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CAST Tools for Intelligent Control in
Manufacturing Automation

Witold Jacak?! and Jerzy Rozenblit?

! Institute of Systems Science
Johannes Kepler University Linz
A-4040 Linz, Austria
? Department of Electrical and Computer Engineering
The University of Arizona
‘Tucson, Arizona 85721, U.5.A.

1 Introduction

In recent years, the use of programmable and flexible systems has enabled par-
tial or complete automation of machining and assembly of products. Such the
cellular flexible manufacturing systems (FMS) are data-intensive. They consist
of three main components: a production system, a material handling system,
and a hierarchical computer assisted control system.

A cellular manufacturing system is intelligent if it can self~-determine choi-
ces in its decisions based upon the simulation of a needed solution in a virtual
world or upon the experience gained in the past from both failures and suc-
cessful solutions stored in the form of rules in the system’s knowledge base. The
intelligent manufacturing system discussed here is a computer integrated cellular
system consisting of fully automated robotic cells. Planning and control within a
cell is carried out off-line and on-line by the hierarchical controller which itself is
regarded as an integral part of the cell. We call such a cell Computer Assisted
Workeell (CAW).

Given a technological task, an intelligent Computer Assisted Workcell should
be able to determine control algorithms so that: a) a task is realized, b) deadlocks
are avoided, c) the flow time is minimal, d) the work-in-process is minimal, e)
geometric constraints are satisfied, and f) collisions are avoided.

To synthesize an autonomous, or semi-autonomous, Computer Assisted Work-
cell we use artificial intelligence and general system theory concepts, methods,
and tools such that as hierarchical decomposition of control problems, hierarchy
of models specification, discrete and continuous simulation from system theory
ideas and action planning methods, model’s state-graph searching methods from
artificial intelligence concepts.

The control laws which govern the operation of CAW are structured hierar-
chically. We distinguish three basic levels: a) the workstation (execution) level,
b) the cell (coordination) level, and c) the organization level
e The organizer accepts and interprets related feedback from the lower levels,
defines the strategy of task sequencing to be executed in real-time, and processes
large amounts of knowledge with little or no precision. Its functions are: reaso-
ning, decision making, learning, feedback, and long term memory exchange.
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e The coordination level defines part routing in logical and geometric aspects
and coordinates the activities of workstations and robots. The robots coordinate
the activities of the equipment in the workstation. This level is concerned with
the formulation of the actual control task to be executed by the lowest level.

e The execution level consists of device controllers. It executes the programs
generated by the coordinator.

Consider the CAW with a hierarchical structure shown in Figure 1. It is
composed of three interactive levels of organization, coordination and execu-
tion, modeled with the aid the theory of intelligent system [3]. All planning
and decision making actions are performed within the higher levels. In general,
performance of such systems is improved through self-planning with different
planning methods and through self-modification with learning algorithms and
schemes interpreted as interactive procedures for the determination of the best
possible cell action.

There are two major problems in synthesis of such complex control systems:
The first depends on the coordination and integration at all levels in the system,
from that of the cell, where a number of machines must cooperate, to that of the
whole manufacturing workshop, where all cells must be coordinated. The second
problem is that of automatic programming of the elements of the system. Thus
we distinguish two major levels of the control problem: the logical (operational)
and the geometric control

The intelligent control of CAW is synthesized and executed in two phases,
namely:
- planning and off-line simulation phase and
- on-line simulation based monitoring and control phase.

In the first phase, a hierarchical simulation model of a robotic workcell called
virtual cell is created. Workcell components such as NC-machine tools, robots
conveyors, etc., are modelled as elementary DEVS systems [13]. This type of
simulation is used for verification and testing of different variants of task reali-
zations (processes) obtained from the route planner. To simulate variants of a
process, the system must have the knowledge of how individual robots actions
are carried out. For detailed modeling of cell components continuous simula-
tion and motion planning methods are used. The geometrical interpretations of
cell-actions are obtained from the motion planner and are tested in a geome-
tric cell-stmulator. This allows us to select the optimal task realizations which
establish logical control of the system.

In the second phase, a real-time discrete event simulator of CAW is used to
generate a sequence of future events of the virtual cell in a given time-window.
These events are compared with current states of the real cell and are used to
predict motion commands of robots and to monitor the process flow. Since a
CAW has to make many subjectiive decisions based on deterministic program-
ming methods, knowledge bases and knowledge based decision support should

be available as an advisory layer. Such knowledge bases are part of the so-called
virtual workcell.
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Fig. 1. Hierarchical structure of CAW control system

2  Virtual Workcell and Technological Task

A real cellis a fixed, physical group of machines D (or stores M), and robots
R. A virtual cell is a formal representation {computer model) of a workcell
To synthesize CAW'’s control, we first specify the family of technological tasks
realized in the cell.

2.1 Technological Task
The technological task realized by the robotic cell is represented by a triple:
Task = (0O, <, a) (1)

where: O is a finite set of technological operations (machine, test, etc.) required
to process the parts, < C O x O is the partial order (precedence relation) on
the set O, and  C O x (D U M) is a relation of device or store assignment.
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The partial order represents an operational precedence i.e.; g < 0 means that
the operation g is to be completed before the operation o can begin. (o,d) €
o means that the operation o can be performed on the workstation d, and if
(0, m) € a, then m is the production store from the set M where the parts can
be stored after the operation o has been completed.

The technological task described above can be realized in a virtual cell. The
virtual robotic cell has a hierarchical structure which comprises models. The
models represent the knowledge about a real production environment.

2.2 Geometric Model of Workecell

The lower level of virtual cell representation describes the geometry of a virtual
cell. Formally, the geometry of the cell is defined as follows [15]:

CeuGearn.etry = (G: H) (2)
The first component of the cell geometry description
G = {Ga = (E4, Va)|d € DU M} (3)

represents the set of geometric models of the cell’s objects. E4 is the coordinate
frame of object (device) d and V; is the polyhedral approximation of the d-th
object geometry in E;.

H={Hq: Eq— Eoldec DU M} (4)

represents the cell layout as the set of transformations between an object’s coor-
dinate frames £ and the base coordinate frame Fqy [18].

Consequently, a geometric model has two components: (1) workcell objects mo-
dels and (2} workcell layout model.

Workcell Object Model: The geometry model of each object is created by using
solid modeling [9]. Solid modeling incorporates the design and analysis of virtual
objects created from primitives of solids stored in a geometric database. The
complex virtual objects of a workcell V; (such as technological devices, robots,
auxiliary devices or static obstacles) are composed of solid primitives such as
cuboid, pyramids, regular polyhedrons, prisms, and cylinders.

Workcell Layout The workcell’s objects can be placed in a robot’s workscene at
any position and in any orientation. The virtual objects (devices, stores) are
loaded from a library (model base) into the Cartesian base frame. They can be
located anywhere in the cell using translation and rotation operations in the
base coordinate frame [14].
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2.3 Logical Model of Workcell

Based on a geometric model of the workcell, a logical structure of the cell must
be created. The group of machines is divided into subgroups, called mackining
centers serviced by separate robots.

Parts are transferred between machines by the robots from set R, which
service the cell. A robot r € R can service only those machines that are within
its service space Serv_Sp(r) C Eg (Ep - Cartesian base frame). The set of devices
which lie in the r-th robot service space is denoted by Group(r) C DU M. More
specifically, a device belongs to group serviced by robot r (i.e., d € Group(r))
if all positions of its buffer lie in the service space of robot r. Consequently, the
logical model of a workcell is represented by:

Cellpogic = (DU M, R, {Group(r) | r € R}) (5)

Based on the sets Group(r) and the description of the task, we can define the
relation B which describes the transfer of parts after each technological operation
of the task.

BC(OxO0O)xR (6)

where: ((0i,0;),7) € B) < ({di,d;} C Group(r) v {m;,d;} C Group(r))

and a(o;) = {di,m;} and a(o;) = {d;,m;j}. In a special case G is a partial
function; i.e.: 8: 0 x O — R.

The virtual cell concept is the basis for designing the CAW planners.

3 Logical and Geometric Control Planners

The realization of a technological task depends on the sequencing of its opera-
tions. The execution sequence can be represented as a list of machines, called
a production route (or logical control of process), along which parts flow during
the manufacturing process. Each route determines a different topology of ro-
bot motion trajectories, different deadlock avoidance conditions, and a different
job flow time. Therefore, route planning is a critical issue in all manufacturing
problems.

3.1 Technological Route Planner

Searching for the most efficient route requires that we define route comparison
criteria. One such criterion is that the sequence of operations and robot/machine
actions related to it minimize the mean flow time of parts [6]. The flow time of
every job is the sum of processing time, waiting time, and the time of inter-
operational moves called trensfer times.

The route planner should find an ordered execution sequence of L operations
called a sequential machining process:

¢ = (01,03, ---,0L) (7)
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with the following constraints:

(i) if for two operations o; and o; from Task, o; < o, then 1 < j

(ii) for each i = 1,...,, L — 1 there exists a robot which can transfer a part from
machine d; (or store m;) assigned to operation o; to machine d;;; assigned to
operation o0;41; i.e., (Ir € R)(((o:, 0i4+1),7) € B)

A process can be realized by different sequences of technological devices (cal-
led resources) required by successive operations from the list o when they are
being execnted. This set, denoted by P, is called production routes. The route
planning algorithm should take into account the conditions for deadlock avoi-
dance. In order to formulate a quality criterion of process planning, we use the
procedure of deadlock avoidance presented in [8], [7].

The quality criterion used to evaluate the technological route being planned
is the probability of waiting for a resource when deadlock avoidance conditions
are in force. The problem solved by the route planner is to find an ordered
sequence of operations from the technological task which is feasible and which
minimizes this quality criterion. This is a permutation problem with potentially
more than one solution. To solve the planning problem under consideration, the
route planner uses a backtracking graph search algorithm [14}.

Each route from the output of the task planner determines a different lo-
gical sequence of robot and machine actions and a different input data for the
geometric control of cell actions.

3.2 Motion Planner

The production routie p for a machining task determines the parameters of the
robot’s movements and manipulations (such as initial and final positions) to
carry out this task. The set of all robot’s motions between devices and stores
needed to carry out a given process is called a geomelric route or geomeiric
control.

First, based on the sequence of operations Process and its production route
p, the positions table (Frames_Table) for all motions of each robot is created.
The Frames_Table determines the initial and final geometric positions and ori-
entations of the robot’s effector for each robot movement. The robot’s motion
trajectory planning process is performed in two stages: a) planning of the geome-
tric track of motion, and b) planning of the motion dynamics along a computed
track.

The Collision-free Path Planner In order to apply fast methods of geometric
path planning, the robot’s kinematics model should facilitate a direct analysis of
the robot’s location with respect to objects (virtual devices) in its environment.
Moreover, such a model should facilitate 3D graphic simulation of robot mo-
vements. One possible description of the manipulator’s kinematics is a discrete
dynamic system [16],[17},{18].
The discrete kinematics model of robots with n degrees of freedom has the
following form:
Robot = (C, U, §) (8)
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where: C' denote the set of robot configurations (manipulator states) in the
Cartesian base frame; U = {—1,0,+41}" is the discrete input signal set, and
6§ :C x U — C is the one-step state transition function of a dynamic system of
the form e¢(k + 1) = 8(c(k), u(k)) and is defined recursively [16],[18].

The complete formal explanation of the discrete model of robot kinematics
is presented in [16],[18].

Motion Trajectory Planning The trajectory planner receives the geometric tracks
as inputs and determines a time history of position, velocity, acceleration, and
input torques which can be then fed to the trajectory tracker. In the trajectory
planner, the robot is represented by the model of path parameterized manipu-
lator dynamics [19]:

m(s)p +n(s)p® + r(s)u + g(s) = f (9)

$=p (10)

where pseudo-velocity u is the time derivative of the parameter s.
To optimize the time trajectory of motion the following cost function is chosen:

1 fmw( L a4+ 23 (1Al )ds and A +2Ap =1 (11)
= —_— + S s an -+ = 1.
A MO 2g=1 1 2

The trajectory planning problem is then reduced to cost minimization, sub-
ject to the dynamic model specification and the constraints of torque f. Thisis a
classical dynamical optimization problem for a nonlinear system and a effective
bidirectional search method is used [20], {21].

The Motion Planner generates the set of optimal trajectories of parts transfer
movements. This set is establishes the geometric control laws of a CAW.

4 Discrete Event, Real-Time Cell Controller

The process planning is based on the description of task operations and their
precedence relation. As a result of this stage, the fundamental plan of cell-actions,
i.e., an ordered sequence of technological operations, is created.

In the second phase, the real time event-based simulator of CAW is synthe-
sized. The simulator generates a sequence of future events of the virtual cell in
a given time-window. These events are compared with current states of the real
cell and are used to predict motion commands of robots and to monitor the
process flow. The simulation is event oriented and is based on the DEVS system
concept introduced by Zeigler [13}. The structure of CAW is shown in Figure 2.
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Fig. 2. Structure of Computer Assisted Workcell

4.1 Synchronized, Event-Based Model of Workstation

Each workstation d € D is modelled by two coupled atomic discrete event sy-
stems (DEVS) called active and passive models of a device, i.e., DEVS; =
(Devi, Devl), where Deuv is the active model and Dev} is the passive model.

The active atomic DEVS performs the simulation process and a passive ato-
mic DEVS represents the register of real states of the workstation. It acts as
a synchronizer between the real and the simulated processes. This model is a
modified version of the specification proposed by Zeigler and has following struc-
ture:

The active model of workstation:
DE‘!}:} = ('XV (d)! SV (d)! S?ntl 6::1:!! tad)

Xv(d) is a set, the external input virtual event types, Sy-(d) is a set, the sequen-
tial virtual states, §2,, is a set of functions, the internal transition specification,
82_, is a function, the external transition specification, ta? is a function, the time
advance function, with the following constraints:

(2) The total virtual event-set of the system specified by Dev# is
Ev(d) = {(s,2)]s € Sv(d),0 <t < tad(s)};
(b) 8ine is a set of parameterized internal state-transition functions:
Sins = {6%,,Ju € U} and
6,?',“ z SV —F Sv;
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(c) bezt is an external state-transition function:
Oezt : Ev X Xv — Sy ;

(d) ta is a mapping from Sy to the non—negative reals with infinity:
ta: Sy — R,

We now describe each component of an active model. Each workstation d € D
can have a buffer. The capacity of this buffer is denoted by C(d). If a workstation
has no buffer, then C(d) = 1. Let NC(d) (NC program register) denote the set
of operations performed on the workstation d, i.e., NC(d) = {o € Ol{o,d) € a}.

The virtual state set of workstation: The state set of d is defined by Sv(d) =
SD;x SBg, where SD; denotes the state set of the machine and SB; denotes the
state set of its buffer. The state set SD; is defined as SDg = S;cad4yUSbusyUSdone
where:

— Sready = {ready} signifies that machine is free
— Sbusy = {(busy, q)|g € NC(d)} and (busy, ¢) signifies that machine is busy

processing g-operation
— Sgone = {(done, q)lg € NC(d)} and (done, q) signifies that machine has

completed g-operation and is not free
The state set of a workstation’s buffer SBy is specified as
SBs = (O x {0,1,#})¢).
Let C(d) = K and b3 = (b;]i = 1,..., K) € SBy, then

(0,0) < i— th position of the buffer is free
(0,#) < i — th position of the buffer is reserved for a part being currently

b = processed
(¢,0) < i— th position of the buffer is occupied by a part before operation q
(g,1) ¢ i~ th position of the buffer is occupied by 2 part after operation q

We assume that the i-th position denotes a location at which a part is placed in
the buffer.

Model of Workstation’s Contiroller: Given the virtual state set, we define the
internal state-transition functions §;,; to model the workstation. They are para-
meterized by an external parameter u which is loaded into the workstation from
a higher level of control called the workcell management system. The parameter
u € U is the operation’s choice function. It represents the priority strategy of

workstation, i.e.,
u: 2NC(4) _, {0} ¢ NC(d)

and u(®) = 0, u({o}) = {0}
The choice function u defines a priority rule under which the operations are

chosen from the device’s buffer.
Let s(d) = (sq, (b1, b2, ..-,bK)) = (54, b) € Sy(d) and

Wait(d) = {q]((32;)((e, 0) = b5}
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be the set of operations waiting to be processed.
Then the internal transition function
5;!':“ 4 S'V (d) —_ SV (d)

is specified as follows:

((done,q), (b1, b2, ...,bx)) & 34 = (busy,q)
((busy, ), (b1, ., bi1,(0,#), bit1,.,bx)) > 54 = ready A

Be(a(d)) = u(Wait(d)) = {a} A (g,0) = b:
(ready, (b1, ba,...,bx)) <> sg =ready A Wait(d) =0

(ready, (b1, ., 0i—1,(g,1),bi41,-,bx)) < s34 = (done,g) A b; = (0, #)

Corollary 1. It is clear that if s4 = (done,q) V sz = (busy,q) than (I)(b; =
(0, #) because the workstation can not process two parts simultaneously.

Model of Workstation-Robot Interaction: The interaction between the robots
and workstation is modelled by the external state transition function.

The set of external virtual events for the workstation’s model Dev‘;[‘1 is defined
as follows:

X(d) = {ez(a,3),€3(q,4),e°lg e NC(d) Ai=1,..., K}

where:

el(g,i) = PLACE (q,0) ON i-th position - signifies that a part before g
operation is placed on i-th position of d-workstation’s buffer

ei(q,1) = PICKUP (q,1) AT i-th position - signifies that a part after q ope-
ration is removed from i-th position of d-workstation’s buffer,

e® = DO NOTHING (empty event)

The external transition function §%,, for each workstation d is defined below.
Let s(d) = (Jd, (b,”i = 1, .ay K)) S Sv(d) then
63:‘((3(d):t)1 80) = s(d)
6::!((3((1)1 t)f ei(q'.- i)) = (3d, (bls *y bi—ls (Q: O): bi+1, v bK)) = bi = (0; 0)
6.ze((s(d), 1), €3(q, 1)) = (sq, (b1, -, bi~1, (0, 0), bit1,-,bx)) & b =(q,1)
Sezt((.,-),-) = failure for all other states

Time Model The time advance function for Dev;f‘ determines the time needed
to process a part on the d-th workstation. It is defined as follows:
Let s(d) = (94, (bili =1, .., K)). Then

Tprocess (4) < sa = (busy, q)

tad(s(d)) = { Nead + Treeup(q) & sa = ready A u(Wait(d)) = {¢}
Tunload = (dme’ q)
oo otherwise

Tprocess(q) denotes the tooling/assembly time of operation g for the workstation

d. Tload + Teetup(q); Tunioaq denote the loading, setup, and unloading times for d,
respectively.
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At time moment ¢, let the workstation be in the active state s which has
begun at time moment 1,. After this time, the workstation transfers its state
from s into 6%,,(s), which will be active in the next time interval [, + ta(s),t, +

ta(s) + ta(8z,.(s))]-

Corollary 2. It is easy to observe that the eziternal events cannot change the
advance time for each active state. Let z = (e,t) be an ezternal event different
from e® which occurs at time momentt € [t,, to+ta(s)]. The workstation changes
its state to state 8’ = 6.:¢((s,t),e) but the advance time of the new state s’ is
equal to ta{s') =i, + ta(s) —t.

The passive model of workstation: The passive model is represented by a
finite state machine (FSM) :

Devl = (Xr(d), Qr(d), v2.., A%)
where:

Xr(d) is a set, the external input real event types

Qr(d) is a set, the sequential real states

wd_, is a function, the external real-state transition specification
A? is a function, the updating function

with the following constraints:

(a) 2., is a real-state transition function ( one-step-transition func-
tion):
weze : Qr{(d) X Xr(d) — Qr(d);
(b) A4 is a updating function (output function):
A:UP x Qgr(d) x Sv(d) — Sv(d);
where: UP = {0, 1} and 0 denotes that the updating process is stopped
and 1 denotes that updating should take place.

The interaction between external sensors and the workstation is modelled
by the state transition function ¢.»¢. The external sensor system generates real
events, which can be used to synchronize the simulated techmnological process
with the real technological process.

The set of real events for the workstation’s model Devy can be defined as
follows:

XR (d) = {rei(Q: 7:): regzi(ql i)) 7‘83(% 1'): Tﬂg(q, i)lq € NC(d) A= 1: RS ] K}
where:

re}(q, i) - signifies that a part before g operation is placed on i-th position
of d-workstation’s buffer

reﬁ(q, i) - signifies that a part after ¢ operation is removed from i-th
position of d-workstation’s buffer, '

re3(q, i) - signifies that a part before ¢ operation is loaded into machine
and processing is began,
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rei(q, i) - signifies that machine has completed the ¢ operation, machine
is unloaded and part is placed on i-th position of d-workstation’s
buffer.

We assume that the state set Qr(d) of the passive model is the same as that of
the state set of the active one, i.e., Qr(d) = Sv(d).

Then, the state transition function ¢%_, for the workstation d can be defined in a
similar manner as the external transition function §..;. This transition function
reflects real state changes of the workstation. The output function A produces
the real state in the active model of workstation when updating is required, i.e.,

A(g, 5, 1) =g € Sy(d) & A(g,s,0)=s¢c Sv(d).

The production store model: A production store model can be defined in a
similar manner. The state set of a store m is specified as a vector of states of
each store position, i.e.,

Sy (m) = (0 u{0})°t™)
where: if s,,, = (s:]¢ = 1, ..., C(m)) € Sv (), then

0 < 1 — th position of store is free
35 = . ay e . - -
g <> i — th position of store is occupied by a part after operation g

The set of external events for m is similar to the set of external events of a
workstation.

The internal transition 67, is an identity function which can be omitted.
The external transition function 6™, for each store m can be defined in the

ext
same manner as the function §%_, . The time advance function for Dev,, is equal
to co.

The model of robot: Each robot r € R is modelled by two coupled systems,
again called active and passive models.

REV S, = (RObflr Reyf)

where Rob? is the active discrete event model and Regf is the passive model.
The active model is used for simulation while the passive one represents the
register of the robot’s real states. It acts as a synchronizer between the real and
simulated processes.

The virtual workstations and robots (DEVS models) together with the real
devices and robots represent the execution level of CAW control system.
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The model of cell controller: The activation of each machine is caused by
an external event generated by the model of a robot. The events generated
by the cell’s robots depend on the states of the workstations d; and a given
fundamental plan p € Processes. Thus, we define a system (called an acceptor)
which observes the states of each workstation. The acceptor is defined as the
following discrete event system [13]:

A = (X4, Processes, Y ,A,) (12)

where:
X4 ={(s,t)|s € Sceun Nt € Timne}

Scett = S(d1) x S(d2) x ... x S(dp) x S(m;1) % ... x S(mar)

and Time is the time base.

The role of the acceptor is to select the events which will invoke the robots
to service the workstations. The output of the acceptor can be an empty set
or it can contain indexes of only those operations which can execute without
deadlock. Not all the operations can be performed simultaneously. Therefore,
to select the operations which can be executed concurrently, we introduce a
discrete event system called the cell controller. First, this system eliminates all
unrealizable operations from the set operations given as the acceptor’s output
function. Thus, a set of ezecutable operations is created.

Then, from such a set, operations with the highest priority are selected. The
priorities are established by the workcell organization layer as shown in Figure
3.

Each function §;,: is parameterized by an external parameter g which is
loaded into the cell controller from the workcell organizer. The parameter g €
Strategies is the operation’s choice function, and represents the priority strategy
of CAW, i.e.,

g:2°7 LR

The choice function g defines a type of priority rule under which the operations
will be chosen for processing.

5 Real Time Control and Monitoring

The external events generated sequentially by the cell controller and robots
activate the workcell’s devices and coordinate the transfer’s actions.

The discrete event model of workcell generates a sequence of future events of
the virtual cell in a given time-window which we called a trace. A trace of the
behaviour of a device d is a finite sequence of events (state changes) in which
the process has been engaged up to some moment in time. A trace in a time
window is denoted as a sequence of pairs (state,time) , i.e.,

tr{go’tn_{.T] =< (81, tl), (32, tg), (33, tg), ..(sﬁ, tn) >

where tl Z to Aty s fo -+ T.
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Fig. 3. The coordination level of CAW

The events from a trace are compared with current states of the real cell and
are used to predict motion commands of robots and to monitor the process flow.

The simulation model is modified if the states of the real cell change and the
current real states are introduced to the model.

5.1 Monitoring

Let trr{d) be a trace of virtual events of device d on time-interval T' = [t,, t,+ T}
where t, 1s the moment of the last updating:

trT(d) =< (30; to); (31; tl)'---s (Sk, tk) >

where &3 < i, + T and s; is the virtual state of DEVS model of d-device.

The monitoring process is performed as follows:

Let g(t) be the current real state of d-device, modelled by passive Devl auto-
maton and £t > ¢,.

If
g(t) # sj for t € [t; — 70,15 + 7o]

UP(d:)
UP(dz)
UP(ml)

U P(rs)
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then
call diagnosis
else
call updating

Updating: Let g4(t) be the current real state of d-device in time t, registered
by passive Dev} automaton and s4(t') € Sy (d) be a virtual state of d-device
simulator in time ¢’ . If g(t) = s(¢’) and ¢' # ¢t but t € [¢' — 10,1’ + 70] where 7o
is tolerance time-window. then the synchronization between real and virtual cell
should be performed. Easy method for updating process is to synchronize every
device and robot of the workcell.

The device d generate external signal for updating module of workcell con-
troller and controller perform the so called global updating process, namely:

(Vo2 € DU M U R)(up(z) =1 = A:(52, 92, 1) = g € S(z))

Such the global updating process is not necessary for each device. Only the part
of all devices should be updating. To specify such local updating process we
introduce the causality relation between events.

Let predicate Occ(e) denotes that the event e has occurred. The causality relation
is defined as follows:

e~ e & (- Occle) = — Occ(e'))

and expresses that event e is one of causes of event e’.

The causality relation is reflexive, asymmetrical and transitive relation.

Let Tracep 1 = U{trp,q)(z)l2 € DU M U R} be the union of all devices and
robots traces.

Based on above definition we can construct the set of devices and robots for
which the updating the virtual process is needed.

UpDate(s(t')) = {= € DU M U R|(3e € trp,(2))((s(t'), ') ~ €)}
Now, we define local updating process as follows:
(Ve € UpDate(s(t'))}up(z) = 1 = Az(3z: 9z, 1) = gz € Sv(z))

Corollary 3. It is easy to proof that so defined local updating process is equiva-
lent to global one, i.e., synchronization of devices and robots from the set UpDate
is equivalent to the synchronization of all devices and robots of CAW.

Moreover

Corollary4. Ift' > t then UpDate = {d} and only for the d-device the syn-
chronization is necessary to performed.
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Pre-Diagnosis: Let gz(t) be the current real state of d-device in time ¢, registe-
red by passive Dev} automaton and s4(t') € Sv(d) be a virtual state of d-device
simulator in time ¢/ . Let g(t) = s(t') and t' Ztandt <t —7100rt > t' + 70
where 715 1s tolerance time-window.

In this case the diagnosis of real cell should be performed. To reduce the
complexity of such process we use these same causality relation ~» in order to
eliminate the devices which do not need the diagnostics process. By CON(s(t'))
we denote the set of events which are direct causes of event (s(¢'), '), i.e.

CON(s(t')) = {e € Tracep qle ~ (s(t'), ') A (—~ Fe')(e ~ &' Ae' ~ (s(t),1'))}

From the set CON{(s(t’')) we eliminate these events which ware previously mo-
nitored, i.e.
Con(s(t')) = CON(s(t')) — Monitored_Events

Based on the set Con(s(t’'}) we can find the devices or robots for which diagnosis
is needed as follows:

Diag(s(t')) = {x € DU M U R|(3e € trp g{z))(e € Con(s(t’')))}

Additionally the taxonomy of failure type can be performed.

6 Summary

A comprehensive framework for design of an intelligent cell-controller requires
integration of several layers of support methods and tools. We have proposed
an architecture that facilitates an antomatic generation of different plans of
sequencing operations, synthesis of action plan for robots servicing the devices,
synthesis of the workcell’s simulation model, and verification of control variants
based on simulation of the overall cell’s architecture. The real-time discrete event
simulator is used next to generate a sequence of future events of the virtual cell
in a given time-window. These events are compared with current states of the
real cell and are used to predict motion commands of robots and to monitor the
process flow. The architecture, called Computer Assisted Workcell, offers support
methods and tools at the following layers of control: organization, coordination,
and execution.
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