TRANSACTIONS

of the Society for Computer Simulation International

VoruMe 15 Numeer 4 Decemaer 1998

139 An Agent-Based Framework for Visual-Interactive Ecosystem
Simulations

André M.C. Campos and David R.C. Hill

153 Context-Based Representation Of Intelligent Behavior In Training
Simulations

Avelino J. Gonzalez and Robert Ahlers

167 Model-Based Workcell Task Planning and Control
Witold Jacak and Jerzy Rozenblit

181 Hierarchical Testing of Dynamic Structure Models; A Practical
Approach

Fernando J. Barros

Model-Based Workcell Task Planning and Control

Witold Jacak® and Jerzy Rozenblit**

* Johannes Kepler University, Institute of Systems Science, A-4040 Linz, Austria;
** Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona, USA

A framework for the design of a model-based control system for flexible manufacturing is presented in this
paper. The system consists of three basic layers: the Task Planning, the Task-Level Programming, and the
Simulation layer. Task planning is based on the description of operations and their precedence relation. The
resulting fundamental plan describes the decomposition of a manufacturing task into an ordered sequence of
robot actions. The implementation of the plan is carried out using a task-level programming approach in
which the detailed paths and trajectories, gross and fine motion, grasping, and sensing instructions, are
specified. Plan sequences are verified by using a simulation modeling approach based on hierarchical, modu-

lar discrete-event system specifications.

Keywords: Flexible manufacturing, discrete-event simulation, task planning, hierarchical control

Part I. Task Planning
1. Introduction

In recent years, the use of programmable and flexible systems
has enabled partial or complete automation of machining and
assembly of products. The economic importance of manufac-
turing has led to extensive efforts to improve the efficiency and
cost effectiveness of antomated production systems. More sys-
tematic approaches to the design and planning of such systems
are needed to further enhance performance and to enable their
cost-effective, real-world implementations.
Design of intelligent robotic systems, robotic assemblies, and
intelligent, flexible manufacturing systems (FMS) uses concepts
from different disciplines of science and engineering. The main
~ objective in design of such systems is to ensure that they synthe-
size and execute their plans (sequences of actions). Moreover,
advanced systems should be able to execute their plans in both
normal and anomalous situations (which may require replanning).
From the artificial intelligence (AI) standpoint, central is-
sues in plan generation are the system state representation, the
system architecture, and the planning strategies [4, 2, 3, 18]. Al
planning systems use explicit symbolic, logical, or temporal

models of discrete operations to construct sequences of actions -

to achieve specific goals. Planning strategies are dominated by
heuristic methodologies [1, 4].

From the general systems theory point of view, the key is-
sue in design of automated systems is the theory of hierarchical,
intelligent control, The theory is employed to organize, coordi-
nate, and execute an anthropomorphic task with minimum su-
pervision and interaction with a human operator [5, 7]. The
system’s hierarchical architecture is typically designed based
on the rule of increasing intelligence with decreasing precision

Received: February 1997; Revised: April 1998, Accepted: April 1998

TRANSACTIONS of The Society for Computer Simulation Intemational
iS5N 0740-6797/98 ~

Copyright © 1998 The Society for Computer Simulation International
Volume 15, Number 4, pp. 167-180

[6]. In robotic assemblies, the focus is on the development of
automated techniques for plan generation and execution[17, 18].

This paper proposes a hierarchical task and control planner
of an autonomous, flexible machining cell. The planner is de-
signed using systems theory and hierarchical, modutar simula-
tion modeling concepts. A flexible machining cell is selected
because it provides a good abstraction for the application of
our framework to any complex production control problem. The
cell is defined here as a production system composed of CNC-
machines serviced by robots. -

A variety of tasks can be executed on such machines [8].
We specify tasks as partially ordered sets of operations, They
must be executed in order to “manufacture” a part or a system
by employing available workstations (machines) and robots.

In a manufacturing environment, FMSs are generally con-
structed based on a hierarchical control architecture [9, 10]. The
control hierarchy consists of the following levels: (1) facilizy,
(2) cell, and (3) workstation and equipment. The levels in the
control architecture have the following functions:

¢ The facility level implements the manufacturing, engineer-
ing, resource, and task management functions.

¢ The control functions at the cell level are jobs sequencing,
scheduling, material handling, supervision, and coordina-
tion of the physical activities of workstations and robots.

e Machining operations are performed at the workstation level.

The overall architecture of the FMS control system is shown
in Figure 1.

In the architecture depicted in Figure 1, the control mecha-
nisms are established in such a way that the upper-ievel com-
ponents issue commands to their lower-level descendants and
receive feedback upon the completion of command execution
by the descendants. The physical components at each level are
computer systems and control devices, connected by a commu-
nication network, such as a local area network (LAN), with a

Volume 15, No. 4 TRANSACTIONS 167

December TRANSACTIONS 1998

Facility Level of Control

Manufacturing Engineering

Resource and Task Management

o

Task Stalus of Cells
Task

Cell Controller CELL

Planning & Scheduling
Monitoring & Control

Stalus of IStatus of Status of] Trajectories
output gn 1 action of motion
uffer “F:r
Errors Errors
Workstation Robot Workstation
Controller Controller Controller
® @ L]

Contral of Controt of
Machining Motion
Qperations
Machine Robot Machine

Figure 1. Intelligent hierarchical controller of FMS

manufacturing automation protocol (MAP) [9]. Control soft-
ware is a key component in achieving a high degree of FMS
flexibility. _

In the ensuing sections, we propose a design of an intelli-
gent control system of a manufacturing cell, which can plan the
sequence of technological operations and motions of robots
servicing the cell. The system consists of two basic layers: the
Tusk Planning and the Task-Level Programming layer. Task plan-

ning is based on the description of technological operations and -

on their precedence relations. The resulting fundamental plan
describes the decomposition of a manufacturing task into an
ordered sequence of robot and machine actions. The implemen-
tation of the plan is carried out using a task-level programming
approach in which the detailed paths and trajectories, gross and
fine motion, grasping, and sensing instructions are specified.

Thus, this article is organized in a manner that reflects the
two main facets of our problem (i.e., the task planning and task
programming). Part 1 introduces the basic formal terms and the
model of the task planning process. Part II demonstrates how
the discrete event specification (DEVS) [20] is used to model
and simulate the workcell.

2. Basic Notions

We now proceed to define the production system abstractions.
A flexible manufacturing system (FMS) is a set of program-
mable machines (technological devices), D, called workstations
and product stores, M, connected by a flexible material han-
dling facility, R, (e.g., a robot or an automated guided vehicle),
and controlled by a computer network connected to a sensory

168 TRANSACTIONS Volume 15, No. 4

system. An FMS can perform technological operations such as
fabrication, machining, or assembly. All machines and material
handling systems (robots) are highly automated. The groups of
workstations serviced by robots are called cells. Bach worksta-
tion has its own control and programming system.

A workstation (maching) d can have a buffer B(d). Parts are
automatically fed into a machine from the buffer, are machined,
and can be stored in the buffer if necessary. Depending on the
type of a technological operation to be executed, various tool-
ing programs can be used to control the machining process.

We define technological task formally as follows:

Definition 2.1

A task realized by an FMS cell can be represented by a three-
tuple:

Task = (0, <, Q) (1)

where:

() is a finite set of technological operations required to process
parts (e.g., machining, assembly, test, etc.},

<< O x O is a weak-ordering precedence relation such that if
0; < 0y, then the operation 0; must precede the operation o},

o = (¢, o) where 0 © O X D is the device assignment
relation, and 0 © @ X M is the product store assignment
relation.

(0,d) € o denotes that the operation o can be performed
on the workstation d. If (¢, m) € 0, then m is the production
store from the set M where parts can be stored after the opera-
tion o has been completed. '

In this paper, we restrict the analysis to machining processes.
The operation ¢; from the set (7 can be performed by each work-
station d from the set 01(¢;) € D. Furthermore, we assume
that ¢¢1 is a function; i.e., the operation 0; can be performed
only by one workstation d; = a;1(0;). Now, presume addition-
ally that the empty set belongs to the set M. Hence &tp{0;} = §
means that a part after the operation o; is not stored in any pro-
duction store—it remains in the buffer of the machine og(o;).

Each workstation £ € D has its own program for process-
ing a part, This program realizes a technological operation o
from the set a]-l (d). Parts are transferred between machines by
the robots which service the cell. A robot r € R can service
only those machines which are within its service space
Srv_Sp(r) © E3. The set of devices which lie in the robot’s r
service space is denoted by Range(r) < D \ WM. More specifi-
cally, d € Range(r) if all positions of the buffer B(d) (iec.,
buffer of machine d} lie in the service space of r. Moreover, we
assume that for each operation o; there exists a robot r; which
can transfer parts between the workstation d; and stores m; from
the set op(o;), Le.

{d;, m;} € Range(r;)

Based on Range(r), we define the relation f which describes
the transfer of parts after each technological operation:

B<C(OxO)yxR ' 2)

W. Jacak and J. Rozenblit

where;
((0p,0)), 1) e & {dpdj} Range(r)v{m;d;}< Range(r)

In a special case 3 is a partial function, ie.: §: OX O = R.

To automatically generate the cell-control program, we must
first determine the succession of technological operations, Then,
for each robot r servicing the process, a set of cell-state depen-
dent time trajectories of the robot’s motions must be established
for all the operations of a given task:

T, ={g, (s} : Ty = O, s € Cell_States} 3)

where the trajectory ¢,{x) is a function mapping the time inter-
val T, into the joint space (, of the robot r [14, 25]. These
functions realize the transfers of parts between machines of the
cell and, for each part, they ensure that all the operations from
Task are executed in a pre-planned order. In addition, the se-
quence of operations and related robot actions should minimize
the parts mean flow time or other criteria [10].

The problem of intelligent control algorithm synthesis may have
a large number of possible solutions. The solutions can be dif-
ferent with respect to sequences of technological operations,
sequences of sensor-dependent robot actions, geomeiric forms of
amanipulator’s paths, and the dynamics of movements along the
paths. Thus, to reduce the complexity of this problem, we pro-
pose to apply a hierarchical decomposition process to break down
the original problem into two subproblems. This method solves
the cell control program synthesis which we formulate at each
successive level of the cell’s behavioral modeling abstraction.
The proposed control program consists of two layers: the Task-
Level Planning and the Tusk-Level Progranming layer.

Task-Level Planning is carried out based on a description of
the technological operations, a description of the workcell and
its resources such as machines, robots, fixtures, or sensors, and
a description of the precedence relation over the set of opera-
tions. The resulting fundamental cell action plan describes a
decomposition of the task into an ordered sequence of techno-
logical operations called Process. Then, the Process sequence
is transiated into an ordered sequence of robot and machine
actions which are used to realize the task.

The solution is generated as follows: two subproblems are
defined. The first is to find an ordered, feasible sequence of
technological operations which can be transformed directly into
the sequence of robot and machine actions. In the second sub-
problem, we define the set of preconditions for each action,
which guarantee that a deadlock does not occur among the ac-
tions being executed. The fundamental cell-action plan for a
machining task determines the robot’s program required to carry
out this task. Such a program is a sequence of motion, grasp,
and sensor instructions expressed in the Task-Ovriented Robot
Programming Language (TORPL) [22, 23].

The implementation and interpretation of the fundamental
plan is carried out using the task-level programming approach in
which detailed paths and trajectories, gross and fine motion, grasp-
ing and sensing instructions are specified. Variant interpretations
of the plan’s TORPL-instructions result in different realizations
of the robot actions. To create and verify all valid interpretations
of the motion program, we again propose a two-level system.

(Task)

¥

Task Planning Layer

Process Planner
1

Cell’s Actions Planner
|

|
(Fundamental Plan of Cell’s Actions)
1

Control Algorithm Synthesizer

Event-based Simulator
I

Motion Planner
1

(Applicable Program of Cell Control)

Figure 2. Structure of the cell-control synthesizer

The first level is a Discrete-Event Simulator of the manu-
facturing process. The simulator uses the Discrete-Event Sys-
tem Specification (DEVS) {19, 20] formalism to model actions
and technological devices (we define the basic tenets of DEVS
in Section 4). The second level is the Motion Planner [25, 26,
28] employed to specify each individual robot action. The plan-
ner creates variants of collision-free time trajectories of the
manipulator which executes each action. It uses robot-depen-
dent planning techniques and the discrete dynamical system
formalism [28]. The structure of the multilayer system of cell-
control synthesis is shown in Figure 2.

In the ensuing section, we define the two layers of the task
planning system,

3. Task Planning Layer

The task planner is responsible for the first phase of the cell’s
program synthesis, namely, the generation of the fundamental
plan of task realization. The basic problem at this level is the
derivation of an ordered sequence of robot and machine ac-
tions which perform a task. Here, the robot’s model is reduced
to a fundamental action:

Action_ robot(r) = Transfer part Froma To b

which denotes a transfer of a part from a workstation or a store
a to a workstation or a store b, The machine’s activity is repre-
sented by:

Actiorn_ machine(d) = Execute 0o On b

Volume 15, No. 4 TRANSACTIONS 169

December TRANSACTIONS 1998

which is interpreted as the beginning of the execution of an
operation o from the set O on the machine b.

The sequence of robot and machine actions depends directly
on the order of the technological operations of Task. Hence, the
task planning problem can be reduced to the problem of find-
ing a feasible, ordered sequence of technological operations that
minimizes the number of possible deadlock occurrences.

To derive the sequence of operations and, then, the sequence
of actions, we decompose the task planning problem into two
subproblems: the technological process planning problem and
the synthesis of fundamental plan of cell actions problem. These
subproblems are solved by the Task Planning Layer.

3.1 Technological Process Planning

In the process planning phase, we must find an ordered sequence
of technological operations from Task, called process, with a
minimum number of deadlock cases. This problem is related to

operations scheduling [10,14]. To explain it in more detail, we -

introduce some additional notions.

Definition 3.1
An ordered sequence of operations is called a pipeline, sequen-
tial machining process and is denoted as:

Process = (01, 02, ..., OL) 4)

if the following conditions hold:
A. if for two operations o0; and 0; from Task, 0; < 0;, theni <j
B. foreachi =1, .., L—1, there exisisa robot which can trans-

fer a part from machine d; or store m; (assigned to opera-

tion 0;) to machine d;| assigned to operation 041, ie.:

@r e R{(((0;, 0i1),) € B)

A process can be realized by different devices (called re-
sources) tequired by the successive operations from the list
Process. The set of device orderings is called production routes
and is denoted by P. The production route p € P is an ordered
list of resources which has 2L + 1 stages, where L denotes the
length of the list Process. The production route is created on-
line during the execution of the machining operations.

Definition 3.2
The production route is defined as follows:

p=@®H!i=0,1,..,2L) (5}

Such a production route has always 2L + 1 elements. Some of
them may be equal to zero. The “minimal” production route
has a minimum number of production stores m. We denote it as:

Puin = (mo, device(o1), device(0y), ..., device(oL))

where device(o;) = ai{0;) = d; if robot r = B(0;, 0;41) can
transfer parts directly from d; to diyq (ie., {d; div1} ©
Range(r)) and device(0;) = (01(0y), 0,(0))) = (d;, m;) if the
robot can transfer parts from m; to diy.1 only (ie., {m;, dj} C
Range(r) A d; ¢ Range(r)).

Each execution of a process is called a job. A job J is char-
acterized by a production route P, its start time, and two status,

170 TRANSACTIONS Volume 15, No. 4

i.e., a state that the job is (for example, allocated, processing,
completed, waiting for a resource in the production route}.

The production route p has L stages. During the stage I, the
operation 0; is executed and thus the resource (machine)
d; = 01(0;) is required for a finite period of time. After this
interval, if it is not possible to allocate the store m; = O2{0;) to
the process for some waiting time units, the next machine
d;1 = 04{0;41) must be assigned to the process. This alloca-
tion strategy places a higher priority on the allocation of ma-
chines than on the allocation of stores. The process continues
to hold the resource d; or m; and cannot advance to stage { + 1
until the machine d;,1 is allocated to it. This creates a potential
for deadlocks among a set of successive executions of processes
in the cell.

As we have noted before, the process being planned should
minimize the number of deadlock cases. Avoiding deadlock
causes the increase in job waiting time and, consequently, the
increase in the makespan. Therefore, in designing the cell plan-
ning and control algorithm we should carefully examine the dead-
lock avoidance conditions and their effects on the entire process.
A quality criterion of process planning should be defined to
assess how well the algorithm performs. Before we define such
a criterion, a deadlock avoidance procedure is presented [12].

In the workeell considered in this paper, the so-called circu-
lar wait-deadlock among pipeline processes can occur,

Definition 3.3
Circular wait occurs if there is a closed chain of jobs in which
each job is waiting for a machine held by the next job in the
chain [11].

To avoid it, the minimal production Toute, Py, is parti-
tioned into a unique set of Z sublists called zones.

pmin:(zk|k= 11 -'-:Z) . (6)

where every zone has the form z, = (sy, ug) and:

up = (u il i=1,.., I(k)) is the sublist of resources which appear
only once in a production route, i.e., the number of machines
in an unshared zone K. Such resources are called unshared
resources. In addition, if p(i) = p(i+1) and there exists no
p(k) = p(i)(k # i, i + 1), then p(f) and p(i + 1) are unshared
resources, too.

Sp= (sfk 1§ =1, ..., J(k)) is a sublist of resources which are used
more than once in a route, i.e., the number of machines in a
shared zone k.

The sublists 2, and s of the zone zy, are referred to as the
unshared and shared subzones of 7z, respectively.

We now consider a deadlock avoidance algorithm based on
the method described in [12]. The deadlock avoidance algo-
rithms proposed for computer operating systems [11, 12, 13]
are not efficient for pipeline processes. They do not incorporate
the production route information which indicates the specific
order in which resources of a cell must be allocated and de-
allocated to jobs.

A resource allocation policy is a rule for allocating a re-
source to a job. In general, unrestricted allocation of an avail-
able resource required by a job can lead to a deadlock among a

W. Jacak and J. Rozenblit

set of jobs in the system. In other words, a set of waiting jobs
are in an unrestricted deadlock when each is waiting for an un-
available resource which will never become available under any
resource allocation policy. To avoid potential deadlocks, we use
the so-called restricted allocation policy proposed in [12, 13].

A restricted policy is a rule for defining a subset of waiting
jobs for which the resource allocation decision is made. Clearly,
a restriction policy could lead to a condition in which a set of
jobs can never progress even though they are not deadlocked in
the unrestricted sense.

The restricted allocation policy is defined as follows:

Assume that the workstation requested by the process is free.
Then, the policy allows it to be loaded:

A, If the requested waorkstation is unshared and there is at least an
additional free workstation in the entire unshared zone, and

B. None of the workstations is shared and the capacity of each
shared workstation is not at its maximum (i.c., at least one
job can be allocated to it}.

This allocation policy leads to following fact:

Fact 3.1
The circular-wait deadlock can never occur under the restricted
allocation policy described in rules A and B.

We use the above conditions to formulate the planning qual-
ity criterion. Our goal is to optimize the production rate with
respect Lo job waiting times.

Based on [12], another fact (3.2) can be derived. Let zone 7
have n(k} = J(k) + 1 elements. J(k) is the number of shared
machines and 1 denotes all the unshared devices. Assume that
the probability of a machine being completely full is equal to w.

Fact 3.2
The probability that the job will have to wait for processing is
w(l = (1 —w)r(k)-1),

' The more elements (machines) belong to a zone {the subzone
iy, is treated as one element), the higher the probability that a
job will wait for resource allocation. Thus, the production routes
should contain zones with 2 mininum number of elements. The
problem of production route synthesis with a minimum num-
ber of elements in the zones is equivalent fo the problem of
route synthesis with a maximum number of zones,

Now, we can introduce the measure of route quality. Let
Pimin = (g 1 k=1, ..., Z) be the minimal production route of
Process, and zj, = (sk, i) where 1y, = (ukl i=1,...J(k)}is the
unshared subzone and s = (sJ' lj=1,..J(k)) is the shared
subzone. In some cases, the first zone can contain only an
unshared subzone (i.e., Z; = #1) and the last subzone can con-
tain only a shared subzone (i.e., Zzy = 57). By a(k), we denote
the number of elements of the z; zone. If zy = (53, uy), then
n(k) = J(k) + 1; if 23 = uy, then n(k) = 1 and if z; = 5y, then
n(k) = J(k). In addition, if there exist 57 and si*! in subzone s,
such that s} =s i1, then n(k) = (J(k) - 1) + L.

The measure of route quality is defined as follows:

Vpmin) = m2x {n(k) lk=1,..7Z} (N

The function V(ppy,) is used to evaluate the technological
process being planned. Now, we must find a feasible, ordered

sequence of operations from Task which minimizes the func-
tion W(Py:,). This is a permutation problem which may have
more than one solution. To solve it, we proceed as follows: Task
is represented by a directed acyclic graph. Let
ProcessK = (01, 09, .. 0g) (K < L) be asubprocess of Process
and Prfrfr'n =(z; 1k =1, .., ZK) be a subroute of minimal route
Pmin- Then, a backtracking graph search algorithm is applied.
The process planning algorithm (PPA) is defined below:

Form a list START of operations with no predecessors,
i=1l,m=0,vpPi=e
while (START # ¢) {
Remove an operation from START and put it on PATH
BACK_i = START
while (PATH = ¢) {
if (PATH = O (Q is the set of operations)) {
m=m+1
Process_m =PATH, pm =p
Put Process_m on PROCESSES
wpt=v(pr.)
(**) Remove nonoptimal sequences Process from
PROCESSES
} else {
i = j for 0} last operation in PATH
Generate Suc(o;)
if (Suc(o) =
remove 0; from PATH
remove oj from Suc (0-1)
=j-1
contmue

}
if (3q € Suc(oj) & Joj e PATH)(g < op)) {
remove all elements of PATH beginning with o;
remove 07 from Suc{op1)
i=l-1
continue
}
i=i+1
BACKLi = { g € Suclop) | f(q) = min; f (o) }
remove an operation o; from BACK_j
i (f (0) < vopt) {
insert 0; at end of PATH
continue
}

}
Find max index { for which BACK_i # {f

Remove all elements of PATH beginning with o;
}
1

The evaluation function f {g) is calculated as follows: Let PATH
be a list (01,..05). Let ¢ € Suc(o;).

« Create temporarily the subprocess Processi+l = (01, 03, ..,
0j, q). Calculate its production subroute pJ'""] and decom-
pose it into zones (zx 1 k=1, .., Zi+1),

J+l

min

. Zitt} and set f (q) = v(p D.

¢ Calculate the measure of route quality V{p

(ny 1 k=1, ..

) = max;

Volume 15, No. 4 TRANSACTIONS 171

December TRANSACTIONS 1998

The output list PROCESSES in the above procedure con-
tains only feasible, ordered sequences of technological opera-
tions which realize the Task. The PPA algorithm is a graph
search. Tt starts with a set of operations that have no predeces-
sors in the task precedence graph. It then expands a node from
this set to generate partial routes. The best path continues to be
expanded. Should a node be reached on an incomplete path that
has no successor, backtracking occurs.

Fact 3.3

If there exists a production route for a given Task, then the PPA
procedure finds optimal ordered sequences of operations, com-
piited by the function V.

Proof:

Let Prf_)cessj = (01, 02, .., 0j) (j < L) be a subprocess Process
and pJ, = (zx | k=1, Z 7} be a subroute of p,;,. Notice
that V(pmm) < v(pmm) We ehmlnate the subprocess
Process J*1 = (01, 03,.., 05, @} if V{ mm) > V(p;,..), where p*
is a previously obtained optimal route. It is clear that in this
case:

V(Pmin)2 V(p£;3)>'v(pmm)

In step (*¥), the suboptimal solutions are eliminated. [

Each Process from the list PROCESSES determines a dif-
ferent fundamental plan of robot and machine actions, and, re-
spectively, a different law of cell control. To minimize the job
flow time, all variants of the fundamental plan should be tested.

3.2 Fundamental Plan Synthesis

Based on the sequence of operations Process obtained through
task planning, we create a fundamental plan of actions for the
cell’s components, i.e.:

Plan = {Action; 1 i=1, ..., L)

Each Action; consists of three parts which determine:
a. The preconditions of an action,

b. The robot’s motion parameters to execute the ith operation
of Process, and

c. The action execution parameters.

The ith action has the following form:
Action; = [Cond (0,), Transfer (011, 0;), Execute (0;)]

The Cond (0;) segment describes the preconditions which
must be satisfied in order for the operation o; to be executed. It
also establishes the geometric parameters for the robot’s mo-
tion trajectories. The preconditions are formulated as a func-
tion of both the workcell’s and job’s state.

Let i-Br(d) denote the state of the ith position of the work-
station d’s buffer B(d), where 1 < i € Cp(d). This state can be
characterized as follows:

e i—BHd) = (0,()-—the position is free,

* i-Br(d) = (j,0)—the position is occupied by a part before
the operation 0,

172 TRANSACTIONS Volume 15, No. 4

* i-Br{d)=(j,1)The position is occupied by a part after the
operation o;.

Using the above specification, the Cond(o;) segment can be
defined by the following instructions of TORPL:

LOOP FOR({i=1l,...,L}
IF there exists j-Buffer(d(i))=(0,0}

IF there exists k-Buffer(d(i-1})=(i-1,1)
SET Pickup_position=Frame_k-Buffer(d(i-1))
ELSE IF there exists k-Store(m(i-i})=(i-1,1)
SET Pickup_pesition=Frame_k-Store{m({i-1})
ELSE continue LOOP

SET Place_position =Frame_j-Buffer{d{i))

IF PROCEDURE (Deadlock_Av(d(i})=True
BEGIN Transfer & Execution

ELSE IF there exists k-Buffer{d{i-1))=(i-1,1)
IF there exists j-Store{m{i-1)}=(0,0)
SET Pickup position=Frame_k-Buffer(d(i-1))
SET Place_position =Frame_j-Store{m{i-1})
ELSE continue LOGP

ELSE continue LOOP

END LOOF

By d(i) and m{§) we denote the workstation and store assigned
to the operation o}, i.e., d(i) = 0{o;) and m(i) = 0,(0;). The call
PROCEDURE(Deadlock_Av(d(i)) checks to see if the dead-
lock avoidance conditions for device d(f) are satisfied. If they
are satisfied, then the sub-actions Transfer and Execution are
activated. In addition, the geometrical parameters of the Trans-
fer sub-action are established. The parameters indicate the ob-
jects between which Transfer has to be performed. This
sub-action is realized by a robot servicing the workstation 4(i).

The elementary robot actions can be expressed as TORPL
instructions. The instructions may be interpreted in many vari-
ous ways. The basic macro-instructions of TORPL are: MOVE
(EMPTY, HOLDING) TO position, GRASF, PICKUP AT po-
sition, PLACE ON position, WAIT FOR sensor input signal,
INTTIALIZE output signal, OPEN GRIPPER, and CLOSE
GRIPPER [17, 22, 23, 25]. The basic instructions may be com-
bined into higher level macros, e.g., the PICK-AND-PLACE
instruction [25].

In this set of instructions, the action Transfer (o;_y, 0;) is in-
terpreted as the PICK-AND-PLACE part FROM x TO y macro,
where x denotes geometrical data of a workstation’s buffer (store),
and y is the position and orientation of the buffer of the next
workstation. The parameters x and y are determined by segment
Cond(o;), namely, x=Pickup_frame and y= Piace_frame,
This macro-instruction is decomposed into a sequence of more
pritnitive instructions as illustrated below [23, 25, 26];

[PICK-AND-PLACE part FROM x TO y :=]

MOVE EMPTY TO x+v (x=position of buffer of machine d

and v 1s the approach vector)
PICRUP AT % :=
[bagin PICKUP]

CENTER GRIPPER (grasp orientation of effector)
OPEN GRIPPER
MOVE EMPTY FROM x+v T0 X WITH APPROACH = v
CLOSE GRIPPER

W. Jacak and J. Rozenblit

WAIT FOR contact signal with part
MOVE HOLDING FROM x TO x+v WITH DEPARTURE = v
{end PICKUP]

MOVE HOLDING FROM x+v TO y+v {y=position of the nextmachine buffer)
PLACE ON v

[end PICK-AND-PLACE]

The above sequence of instructions is used to synthesize the
robot’s program. The instructions for the action Execute can be
translated into TORPL in a similar manner.

This completes the definition of the fundamental plan of
cell’s actions specified based on the chain of technological op-
erations Process. Given the set Actions we can define the con-
trol process for the robots and workstations. We can also specify
the time trajectories of robot motions for each operation. Each
chain of technological operations from Process generates a dif-
ferent fundamental plan of cell actions and different cell con-
trol algorithms, Each route determines a specific topology of
robot motions tracks, distinct deadlock avoidance conditions,
and a certain job flow time. Therefore, route planning is critical
for problems such as the maximum rate and minimum jobs-in-
process optimization problems.

PART II: Modeling and Simulation

This part demonstrates the application of simulation modeling
concepts to the synthesis of the task level controller. More spe-
cificatly, we show how the DEVS specification is used to maodel
the fundamental cell components and how the overall system
model is built. Then, an example that illustrates the theory-based
concepts is presented.

4. Task Programming Layer—Control Algorithm
Synthesizer

The control algorithm synthesis requires that we introduce condi-
tional instructions which depend on: (a) the states of each ma-
chine d; of the cell (sub-action Cond), and (b) the operational
instructions that realize the actions (segiments Transfer and Ex-
ecute). To minimize the flow time, variants of the fundamental
plan and motion interpretation should be tested by a simulator.

4.1 Workcell Modeling and Simulation
To model the cell, the Discrete-Event System specification
(DEVS) formalism is used [20]. DEVS is a hierarchical, modu-
lar formalism developed by Zeigler [20]. In this formalism one
must specify basic models from which larger ones are built,
and how these models are connected together in a hierarchical
fashion.

Fach workstation d € [is modeled as an atomic DEVS
[24]. Such a model has the following structure:

Devy= (X(@), S(d), Y(d), 8%,,8%,,tad) (&)

int? Text?

where:

X(d) is a set, the external input events
S(d) is a set, the sequential states
¥(d) is the output value set

5{;’1 is a function, the internal transition specification

) e‘f“ is a function, the external transition specification

1g4 is a function, the time advance function
with the following constraints:

a. The total state-set of the system specified by Dev; is:
Od)={(s,Dls€ S(d), 0<t<tad ()}
b. &y is a mapping from S to S:
é‘int 58
c. 8, is a function:
O QXX — 8,
d. fa is amapping from S to the non-negative reals with infin-
ity:
ta:S—R,
e. Aisamapping from S toY:
A:S—>Y

Further explanation of DEVS and its semantics is presented in
[20].

Each workstation d € D can have a buffer. The capacity of
this buffer is denoted by Cp(d). The capacity of a workstation
is equal to C(d) = Cp(d) + 1. If a workstation has no buffer,
then C(d) = 1.

Let NC_Reg(d) (NC programs register) denote the set of
operations performed on the workstation d, i.e.,
NC_Reg(d)={oe Ol oq(o) =d}.

The state set of d is defined by:

S(d) =8Dyx 5By
where SD,; denotes the state set of a machine d and SB de-
notes the state set of its buffer. The state set SDy is defined as:
8Dy = Sfree w Sproc W Scompl
where:

* Spee= {free} signifies that machine is free
* Sproc = {(pre, @) | g € NC_Reg(d)} and (prc, q) signi-

fies that machine is busy processing g-operation

o Scompi={{com, q} | g € NC_Reg(d)} and (com, q) sig-
nifies that machine has completed g-operation and is not
free

The state set of the workstation’s buffer SBy is defined as:
SB;=(0x{0,1,#}) Gfd)
Let Cp(dy=Kand sby=(b;li=1, .., K) € 5By, then:

({0,0) < ithposition of the buffer is free

(0,#) < ithposition of the buffer is reserved for a
b < part being currently processed
i —_

(q,0) ¢ ith position of the buffer is occupied by a
part before operation ¢

\ {q.,1) & ithposition of the buffer is occupied by a
part after operation q

Volume 15, No. 4 TRANSACTIONS 173

December TRANSACTIONS 1998

The state of the workstation’s buffer is described by a vec-
tor whose coordinates specify the current state of each position
in the buffer. We assume that the ith position denotes a location
at which a part is placed in the buffer.

The set of external events for the workstation’s model Devy
~ is defined as follows:

X(d) = {(€4 (g,), €3(g.),) g€ NC_Reg(d A i=1, ., K)
where:

e} (g, i) = PLACE (g, 0) ON i position—signifies that a part
before g operation is placed on ith position of d-workstation’s
buffer

eq (g, i) = PICKUP (g, 1} AT ith position—signifies that a part
after g operation is removed from ith position of d-
workstation’s buffer

£9 = DO NOTHING

Given the state and external event set, we now define the
transition functions. Let s(d) = (sg, (b;1i=1, .., K)) €
SDy x §B ;. Then the internal transition function:

5.0 Sd) - S(d)

is specified as shown in Table 1.

The external transition function dy; for each workstation d
is defined in Table 2.

The time advance function for Devy determines the time
needed to process a part on the dth workstation. It is defined as
follows:

Lets(d) = (53, (B; 1 i =1, .,
{

K)). Then:

T d(g denotes the tooling/assembly time of operation g for the work-
statlon d. 1’{’5 7¢ denotes the loading and unloading times for 4.
The above 1s a complete model of a cell’s workstation.
We can define a model of a production store in a similar man-
ner. The state set of a store m is specified as a vector of states of
each store position, i.e.;

S(m) = (O U {0))Cm)
C(m)) € S(m), then:

where: if 5, = (571 i= 1, ...,

&=

0 & ith position of store is free
g ¢« ith position of store is occupied by a part after

operation g

The set of external events for m is similar to the set of external
events of a workstation.

X(m) = {(e) (g, D) el (g, i),)l ge OAi=1,, C(m)}
where:

e,‘n (g,) = PLACE q ON it position—signifies that a part
after g operation is placed on ith position of m store

e (g, i) = PICKUP g AT ith position—signifies that a part
after ¢ operation is removed from ith position of m store

20 = DO NOTHING

The internal transition 8j is an identity function which can
be omitted. The external transition function &jy; for each store
1t can be defined in the same manner as the function 5€x, The
time advance function for Dev,, is equal to e=. Hence, the event
model of a store is given by:

d =

%@ & 5= PrC) € Sproc Devy = (X(m), Sm), 2%) ©)
tad(s(d)) — T[= Sd =free e Sﬁee R . . .
< AGH) (i = min; {71 b; = (g, 0)) The activation of each machine is caused by an external event
4 J =\ generated by the model of a robot. Such a model is realized by a
5 & sg=(com q) € Scompl N by = (0#) generator associated with the cell’s model. The events gener-
L o< otherwise ' ated by the cell’s robots depend on the states of the workstations
Table 1.

((Com1 CI), (bl: b27 vevy bK))

84, (s(d) =

((prc, q), (bls i bi—l’ (O, #), bi+1s . bK)) =

(free, (bla - bi—l’ (q': 1)3 bi+ls - bK)) =

= §4= (pJ"C, ‘I) = 'Sproc
Sg=free € Spree A

(@) (i =min{jl b;=
sq=(com, q) ANb;=

(¢, 0}
0,4

Fable 2,

Let s(d)=(sq, (b;li=1,.
m d ((s(d), 1), eO)_s(d)

., K)) € SDy % SBy, then

85 ((s(a),), ed (@, D) = (34 B1s - bicts (@ 0), big1s - b)) & b;=(0,0)
exr((s(d) 1), e3(q) = (sa (b1 > bit, (0,0), By, - br)) & bi={(g, 1)
ex; ((),.) = failure for all other states

174 TRANSACTIONS Volume 15, No.4

W. Jacak and J. Rozenblit

d; and a given fundamental plan Process. Thus, we define a
device (called an acceptor) which observes the states of each
workstation. The acceptor is defined as the following discrete
event sysiem [20]:

A = (X4, PROCESSES, Y4, 2A) (10)
where:
Xa={(s, t)l s Sep Nt € Time}
Seept = S(dy) x S(da) x ... X S(dp) X S(my) % ... X S(mpg)

and Time is the time base.

The role of the acceptor is to select the events which will
invoke the robots to service the workstations. Let us define the
set of acceptor outputs as set of subsets of operations, robots,
and position indexes, i.e.:

Y4 < 20RP

where: set ORP = O x R x ((D'U M) X N)2 and N denotes the
set of natural numbers.
Then, the acceptor’s output function is given by:

M : X, X PROCESSES — Y4

and

Aa ((s,1), Process) = {(g. , W, D), (W)
= x| Activ(x, 5) = TRUE A g € Process}

where 5 = (s(d1), 5(d2), ..., s(dp), s(in1), .., s(mpr)).

The predicate Activ(g, s) determines which operaticn from
Process € PROCESSES requires service when the cell’s state
is equal to 5, namely:

For g = o4, € Process and s € S,y the function Activ(g, §)
= TRUE iff one of following conditions holds:

Variant a: &1{op) = v and for s(v} = (5,, by) the jth coordi-
nate by; = (0, 0) and oy(op_1) =w and for s(w) = (5., by}
the ith coordinate by, = (01, 1) and oy, 0x) = r and
conditions of Fact 3.1 for the workstation v are satisfied.

Variant b: ¢;(0p) = v and for s(v) = (5,4, by) the jth coordi-
nate b‘,j = (0, 1) and oq{0p_1) = u and for all coordinates
b,; # (01, 1) and 0p(0g-1) = w and for s(w) the ith coor-
dinate 5,,; = 01 and (011, 0p) = r and conditions of
Fact 3.1 for the workstation v are satisfied.

Variant ¢: ¢j(0p) = w and for s(w) = (s, by,) the ith coordi-
nate b,,; = (0p, 1) and 0(0g41) = ¢ and for all coordinates
by; #(0, 0) and (o) = v and for s(v) the jth coordinate
syj = O and Bop, ops1) = 7.

Activ(g,s) = FALSE for all other cases.

The output of the acceptor can be an empty set or it contains
indexes of only those operations which can execute without
deadlock. Not all the operations can be performed simultane-
ously. Therefore, to select the operations which can be executed
concurrently, we introduce a device called selector. This system
is defined as follows:

SEL = (Y4, RULES, ASel) (1)

where:

* Y4 is the acceptor output set,

e RULES is the set of strategies for operation selection,
o ASel: ¥, X RULES — Y} is the selector output function.

The output function AS¢! acts on the acceptor outputs in fol-
lowing manner: Let S, = A4 ((s, 7), Process) be the current out-
put and:

Sar={(q1xa(w» i)a(v,j))e Saix=r} forre R

denote the set of operations processed by the robot r which are
ready to process. The function AS¢! is defined in two steps:

Internal Selection Rule: Collision Prevention

From the set of operations S, choose a subset for which robot
actions do not result in a collision, i.e.:

Sl tnsset = MSel (AA ((s, 1), Process), Rule_Int)
=u {S,, | r € Robot_Activ}

where Robot_Activ denotes a set of robots whose simultaneous
actions do not lead to collisions, The set is created as follows:

r € Robot_Activ & Sy, # $A- (<r’ € Robot_Active)
(r#r' ASrv_Sp(r) N Srv_Sp(r") =)

By this definition, more than one set of active robots can be gen-
erated. From all possible elements in Robot_Activ, we select one
that has the greatest number of elements. This ensures that a maxi-
mum number of operations will be executed simultaneously.

External Selection Rule: Priority of Operations

For each set S,, where r € Robot_Activ, choose only one op-
eration which has the highest priority, i.e.:

Sol Extsel = M€l (Spf 1rset, Rule_Ext) =
{oper,, | r € Robot_Activ}

where Priority(oper,,) = max{Priority(x) | x e S,,}.

This rule represents an external selection strategy which ap-
plies to the set of all operations waiting to execute. For ex-
ample, the rule can be formulated as “select the operation with
maximum/minimum index in the sequence Process.” A simula-
tor should be able to test different external strategies.

As the selector’s output is the set .S, which contains only
one clement for each robot from Robot_Activ, i.c., S,/ ExtSel
= {opery,}.

To model a robot, we use a generator. The generator re-
ceives the outputs of the acceptor and selector in order to deter-
mine its state. The model of arobot, 7, is defined by the following
DEVS:

Robot, = (S(r), 8, tar, {Zrd}) (12)

The DEVS-model of each robet contains the state set S(r) =
S, % POSITIONS x HS, where:

Volume 15, No.4 TRANSACTIONS 175

December TRANSACTTIONS 1998

+ S, C 2¥4 s the set of subsets of the acceptor output such
that S, C 2Utn), where U(r) = {(g, x, W, 1), m) €
2A ((s, £), Process) t x =r},

« POSITIONS is the set of positions and orientations of the
robot's effector-end in the base-Cartesian space (effector’s
frames),

« [Sis the set of states of the effector, i.e., HS = { Empty,
Holding}

The internal transition function:
67 S(r) — S

is defined as follows: Let s(r) = (s,, k—position, Empty). Then:

s(r} if U(r) =
8(s,;) = | (5,78 i-pos. of w, Holding) if ASel((QA(s,1),
Process)) =
= {(0k$ r, (w, i),
M) =5,

Let s(r) = (s,, i-position, Holding). Then:
S (s(r)) = (s, — Sq, j-pos. of v, Empty)
where ASel (AA((s, 1), Process)) = {(g, r, W, D), (v)} = 5.

Notice that an internal transition can be easily represented
by a sequence of commands in TORPL [22], for example:

MOVE EMPTY FROM frame_k-pos
TO frame_i-pos

PICKUP part AT
frame_i-position

MOVE HCLDING FROM frame_i-pos
T0 frame_j-pos

PLACE part ON
frame_j-position

[of buffer of device w]
[of buffer of device w]
jof buffer of device v}
[of buffer of device v]

The time advance functions determine (a) the sum of the time
of motion to position i and the time of the pickup operation,
Tmotion + Tick- and (b) the sum of motion time from the posi-
tion i to the position j and the time of the place operation on the
vih workstation, Ttion + Tplace for Empty and Holding stafes,
respectively.

The last component of Robot, is the set of functions which
generate external events for workstations and stores.

(Zrg} = {Zyq: S(r) — Xg| d € Device(r)}

where Device(r) = {0(0;) W ta(0)) | Bloj, 0i+ 1)=1rNo;
€ Process) is the set of devices serviced by robot # in process
Process.

The function Z, generates external events for the model of
the workstation d. More specifically, this function is defined as
follows:

For s(r} = (s, k—position, Empty):

o ifs,=@vdzw

Zrg (S (r)) =

el(g) ifd=w

and for 5(r) = (s, i—position, Holding):

176 TRANSACTIONS Volume 15, No. 4

e0 ifd#v
Z(s(r)) =
e}i (g ifd=v
where {(g, r, (W, ©), (, 7))} = ASel (AA ((s, 1), Process))
The tobot’s model also generates external events (i.e.,
PICKUP, and PLACE) for machines Devy, which trigger their
corresponding simulators.
This completes the cell’s discrete-event model specification.
The structure of the event-based model is shown in Figure 3.

5. An Iilustrative Example

In this section we introduce an example of a simple task to il-
lustrate the modeling concepts discussed so far in a real-world
manufacturing context. First, we briefly summarize the notions
of experimental frame and motion planning as they support the
solution to our example.

5.1 Experimental Frame of Cell Model

We separate the model description from a simulation experi-
ment under which the model is observed. A set of circumstances
under which a model is experimented with is called an exper-
mental frame. Zeigler [20] has shown that an experimental frame
can be realized as a coupling of three components: a generator
(supplying a model with an input segment reflecting the etfects
of the external environment upon a model), an acceptor (a de-
vice monitoring a simulation run}, and a transducer (collecting
and processing model output data),

The forms of the fundamental plan Process and selection
strategy ASel determine the cell’s control law. Recall that the
sequence Process is an external data stream of the cell-model
acceptor and that the function ASe¢/ provides input parameters
for the cell-model generator.

The variants of Process obtained from the process planner
and those given by the selection rule should be tested by a simu-
lator. The acceptor and selector produce elementary actions of
robots servicing selected technological operations. The inter-
pretation of these actions is carried out using a motion pro-
gramming approach in which detailed paths and trajectories,
gross and fine motion, grasping and sensing are specified. Vari-
ant interpretations of the motion commands result in different
realizations of a task. To simulate, the system must have the
knowledge of how individual robot actions are carried out in
the process. This knowledge must be available in order to verify
all possible sequences of technological operations from the set
Processes. The most important parameters are the time 77 it
takes to complete an operation o and the time the robot requires
to service a workstation. The time ‘L'; depends on the type of
machine on which the operation o is being executed. It is fixed,
but can be changed by replacing the machine. Similarly, the
times of PICK UP and PLACE operations are determined by
the type of part and machine on which the part is processed.

The times of the robot’s inter-operational moves (transfers),
T?‘o‘i"”, depend on the geometry of the workscene and the cost
function of the robot’s motion. This function determines the
dynamics of motion along the geometric tracks and the dura-
tion of the moves. These data must be accessible in order to
simulate the entire system.

W. Jacak and J. Rozenblit

Device

Magazine
DEV My

Magazine

Device

Magazine
DEV My

DEVI, DEV M,
o —
3
| Event { r[Cell_States
C
Robot| |Robot Robot Acceptor g
1 2 R T
ASel Selector %
Lt 1 2
I
Motion-Times Raule Process
r Experimental Frame J

Figure 3. Structure of discrete-event meodel of a workeell

5.2 Motion Planning

To create all valid interpretations of robot commands, a motion
planner is used for each individual robot action. It creates vari-
ants of collision-free time-trajectories of a manipulator. Such a
planner uses robot-dependent planning techniques. The vari-
ants of motion interpretation obtained from the motion planner
are tested by an event-based simulator.

The motion trajectory planning process is decomposed into
two subproblems: (a) planning of collision-free geometric track
of motion, and (b) planning of the motion dynamics along the
computed track.

The path planner determines the collision-free track of the
motion from the initial to the final effector location (defined by
the acceptor and selector of the cell’s model) based on the geomet-
ric and kinematic description of the robot and its environment.
This problem has been addressed in various ways and is widely
reported in literature 114, 25, 26, 27].

The optimal speed and acceleration of moves along the com-
puted track are computed by the trajectory planner. The trajec-
tory planner receives the geometrical tracks as input and
determines the time history of position, velocity, acceleration,
and input torques, which are then input to the trajectory tracker.
On this level the robet is represented by the manipulator dy-
namics model {29, 30, 31].

Task Planner

I
PROCESSES

Hence we obtain the optimal trajectory and the time of ma-
nipulator transfer moves. The time trajectories of motions are
the basis for computing the times of each elementary action.
For each motion command, we can change the geometry of
movement or change the motion dynamics by selecting criteria
for optimal trajectory planning. Variant interpretations obtained
from the motion planning allow us to test and select the control
law Process which minimizes the makespan. To calculate the
makespan for different sequences of operations and different
selection rules, we use the DEVS simulator, The structure of
the experimental frame is shown in Figure 4,

5.3 Technological Task

Let us consider a technological task Task= (0, <, o), which
consists of the following operations:

0= {01! 02, 03, 04’}

where 01 denotes mitl_1 operation, 0, denotes turn_1 opera-

- tion, o3 denotes mill_2 operation and 04 denotes mill_3 opera-

tion, The precedence relation < is shown in Figure 5.
The workcell on which this task is carried out consists of
two CNC-millers dq, d3 € D, and CNC-lathe dy € D, three

] Cell Layout Model
Robot Kinematic Model

| Routes ‘

| Frames_Table

Path Planner

Path Spline

[Process IMeES

[Experimental Frame |
]

Trajectory Planner

Discrete Event Model
of
Workeell

Robot Dynamic Model

1 Cost Functions

Figure 4. Structure of experimental frame

Volume 15, No.4 TRANSACTIONS 177

Figure 5. Precedence and assignment relations

production stores m1y, fiy, M3 € M, two robots ¥y, 12 € Rand
one feeder conveyor mg. The store m13 is also an output-con-
veyer. The capacity of all devices is equal to one (C(d) = 1).
The geometrical model of the workeell is illustrated in Figure 6.
The following devices are assigned to every operation o;:

or — ({di}, {mo,m1})

o= o2 — ({da}, {m})
o3 = ({di}, {m})
os — ({ds}, {my, mg, ms})

The robots can setvice the following devices:
Range(ry) = {dy, da, mo, 11, 3}
Range(r} = {da, my, mp, m3}
The allocation relation ¢ is illustrated in Figure 5.

It is easy to observe that this task can be realized by any one
of the following three technological processes, namely:

= (017 09, 03, 04):
Process, = (01, a4, 07, 03)=

Processq

Processy = (01, 02, 04, 01).

The production routes for each Process; are shown in Fig-
ure 7. Moreover, Figure 7 depicts the minimal production routes
and their zone decompositions.

output-tonveyor my
/ Py

l‘ee&er»-cunvayur m

The task planner selects Process; with the value of function
V (Pminl) =2 (for all other processes, the function Vis equal to
3). Processy is chosen by the Task Planner to determine the
operational control law of the workcell.

The control program is created on the second layer of the
control synthesizer, where each movement command is planned
and tested. One of the planned collision-free paths of the robot
motion is shown in Figure 8. This path realizes a translocation of
a part from lathe d; to miller dy. Figure 8 also depicts the opti-
mal joint velocities of robot movements along this path for two
quality criteria, i.e., minimum-time and minimum-energy cri-
terion. The resuits of motion planning are shown in the Table 3.

The table shows the times and energies of each motion in
two variants, namely the minimum-time and minimum-energy
motion, The set of time-trajectories for each motion command
of the control program completes an applicable plan of the work-
cell’s operational control. The simulation results of the work-
cell action model are presented in Figure 9. The productivity of
the workeell is equal to 12.9 parts per hour when the minimum-
time motion is used and 10.92 parts per hour in the minimum-
energy case. In the first case, the unit-cost of production is equal
to 1641 Joules per part and in the second case only 598 Joules
per part.

6. Concluding Remarks

A comprehensive framework for design of an mtﬂlhgent cell-
controller requires integration of several layers of support meth-
ods and tools. We have proposed an architecture that facilitates
an automatic generation of different plans of sequencing op-
erations, synthesis of action plan for robots servicing the de-
vices, synthesis of the workcell’s simulation model, and
verification of control variants based on simulation of the over-
all cell’s architecture.

The integration of all the above features is a complex task,
with each of the functions being a research topic in itself, However,
the need for simulation component in FMS CAM/CIM is be-
coming increasingly obvious due to a number of reasons: most

0

Figure 6. Geometrical model of the workcell

178 TRANSACTIONS YVolume 15 No.4

W. Jacak and J. Rozenblit

Table 3. Time and energy of motions [Time [Sec] / Energy[Joule]]

my dy my dy ma d3 m3
myg) [1/214]} Min. Time
[2.3/81} Min. Ener.
dq [0.7/112] [1.4/255] | 10.8/112} Min. Time
11.4/37] [3.1/90] 11.5/38] Min, Ener.
my 11.8/346] [1.3/226] [0.9/175] Min. Time
[4.1/118] [2.9/72] 12.3/48] Min. Ener.
dy [3.2/634] | [1.4/255] [1.2/225] Min. Time
[6.8/218] 13.1/90] [2.9/711 Min. Ener.
my | [1.9/345] [1.8/111] Min. Time
[4.2/117] [1.5/37] Min. Ener.
d3 [1.1/173] | Min. Time
[2.9/76] | Min. Ener,
ms3 [2.8/508] Min. Time
[5/204] Min. Ener.
. (ZOMEey NC ZOTes]'
Prmin shared unshr. shr. unshared
Route
P
\@ Process;
pfm-n (zone]I(zoney) (zZones)
E[f RN

Processq

(zome;)

Figure 8. Optimal trajectory of robot r, motion

Volume 15, No. 4 TRANSACTIONS 179

an
1 fu)
:) a1 |

December TRANSACTIONS 1998

Workeell
Productivity

[parts/hour]

15.34 %

12.9
10.92
parts/h parts/h

Min. Energy

Min.Time
Motions

Motions

Unit-cost

[Energy/part]

1642

[Joule/part] 63.5 %

598 [Joule/part]
Min. Energy

Min.Time
Motions

Figure 9. Productivity and unit cost of workcell

existing systems facilitate only one mode of operation, i.e., the
off-line input of robot’s program and subsequent testing of
the program by graphic animation of robot’s motions in a
geometric model of the workscene. The systems are capable
of detecting collisions. However, they do not facilitate simula-
tion of a workcell in order to evaluate its efficiency. They can-
not emulate a programming language that would use a simulation
model.

7. References

[1] Pearl, J. Probabilistic Reasoning in Intelligent Systems, San Fran-
cisco, Morgan Kaufmann, 1988.

[2] Sacerdot, E.DD. “Planning in a Hierarchy of Abstraction Spaces.”
Artificial Intelligence, Vol. 15, No. 2, 1981,

{3] McDermott, D. “A Temporal Logic for Reasoning about Pro-
cesses and Plans.” Cognitive Science, Vol. 6, 1982.

[4] Lifschitz, V. “On the Semantics of STRIPS.” Reasoning About
Actions and Plans, M. Georgeff, editor, Morgan Kaufmann,
San Francisco, 1987.

[5] Saridis, G.N. “Intelligent Robotic Control.” IEEE Transactions
af Aurom. Contr., Vol. AC-28, No. 5, 1983,

(6] Saridis, G.N. *Analytical Formsilation of the Principle of Increas-
ing Precision with Decreasing Intelligence for Intelligent Ma-
chines” Automatica, 1989

[7] Meystel, A. “Intelligent Control in Robotics.” Journal of Ro-
botic Systems, Vol. 5, No. 5, 1988.

[8] Buzacott, J.A. “Modelling Manufacturing Systems.” Robotics
and Comp. Integr. Manufac.,Vol. 2, No. 1, 1985,

[9] Jones, A.T., McLean, C.R. “A Proposed Hierarchical Control
Model for Automated Manufacturing Systems.” Jowrnal of
Manufacturing Systems, Vol. 5, No. 1, pp 15-25, 1986.

[10] Maimon, O. “Real-time Operational Control of Flexible Manu-
factaring System.” Journal of Manufacturing Systems, Vol. 6,
No. 2, pp 125-136, 1987,

[11§ Coffman, E.G., Elphick, M., Shoshani, A. “System Deadlock.”
Computing Surveys, Vol. 3, No. 2, pp 67-78, 1971.

[12] Banaszak, Z., Roszkowska, E. “Deadlock Aveidance in Concur-
rent Processes.” Foundations of Control, Vol, 18, No. 1-2,
pp 3-17, 1988.

[13] Krogh, B.H., Banaszak, Z. “Deadlock Avoidance in Pipeline
Concurrent Processes.” Proc. of Workshop on Real-Time Pro-
gramming, IFAC/IFIP, 1989.

(14] Ranky, P.G., Ho, C.Y. Robot Modeling. Control and Applica-
tions with Software, Springer Verlag, 1985.

180 TRANSACTIONS Volume 15 No.4

[15] Kusiak, A. Intelligent Manufacturing Systems, Prentice Hall, 1990

16] Lenz, J.E. Flexible Manufacturing, Marcel Dekker, Inc., 1989,

[17] Homem De Mello, L.S., Sanderson, A.C. “AND/OR Graph Rep-
resentation of Assembly Plans.” IEEE Transactions on Robot-
ics and Automation, Vol. 6, No. 2, pp 188-199, 1990,

[18] Sanderson, A.C., Homem De Mello, L.S., Zhang, H. “Assembly

: Sequence Planning.” Al Magazine, Vol. 11, No. 1, Spring 1990,

[19] Rozenblit, J.W., Zeigler, B.P. “Design and Modeling Concepts.”
Imternational Encyclopedia of Robotics, Applications and Au-
tomation, R. Dorf, editor, John Wiley and Sons, New York, pp
308-322, 1988.

[20] Zeigler, B.P. Multifacetted Modeling and Discrete Event Simu-
lation, Academic Press, 1984.

[21] Nilsson, N.J. Principles of Artificial Intelligence, Tioga, Palo Alto,
CA, 1580.

[22] Faverjon, B. “Object Level Programming of Indusirial Robots,”
TEEE Int. Conf. on Robotics and Automation, 2, pp 1406-1411,
1986.

[23] Speed, R. “Off-line Programming of Industrial Robots.” Pro-
ceedings of ISIR 87, pp 2110-2123, 1987,

[24] Jacak, W., Rozenblit, I.W. “Automatic Simulation of a Robot
Program for a Sequential Manufactaring Process.” Rebotica,
Vol. 10, pp 45-56, 1992,

[25] Lozano-Perez, T. “Task-Level Planning of Pick-and-Place Ro-
bot Motions.” IEEE Trans. on Computer, Vol. 38, No. 3,
pPp 21-29, 1989,

[26] Jacak, W. “Strategies for Searching Collision-Free Manipulator
Motions: Automata Theory Approach.” Rebotica, Vol. 7,
pp 129-138, 1989.

[27] Jacak, W. “A Discrete Kinematic Model of Robot in the Carte-
sian Space.” IEEE Trans. on Robotics and Automation, Vol. 5,
No. 4, pp 435-446, 1989.

[28] Jacak, W. “Discrete Kinematic Modeling Techniques in Carte-
sian Space for Robotic Systemn.” Advances in Control and Dy-
namics Systems, C.T. Leondes, editor, Academic Press, 1991.

[29] Shin, K., McKay, N. “A Dynamic Programming Approach to
Trajectory Planning of Robotic Manipulators.” IEEE Trans.
On Automatic Control, Vol. 31, No. 6, pp 491-500, 1986.

[30] Shin, K., McKay, N. “Minimum Time Control of Robotic Ma-
nipulator with Geometric Path Constraints.” IEEE Trans. On
Automatic Control, Vol. 30, No. 6, pp 531-541, 1985,

[31] Jacak, W., Duleba, 1., Rogalinski, P. “A Graph-Searching Ap-
proach to Trajectory Planning of Robot’s Manipulator.”
Robotica, (in print), 1992,

