 2 based on the positions of other agent, its own 
status and the message from the safety protection 
component, the action planner recognizes its own 
situation and establishes the parameters for the mo- 
tion search algorithm, such as type of evaluation 
function and type of feasibility testing function. 

Agent is busy and is not in conflict: 
If the agent's position is not in conflict with 
other agents and its status is busy, then the 
evaluation function is in standard form, i.e. it is 
the sum of the cost function and a heuristic 
function. The configuration is feasible if is col- 
lision and conflict free. 
Agent is busy and is in conflict: 
If the agent's position is in conflict with one or 
more of the other agents and its status is busy, 
then the evaluation function is the sum of a 
negative distance function and a situation de- 
pendent heuristic function with weight value 
equal to the priority level. After evaluation the 
configuration is feasible if is collision free and 
only is not in direct conflict with other agents. 
Agent is free: 
If the agent status is free, then the evaluation 
function is always the negative distance func- 
tion. The configuration is feasible if is collision 
free and not in direct conflict with other 
agents. 

step 3 Action planner starts the state-graph search- 
ing algorithm A* from its current position with pre- 
viously established evaluation and feasibility testing 
functions. 
The searching stops if the goal position is reached or 
if the OPEN set is empty or if the OPEN set has 
more than a given number of elements. To calculate 
the successor set, the planner uses the FSM model 
of the agent's hardware component. 
step 4 The temporary path of motion is calculated. 
Depending on the length and conflict freeness, the 
new configuration of motion is chosen and realized. 
step 5 The new current state (configuration) is ana- 
lyzed and a message is send to the conflict manager. 
The message includes the information whether the 
agent has achieved its goal andor if a conflict oc- 
curs and/or if the agent is in a deadlock position. 
By sending the message, the agent ends his activity 
cycle and waits for a new command from the con- 
flict manager. The flow of action planning is pre- 
sented in Fig. 3. 
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Fig. 3: Action planning in an intelligent agent 

Case 
1 
1 
2 

5 Conflict Manager 

Priority Agent Length Time Energy ~ 

optimal 1 1,8m 2,l,sec 119,7J 
optimal 2 2,1 m 1,9 sec 206,8 J 
Agentl 1 1,9m 3,I sec 156,5 J 

The conflict manager activates each agent sequen- 
tially. He sends an activation message to each agent 
and waits for an answer message. After a 111 cycle 
through the list of agents, the conflict manager cal- 
culates the priorities that are used to sort the agent 
list. 
The priority calculation is based on the following 
factors. 
Generalpriority of task 
This information can be obtained from the agent's 
task description, where the resulting priority factor 
is independent of the current state of the agent [9]. A 
temporary priority factor must also be specified. 
This factor depends on 

the current distance to finish position d, 
the rest duration of the motion t, 
the current delay of the motion m 

o 
o 
o 

To determine a temporary priority we use a fuzzy 
decision system. As input to the system we use the 
priority factors presented above. 
These input values are not a fuzzy set, but indicate 
crisp values. Therefore they first have to be fuzzi- 
fied. The same linguistic values can be assigned for 
each parameter: small (S), medium (M) and large 
(L). For each term a trapezoid-shaped membership 
function is used to cover the whole domain. 
We consider fuzzy decision rules with four inputs - 
(d,t,m) - and one output temporary priority. Some 
examples of fuzzy rules are listed below. 
R-1: ifd is Sand t is Sand m is path preference 
thenpriority is L 
R-2: ifd is S and t is Sand m is advance then prior- 
ity is M 

winner 
Agentl 
winner 

2 

R-3: if d b S and t is M and m is advance then pri- 
ority is S 
The antecedents are compared with the input values 
of the fuzzy decision system so that it can be de- 
cided which rules can be used, and with which firing 
strength (amount of influence). This strength de- 
pends on how much the input values and the prem- 
ises of the rule correspond to one another. The rules 
can be fired according to the fbzzification interface, 
each with a particular strength. The conclusion of a 
particular rule influences the general conclusion of 
the system. The result of this is a set of "cut ofr' 
f b n y  sets. They are combined using the union func- 
tion and passed to the defuzzification interface to 
determine one single crisp value that summarizes 
this output fbzzy set. For this, we use the center-of- 
gravity method. 
Based on these new priorities, the conflict manager 
establishes the new security zones. The agent list is 
then sorted with increasing agent priority. 

2 4,6 m 6,2 sec 351,7J 

6 Example 

Let the agent group contain two agents acting in a 
common workspace. For the configuration shown in 
Fig. 4a), there does not exist a global solution, i.e. 
the agents do not achieve their final positions. We 
can start with different priorities. If we assume that 
agent 1 has the higher priority than agent 2, then the 
conflict manager allows the first agent to realize its 
motion and after reaching its goal position, the sec- 
ond agent obtains the greater priority and achieves 
its goal. This sequence of goal achievements is 
shown in Fig. 4 b), c), and d). Time, energy and 
length of motion trajectories are presented bellow. 

Case 1 presented parameters of motion for optimal 
trajectories, calculated separately for both agent. 
Case 2 - agent 2 subordinated, shown the parameters 
of trajectories from start position to the goal position 
for both agent. 
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a) Conflict between the goal states 

c) Sequential search: 
Agent 1 achieves the goal 

b) Sequential search: Agent 1 winner 
Conflict dedection (zone 600 mm) 

d) Sequential search: 
Agent 2 achieves the goal 

Fig. 4: Conflict management 

2. Cohen, P. and Levesque, H., Communicative Ac- 
tions for Artificial Agents, Proceedings of the First 
International Conference on Multiagent Systems, 
San Francisco, Cambridge, AAAI Press, 1995. 
3. Jacak W., Proell K., Multiagent Approach to in- 
telligent control of robot, Robotics and Applications 
RA99, IASTED International Conference, Santa 
Barbara, USA; 1999 
4. Jacak W., Proell K., Multiagent based intelligent 
control and internal communication in an autono- 
mous system, SCI'99 and ISAS'99, World multi- 
conference on systemics, cybernetics and informat- 
ics, 1999. 
5. Jacak W., Proell K., Multiagent Approach to In- 
telligent Control of Robot, Lecture Notes in Com- 
puter Science, No. 1789,2000. 
6. Jacak W., 'Proell K. S. Dreiseitl, FSM Theory 
based Conflict Management in Multiagent System, 
EUROCAST'2001, Las Palmas; Spain, 2001 
7. Brenner W., Zarnekow R., Wittig H., Intelligent 
Sofware Agents, Springer-Verlag, 1998 
8. Haddadi A., Communication and Cooperation in 
Agent Systems, Springer Verlag, 1995 

9. Jacak W., Intelligent Robotic Systems, Kluwer 
AcademicFlenum Publishers, 1999 
10. Latombe J.C. Robot motion planning, Kluwer 
Academic Pub., Boston, Dordrecht, 1991. 
1 1. Sandholm, T. Automated Negotiation Commu- 
nications of the ACM 42(3), 1999. 
12. Sandholm T. Distributed Rational Decision 
Making, Multiagent Systems: A Modem Introduc- 
tion to Distributed Artijkial Intelligence, Weiss G., 
ed., MIT Press, 1999. 
13. Andersson M. and Sandholm, T. Sequencing of 
Contract Types for Anytime Task Reallocation. In 
Agent-Mediated Electronic Trading, Carles Sierra 
(ed.). Lecture Notes in Artificial Intelligence 1571, 
1999. 
14. Sandholm T., Sikka, S. and Norden, S. Algo- 
ri thms for Optimizing Leveled Commitment Con- 
tracts. International Joint Conference on Artificial 
Intelligence (IJCAI), Stockholm, Sweden 1999. 

1598 


