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Automatic simulation of a robot program for a sequential

manufacturing process

Witold Jacak™® and Jerzy W. Rozenblitf

(Received in Final Form: February 26, 1991)

SUMMARY

This paper presents a framework for the design of a
hierarchical simulator of a robotized sequential tech-
nological process. The framework employs concepts of
discrete event simulation modelling. The simulator
consists of two layers: the simulator of a robot and
technological process, and the interpreter and planner of

. robot tasks. A formal specification of both layers is

presented. The proposed simulation approach is
expected to result in significant improvements in the

- robot task plan generation and in higher efficiency of a

technological process.

- KEYWORDS: Robot Motion; Simulation; Process Modelling;
- Sequential manufacturing.

- 1. INTRODUCTION

A robot is apn important tool in modern technological
processes. The effectiveness of employing a robot to
control a technological process depends on the following

. factors: a) The arrangement of workcells and devices on

: thf:j ro;)ot’s workscene; b) The robot’s control program;
and

Parameters of individual program instructions
(e-& the Speed of motion, acceleration, etc.).

In order ¢ verify the correctness of a robot’s program
and to determine how effective the robot is in carrying
out the Program, we propose to develop a simulator of a
rechnologicay process. We employ the simulator to

f iﬂf’esngate Several modes of the robot’s operation that
~ pris€ T0m Varying the parameter values of its control

r0BTam. T choice of such parameters affects the

MY of 4 Lobot servicing a technological process.
. ThOS€ Paramere o are usually defined as based on the

eOMEUY Of he robot’s workscene and the pre-planned
of the robot’s motion. They determine the
Cnergy required for the robot to complete a
bseunm[y impact the overall utilization of
The exics?-l devices.' . :

ms tro. Mg planners of action for manufacturing
5 5?2 ut ©at time and energy consumption parameters
9 lv el;ifydma'“ The planners do not have the facilities
0 4 inpa lor modify the parameters once they ha.ve
Veedules tut- The planning systems do not comprise
ff‘o hat could enable a user to plan and simulate
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elementary robot actions based on a geometric model of
the workscene. Therefore we cannot generate alternative
trajectories of robot movements (associated with robot
actions) using the conventional planning systems. If such
trajectories were available for analysis, we could improve
the efficiency of a manufacturing process by appropriate-
ly modifying its action plans.

The action plan for a manufacturing process
determines the robot’s program of actions in servicing
the process. The program is usually a sequence of
instructions expressed in a task-oriented robot program-
ming language>® (TORPL). Variant interpretations of
the language commands result in different realizations of
a robot action plans. Variant plans may be generated by
modifying the robot’s workscene, or by redefining the
motion’s dynamic requirements (e.g. time-minimal
motion, energy-minimal motion). This induces us to
specify a system that would automatically verify the
semantics of the robot’s program.

We propose a hierarchical robot planning and
programming system that facilitates simulation and
testing of robot tasks in a given time window. It also
allows the operator to vary and modify the robot’s
motion parameters. The system consists of two basic
layers:

Layer 1: The simulation layer that comprises:
a) A simulator of the technological process
b) A simulator of the robot actions based on a
discrete event model of the manufacturing
process.

Layer 2: The interpretation and planning layer for each
individual robot action. A geometric model of
the work-cells is employed as basis for plan
generation.

The simulation layer (Layer 1) automatically synthes-
izes a model of a technological process by analyzing the
technological operations applied to details. This results
in a discrete event model specification which serves as a
basis for simulating the robot’s actions. To carry out the
simulation, the system must have the knowledge of how
individual actions are carried out in the process. This
knowledge must be available in order to schedule a
correct sequence of actions. (Recall that each action has
an associated set of commands of the robot programming
language).

Layer 2 supports scheduling. It interprets and
simulates the command based on a geometric model of
the robot and its workscene. The planning component of
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Fig. 1. Structure of a robot task simulation and testing system.

this layer automatically formulates the robot’s motion
trajectory. It also provides time parameters for the
robot’s actions. These parameters are used in the
simulation carried out at Layer 1.

The structure of the proposed system is illustrated in
Figure 1.

2. BASIC NOTIONS

In general, a technological process can be represented by
a pair

Process = (Operations, <)

4y

where

Operations= {Op, |i=1,..., N} (2)

is the set of technological operations (e.g. tooling

operations, assembly operations), necessary to process
the details.

< < Operations X Operations

is the operations precedence relation, and Op; < Op;
means that operation i “must precede” operation j.

The operation precedence relation is irreflexive,
antisymmetrical and transitive, and generates an
antisymmetrical quasi-order in a set of technological
operations. The precedence relation is used to create and
AND/OR graphs that represents all valid operations
sequences.”*

In this paper, we restrict the analysis to a class of
sequential technological processes which transform only
one type of a part. Such process represents a wide range
of applications (e.g. tooling processes). In this case, a
work detail operated on by robot is described by a state

€)

where: [, -is the current set of detail properties,

;= ()1, B Ujn(j)) 18 a vector of parameters described
by the j-th property of the detail. Hence, the
technological operation Op, can be treated as a function

Op:: R"—R'. (4)

State, = (7; |j e I,)

Automatic simulation

This function defines the change of properties and values
of their parameters that describe the state of detail, i.e.
v=0p,(w) is a composed vector of detail’s para
meters after the operation (V= (viy, ..., U,
’) has been executed

U2l)--~yv2n(2)>~--’vln([))ER) as oecn € €d ona
vector w € R™.

A sequential technological process is represented by

composition function PROC,” where:
V= PROC()C) = (OpNOOpN—l O v °Op1)(w) (5)

and weR", veR™ are composed vectors of a detail’s
parameters before and after the process has been carried
out, respectively; N is the number of technological
operations necessary to process a detail. The sequence of
operations from PROC should satisfy the operations
precedence relation i.e. if Op, <Op, then k <I.

We assume that each workcell (device) is assigned an
operation to process a detail. A technological line
consists of a series of workcells (devices) (M, |i=
1,..., N). In addition, there are two special workcell;,
the feeder conveyer M, and the output conveyer M;
Both M, and My can serve as input/output devices fo
other technological lines. Each workcell has its ow
program for processing a detail. The program determine
the time necessary to carry out the operation assigned tt
a workcell. The operation is executed by a robot. Tht
robot also transports a detail among the workcells. We
do not provide any facilities for queueing details at th
workecells.

The above assumptions are defined for the sake o
brevity of this paper. They can be easily relaxed and th
model presented here can be extended to a much mor
complex class of manufacturing systems. We nok
proceed to present the formal basis underlying o¥
appproach to simulation modelling of the sequentid
technological process.

2.1 Formal concepts for robot and assembly line
modelling

- Our main objective in defining the framework to bulf

the automatic tester and robot action planner is ©
provide a means for rapid modelling and simulation d
the entire technological line. To model the technolog"caJ
line we employ the Discrete Event System Specificati®”
(DEVS) formalism.*'°

The DEVS hierarchical, modular formalism, closel
parallels the abstract set theoretic formulation develOP‘f
by Zeigler.® In such a formalism, one must specify bast
models from which larger ones are built, and how the*
models are connected together in a hierarchical fashi’®
A basic model, called an atomic DEVS is defined by ti
following structure®

M = (X) S: Y’ 5int’ 6ext9 A) ta) (6

where
X is a set, the external input event types
S is a set, the sequential states
Y is a set, the external output event types

Oine is a function, the internal transition speciﬁcatlf’“n
O.x is a function, the external transition spec1ﬁcat1°

ED O™ et T g et oy e



Automatic simulation

1is a function, the output function
t, is a function, the time advance function

with the following constraints:

(a) The total state set of the system specified by M is

0={(s,e)|seS, 0=<es<ts)); )
(b) & is @ mapping from S to S:
Oine: S— 8 (8)

() Oex is a function
Ocxt: O X X— S, (9)

(d) ¢, is a mapping from S to the non-negative reals with
infinity:
t:S—=R, (10)

and
(¢) A is a mapping from Q to Y:
A QY. 11

An interpretation of the DEVS and a full explication
of the semantics of the DEVS are in refs. 8, 9.

The second form of models, called a coupled model,
tells how to couple several component models together
to form a new model. This latter model can itself be
tmployed as a component in a larger coupled model,
thus giving rise to a hierarchical construction. A coupled
DEVS is defined as a structure:®

DN=(D, M,, I,, Z,, SELECT) (12)

where

Dis aset, the component names;
for each j in D,

M 18 a component;
Lis aset, the influences of i;
and for each j in I;

a ?j is a function, the i-to-j output translation;
n

SELECT is a function, the tie-breaking selector
th the following constraints:

Mi = (Xi’ Si’ Yi) 61‘1 A'i; tai)
Lis a subset of D, i is not in I;
Zi: Y= X;

suS}FLECT: subset of D— D
EC that for any non-empty subset £, SELECT(E) is in

wi

(13)

(14)

me];}ﬁgdoflormal model specification in multi-facetted
Stiucture 0gy consists in specifying the system entity
Variablesi attac_hed variable types '(called' descriptive
Mode] fo’ Pruning, and then specifying a discrete event
eniy g I the components indentified by the pruned
Variablesmcmre. A selection of input, output and state
cfinitoy rfesults.l.n the model’s static structure. The
Ompon :t transition and output fupctlons adds dynamic
the S to the DEVS specification. _
Simylag nsuring section, we describe Fhe design of a
or of the robotized technological line.
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3. ROBOTIZED TECHNOLOGICAL LINE
SIMULATOR

Recall that our considerations are restricted to sequential
technological process. A process is represented by the
following graph:

Fig. 2. Graph representation of a sequential technological
process.

Each vertex M corresponds to a technological device
(workcell). The arcs represent possible robot movements
between workcells. An arc depicted in Figure 2 by a
continuous line symbolizes the transport of a detail
between workcells. A dashed line represents a possible
“empty” move of the robot servicing the line. An empty
move is necessary to transfer the robot to a workeell
which is requesting service.

The robot’s actions in a system such as depicted in
Figure 2 can be realized by elementary operations. Each
elementary action has an associated set of instructions in
the task-oriented-robot  programming  language®
(TORPL). The basic macroinstructions of TORPL are:

EMPTY
MOVE{HOLDING
PICKUP “part” AT “position”
PLACE “part” ON “position”
WAIT FOR “‘sensor input signal”
START *“‘output signal”

The MOVE operation can be specialized with respect to
the type of the end-effector paths or the state of the
effector (EMPTY, HOLDING).® In some cases, an exact
geometrical path of motion is required.

The instructions listed above can be combined into a
higher level macro: PICK-AND-PLACE.'"'* This
macro defines the following set of instructions:

MOVE EMPTY TO “position A”

PICKUP “part” AT “position A”

MOVE HOLDING “part” TO “position B”
PLACE “part” ON “position B”

The above instructions are used to synthesize the
robot’s action program. The synthesis process requires
an introduction of conditional instructions that depend
on the states of each device M; of the assembly line.
Therefore, in order to define a simulator of the program,
we have to model conditions that enable each program
instruction. To do that, we model each device M; using
DEVS. Thus M, is given by the following tuple:

M= (Xi) S, Qi 6§nts 6£:xls tfz) fori=0,1,...,N, F
(15)

where each component of the tuple is defined as
presented in Section 2.

TO “position”
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The state set of each M, is defined as S;={A, B, C}
where

A denotes that DEVICE IS NOT WORKING AND IS
FREE

B denotes that DEVICE IS NOT WORKING AND IS
NOT FREE

C denotes that DEVICE IS WORKING AND IS NOT
FREE

The state sets of devices M, and My are S,= {B} and
Sr = {A}, respectively.

Let us assume that the “i-th position” denotes a
location at which a detail is placed on a workcell. The set
of external events for M; is defined by the commands of
the TORPL, namely:

X; ={el; €2, €0} fori=1,...,N
where:
el; = PLACE “part” ON *“i-th position”

e2; = PICKUP “part” AT “i-th position”
¢0 = NOTHING DO

(16)

Given the state set and the external event set, we now
define the transition functions. The internal transition
function is specified as follows:

8 . 8S—S forl,...,N 17
where _
Oim(4)=A
Sim(B)=B
8i(C)=B
The external transition function is defined by:
6Lq((A,0),el)=C fori=1,...,N
Seul((B, T), €2) = A
SLa((s, £), e0)=s (18)

Six(. , .) = Failure for other states and events
The pairs (A, t), (B, t), (s, t) € Q;
For the device M, and M, the functions are:

6(1)nt(B) = B

02((B, 1), €2))=B and (19)
82.((B, t), ely) = Failure
and
of(A)=A
05u((A, 1), elp)=A (20)
and

8L.((A, 1), e2r) = Failure

The time advance functions for M, determine the time
needed to process a detail in the i-th device. They are

defined as follows:
o if §; = A
o0 if S; = B
T; — the tooling time
ifs;=C fori=1,...,N.

tas) =

@1

Automatic simulation

The above is a complete model of technological devices
of the assembly line. The activation of each device M;is
caused by an external event generated by the model of
the robot. Such a model is realized by a generator of the
experimental frame'® associated with the technologici
line model. We now briefly explain the concept of
experimental frame. (For a detailed description, we refer
the reader to refs. 8 & 10).

We separate the model description from a simulation
experiment under which the model is observed. A set of
circumstances under which a model is observed and
experimented with is called an experimental frame.
Zeigler® has shown that an experimental frame can be
realized as a coupling of three components: a generator
(supplying a model with an input segment reflecting the
effects of the external environment upon a model), an
acceptor (a device monitoring a simulation run), and 2
transducer (collecting and processing model output
data). Figure 3 depicts the structural realization of a
experimental frame. The specification of experimental
frames in the DEVS-Scheme environment is equivalent
to that of specifying basic models and their correspond-
ing couplings.

Experimental frames reflect 1/O performance design
requirements. For example, an experimental frame for
evaluating the average task processing time by a robot
could have the following constituents: a generatot
producing a workload of tasks for the robot, an acceptor
monitoring the observation interval, and a transducer
recording the times of task completions, and computing
the average task execution time.

The events generated by the robot depend on the
states of the workcells M;. Thus, we must define a8
acceptor which will observe the states of each workeell
The acceptor is defined by the following DEVS:*

A = (Xa) Sa) 6gxt) (22)
where:
X,={(x,t)|seS and teTime}
S=X{Si|i=1,...,N}
and Time is the time base.

The input port of the acceptor receives state description
of each M,. The role of the acceptor is to select events

which invoke the robot to service a workcell. Let ¥
define the set of acceptor states as a class of subsets ¢

Model L]

Control
Input Segments QOutput
Segments \ Segments
L Genera-— Accep—
tor -] tor
Experimental Frame

Fig. 3. Structural realization of an experimental frame.
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indexes of workcells M;, i.e.:
S Cz(l """ N} (23)

Then, the acceptor’s transition function is given by:
08a: X, X 5, S,

The state s, = J € S, is the non-accepting state. All other
states are accepting states. Og,, is then defined as

6gxt(((s1’ ce ey SN)) t)l sa)
=(s,U{i|s;=B and s;,; = A)})
-({j|s;=Cors;=A}Ns,) (24)

By definition of 8¢,,, the state of the acceptor determines
which workcells require service. A state of the acceptor
can be an empty set. The state s, contains indexes of
only those workcells which have completed processing of
a detail and from which the detail can be transported to
another workeell (i.e. there exists a free workcell).

The states of the acceptor also determine state
components of the generator that models the robot. We
now proceed to define the robot’s model in more detail.
The model is defined by the following DEVS:

Robot = (8, g, tX, {Zgi}) (25)
where S, is the set of states defined as
Sk =S, X POSITIONS x HS (26)

where:

5, ~1s a state set of the acceptor
POSITIONS —is the set of positions of the robot’s
effector-end in the base-Cartesian space E,
POSITIONS = {“i-th position” € E, | i =0,
L...,N, F)
HS is the set of states of the effector
HS= (EMPTY, HOLDING)
We partition the state-set Sk into

Sk ={(sa, k, EMPTY) |, € S, and
k € POSITIONS})

$%={(s., k, HOLDING) |5, € S, and
k € POSITIONS}

t]l}le above division facilitates convenient specification of
ferémalning model components. The internal transition
Unction is defined as:

Ozr: Sk —> Sk (28)
Lt Sk= (S, k-position, EMPTY) € Sk. Then
sk if s, =0
Oor(sk) =< s% = (5., i-position, HOLDING)
ifs, #0
Where
i=argml_in {k=Jjl||je€sa)
ang
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Let 5% = (s,, k-position, HOLDING) € S%. Then
P
Spr(s%) = sk = (54, k + 1-position, EMPTY).

Notice, that for the state sk an internal transition can be
represented by the following sequence of commands in
TORPL:

MOVE EMPTY FROM *“k-position” TO *i-position”
PICKUP “part” AT “i-position”.

For s € $%, the sequence is:
MOVE HOLDING “part” FROM “k-position” TO
“k + 1-position”
PLACE “part” ON “k + 1-position”
START (*“start signal for £ + 1-device”)

The time-advance function is specified as follows:

o if 5,=
tR(sk) =19 Twmlk, i)+ 7,(i) for ske Sk (29)
if s,+J
where

T.(k, i) is the time of motion from position “k” to
position “i”,
7,(i) is the time of pick up operation from i-th

device (usually const.),
and
t1R(s3) = Tk, k+1)
+1,(k+1) forske Sk (30)
where

T,,(k, k +1) is the time of motion from position “k”’ to
position “k + 17,

is the time of place operation on k + 1-th
device.

7,(k+1)

The last component of Robot,
{ZR,_}={ZRI.|]'=0,...,N,F} (31

is the set of functions that generate external events for
the workcell models M;. More specifically functions

Zg:Sr—X;, forj=0,1,...,N,F
are defined as follows:
Let sg = (s, kK, EMPTY) € Sk
e0 forj#iorifs,=d

where i = arg min
Zg,(sr) = Cilies (32)

/ {lk = jl|j€sa}

¢2, forj=iands,#J
Let sg = (54, kK, HOLDING) € §%. Then

e( forj#k+1
= 33
Zr,(sr) {elkﬂ for j=k +1 (33)

Functions Zg generate external events for the workcells
and trigger their corresponding simulators. The structure
of the model we have synthesized is shown in Figure 4.
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Fig. 4. Structure of the hierarchical simulation model of a machining line.

Our model machining facilitates a convenient generation
of the robot’s program. In order to construct the
program, we translate the generator’s transition function
into commands of the task-oriented robot programming
language. By definitions (28), (32), (33), we derive the
following set of instructions:

MOVE EMPTY FROM “parking-position” TO
“0-position”

LOOP: (FORi=0,1,...,N, F)

IF((*“i-th input signal” EQ “not work-not free”’) AND
(*“f + 1-th input signal” EQ “not work-free”))
THEN;

MOVE EMPTY TO “i-th position”
PICKUP *“‘part” AT “i-th position”
MOVE HOLDING “part” TO “i + 1-th position”
PLACE “part” ON “i-th position”
START (start signal for i + 1-th device)
END FOR LOOP

Notice that this model of a workcell can be used as a
basis for testing the program with a varying range of
motion parameters. The most important parameters are
the time it takes to complete an operation (t;) and the
time the robot takes to service a workcell. The time T,
depends on the type of a device on which the i-th
opcration is being processed. This time is fixed. It can be
changed by replacing the device. Similarly, the times of
PICKUP and PLACE operations are determined by the
type of detail and device on which the detail is
processed.

The times of robot’s inter-operational moves (trans-
fers) t,,(i, j) depend on the geometry of the workscene
and on the cost function of the robot motion. This cost
function determines the dynamic of motion along the
geometric trajectories.

The output and efficiency of the line depends on the
arrangement of the devices on the workscene and the
optimization criteria imposed on the robot’s motion. For
example, the most frequent move may be the longest
move. However, we can only find this out after we have
simulated the assembly line over a period of time longer
than one cycle. Thus it is very important to ha%re the
facilities available to modify the following: aj the
geometry of the workscene; b) the plan for each move of
the robot; and c¢) the time parameters 7,,(i, j). Having

modified the parameters, we run simulations repeatedly
and observe the behaviour of the line. The second layer
of the simulation system (Layer 2) is responsible for
planning and modification of the motion parameters.

4. THE ROBOT MOTION PLANNER

The planner’s fundamental function is to synthesize tht
robot’s motion trajectories. The trajectories realize the
MOVE instructions of the robot program. They als
determine the duration of the moves. These data must be
accessible in order to simulate the entire technologicd
line. To generate the trajectories, Layer 2 must have l'he
geometrical models of the robot and technological lm'e
available. It must also have initial and final effectors
positions of each move given. The robot’s motiof
trajectory planning process will be decomposed into tyvo
sub-problems: 1) planning of the geometric motiof
trajectory, and 2) planning of the motion dynamics alon
a computed trajectory. The motion planner consists o
two layers: |

- layer for collision-free geometrical path robot motioh
planning
- layer for optimal trajectory motion planning. I

The first layer employs only the kinematic model of the
manipulator. The second layer is based on the model o
the robot’s dynamics. .
Such decomposition of the motion plannef ‘;
appropriate for it facilitates an independent analyss ¢
different variants of geometric as well as dynam¢
interpretations of the same motion trajectory.

4.1 Geometrical model of robot and its work-scene
Each workcell (device) M, is represented by a specified
its own coordinates frame E,. The location of M;’s 'f
base Cartesian coordinate frame E, is represented by th
transformation of the coordinate system E; to the bas
system E,. We accomplish this by employing Denavt
Hartenberg’s matrix;'® Hy; = [Rot;, Pos;]. The geomet™
model of M; in base Cartesian space Ej is obtained ¥
transforming each vertex of the polyhedron 0; using thf
matrix H,. The model of the work-scene has i
following form:’

| B
SCENE = (OBJECTS, H) ¢

v mm e e e
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where
OBJECTS —is the set of geometric models of devices

in E, coordinate frame (0, e OBJECTS),
and

H-is the set of transformations of E;’s to E, which

describe the location of objects in base coordinate

frame (Hy; € H).
The above model facilitates convenient modification of
locations of objects on the workscene. The robot’s
geometry is represented by a skeleton model, i.e.,
broken line connecting the joints of the robot’s
manipulator.

A skeleton model for a robot with n-degrees of
freedom is a vector'*

C=(P11"-)Pn+1) (35)

where P, € E, is a point in base frame E, which defines
the location of the i-th joint of the manipulator. Point
P.+1 defines the location of the end of effector. The
skeleton model representation is often called the
Cartesian state (configuration) of the manipulator.!*!6
The Cartesian state can be uniquely represented by a
vector of joint angles

(36)

4=(qu -, 4q,)

which describes the manipulator’s state in the Joint
Space.”™'® The length of each link is given by /. The
skeleton model of robot is shown in Figure 5.

The robot is located in E, in such a way that its base
(usually point P, in the skeleton model) is in the origin of
the base frame E,.

T‘he motion planner must also have initial and final
pOs!tions of effector-end of each movement given. These
positions are related to the “i-th position” denotes a
location at which a part is placed on M; workcell for
'=0,1,...,N, F.

Then, each MOVE instruction of robot program is
Parameterized by a pair (Pii, Panal)> Where Py, stands
for the injtial effector’s position and Py, denotes its final

g,
8.3, Skeleton model of a robot manipulator.
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position. The positions Py, and Py, are determined by
the locations of the devices (workeells) in geometrical
model of the workscene, and program of robot actions,
These pairs must be available for all possible movements
of robot’s manipulator. It is a first phase of a robot
program interpretation.

The problem of planning a move for cach pair
(Pinits Prinat) consists in finding collision-free and optimal
motion trajectories.

The problem of planning a move between P, and
Pyna is now decomposed into two subproblems: the
geometry-oriented and time-oriented plan generation."
In geometry-oriented planning, we aim to find the
shortest, collision-free track of robot motion. This
problem is solved by the collision-free path planning
system. Time-oriented planning requires that we find
optimal speed and acceleration along the motion
trajectories. The time-trajectory should minimize the
motion cost function. This task is solved by the trajectory
planning system. Task decomposition has the following
consequences: the motion planner constructs an optimal
trajectory along a given motion track, which, in general,
is not a solution to the global optimization problem
without geometric constraints.

The two-layer problem solving scheme proposed here
was motivated by the following factors:

—lack of effective methods for solving global optimiza-
tion problems, especially for robots in which generalized
torques are functions of the manipulator’s state,

— the proposed scheme facilitates parametrization of the
equations of robot’s dynamics by a scalar length of the
motion track. This is a fast and effective way to solve the
problem,

—the scheme provides an ability to compute optimal
trajectories between given points for different geometric
variants of the motion track and for alternative cost
functions. This allows us to test the effectiveness of the
manufacturing system with the aid of simulation.

We now proceed to describe both systems in more
detail.

4.2 The collision-free path planning system

For the purpose of automatic translation of the language
commands such as “MOVE TO” we need adequate
models of robot kinematics and robot’s workscene.
There are two requirements which a robot kinematics
model should satisfy. Firstly, in order to apply methods
of geometrical path of robot motion planning, a robot
kinematics model would facilitate direct analysis of robot
location with respect to objects for its environment.
Secondly, a robot kinematics model should be
convenient to 3D graphic simulation of robot movements
in the base Cartesian frame. The computer graphic
simulation is a fundamental tool for the off-line testing of
correctness of the robot program. For these reasons the
most suitable model of robot kinematics is a discrete

dynamic system,'® defined as:

Mrobot = (C; Ur Y’ f’ g) (37)
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where C denote a set of states (configurations) of
manipulator, U denote a set of input signals causing a
change of configuration, and Y is the set of output signals
of Mmbol‘

An output of M, should ensure a possibility of the
geometrical representation of the robot body in 3D-base
frame. For this purpose it is convenient to use a skeleton
model of the manipulator as the output of M, o

The function f: CXU—-C is a one-step transition
function of the form

c(k +1) = f(c(k), u(k)), - (38)

and the function g: C— Y is an output function of the
form

g(c(k)) = y(k) (39)

The properties of so defined model of the robot
kinematics depend on the method of specification of its
components and especially the state-set C and input-set
U.

Assume that a state ¢ of robot’s manipulator is
described by a vector of points in the Cartesian base

frame, which represent positions of every joint of the
manipulator, i.e.

c=(P,-|i=1,...,n+l) and P eE,

Such an assumption yields that the model (37) can be
reduced to the system

Mrobm = (C’ U) f)-

In this case, the output set Y is equal to C and the output
function g of M., is the identity function.

In order to avoid the problem of solving the
kinematics equations one can perform an arbitrary
discretization of the Joint Space’®'® or of the base
Cartesian Space.'* In this paper, we restrict the analysis
to the assumption about Joint Space discretization, i.e.
we assume that every joint angle g, has already been
discretized at the increment 8¢;, and that a single change
of angle g; amounts only to &g, or 0. Such an
assumption yields that changes of ¢; can be described by
means of the input-set U; = {+1, 0, —1}, where +1 mean
a change by +4q; and 0 means no change. The model of
robot kinematics will be synthetized in three steps.'* The
first step will be concerned with synthetizing the model
of a single joint. A second step, we shall produce the
model of the manipulator arm in the arm plane, while at
the third step we shall describe the kinematics model of
the whole manipulator in 3-D base frame E,,.

For the i-th joint the set of states equals the set of
feasible angle positions of the joint, defined as

J={0,1,...,N} where gM=gm4nN,-dq (41)

A change of the joint state causes the link /; to rotate by
an angle dq; in the direction defined by the input u; € U;;
that in the composed kinematic chain amounts to a
rotation of a point P, around a point P, within the arm
plane. For this reason, it is natural to take the output of
a model of the i-th joint as a transformation defining the
rotation of a point P, in the arm plane. Let p;., and p;

Automatic simulation

denote the positions of the points P, and P. within the
arm plane, respectively,' then the new position of point
Pi+ after a rotation around point p; by a constant angle
0q; toward the u; direction is defined as

pis1=pi+ Riu)[piv\ — pi 42)
and J
Ruy=[22500_jusinda] |
—~u;sin q; : cos 8gq;
Thus the output set Y, = {R(u,) | u, € Uj}. ¥

The model of the i-th joint kinematics is the g

representable as a Finite State Machine (FSM) in the
form:" 0

Mi-joint = (Un Ji, Y, A'ix 6:’) (43) ;]
where A;:J; X U;— J; is the state transition function and
max (0,j+u) foru=-—1 E:

M, w) =14 min (N, j+u) foru=-+1 (44
j foru=0 4
0;: J; X U;— Y, is the output function and $
R(0) for(j=0Au=—1) fz
0:(j, u) = or (j=N; Au=+1) &
Ri(u) in other case te
The position of individual joints of the manipula” i
within the arm plane is described by the Vec.tor t

Carm = (P1, - - - » Pus1) Telated univocauy to the Carteslaﬂ (
state c.'* Then the model of changes of the ? a
kinematic within the arm plane can be represented as
reduced FSM of the form

Marm = (Uarm’ Carm, A,a)
whete Uy = X{Ui|i=2,...,n} and
Aa: Carm X Uarm'“) Carm f[ll)

@ i

.. . »
is the one-step transition function defined recurreﬂtly

follows: A

Let onf
Cim = AalCarmy B WHCTC Com = (i pra) 6
- na

Carm = (pl, v ,pn+1) and U= (u2; o un)’
then wher
i-1 . fon
Pi’=Pi,—1 + (H (Si~k(]i-kr ui-k)) fLIﬂCt
k=2 (46) nd

X[p'_pl"'l] fori=2)---)n+landpl’=pl. ' iﬂt m,.]

Oy is the output function of the FMs mode for P i

kinematics Mjjoint . N pse

The discretization of the Join p e

iteness of the Cartesian-state seq ity g wor

ﬁnl-e (N . Carm)' Thu Ob ¢ et
C is equal to UV S the model of b

. : L‘
kinematics with res&)ecst t: g,'e,base Coordipate fmfﬂetne‘ t}.*:e‘s1
can be represeine 85 & FINlte Srae e "
following form

Pace results 11
- The cardin?

)
M, opor = (U, C, f) (A
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where
U=X{U,-}i=1,...,n},
[:CXU—Cis the one-step
transition function.
Let c=(P,..., Py, c =(P,..., P,.1) and ¢’ =
f(c, @), then

51 1, Uy i 0 i, —1 7
P/_[..-.(.].O_.y..).:;---]-crd’z (Aa(z(0), i,)) (48)

1
where 2: C— C,,,, is the transformation of Cartesian-
fate into arm plane, ™" and crd’c = P.

The transition function f of the robot—FSM is a
wmposition of the transition function A, of the
im~FSM and the output function of the first joint
FSM, responsible for the rotation of arm plane. More
exactly, such a mode] is described in ref. 15. The model
based on Cartesian space discretization may be found in
efs 14, 16, & 20.

16 model of the manipulator kinematics will be
3PPI.16d to planning of collision-free paths of robot
mO‘lan. The problem of finding a collision-free path of a
manipulator movement, from an initial configuration c;,
f:?;iﬂ :0 Chnas Of previous performed movement) to a
follov?sa“efffgor C{ocatlon Pﬁ,,f,t.+ € E, can be formulated as
ferminaj conﬁguration{sc ,’IE‘;Zn JIC— Pﬁn?ﬁ  monsts o
finding such a sequencv:a ug = (i oy afmounts o
e Fspy ot F=Uy, ..., {ir) of inputs of

()

1

the terming) configuration reaches point P,
f*(cinit’ ll;) € CF

. Wheref*(cmm u;:k) =f(f*(cinit1 u;:_])y IZF)

i) ever : .
feasi}t; lconﬁguratlon corresponding to sequence u} is
e

(49)

f*(cinib u]*) eC

feasile for j=0,1,.. . , F
the ]ength 0

(50)

f the geometrical path of motion is

)

Minimg),
ult’ we 0 3 L}
Riations v btain the sequence of robot’s

F,Q e 2*)" = (CO, Ciy.. ., CF), where Co = Cinyr» and
‘“aJOinF"S’péce) and also the sequence of configurations
path* = (%- cel, (7,:) (51)

- 4i=Cop .
;lon of th artV(?i) and Conv: C— Q is the transforma-
Wetiop, Cony ®Slan-State Space into a Joint Space. The
F:d Crogg pro“(;e can construct by using the vector dot
“=plisis S Of the vectors [Po1— P] and
! ordey
to
g;ocedllre o solve the problem, we shall employ
amfPOse We shaﬁraph Searching used in Al For this
; in%at()n €xploit the State-transition graph of an
‘themon' x;::bpmt fgenerat'ed implicitly by applying the
1,\sltate, cvery no((i)r the input 0 which does not change
successors iee (state) of the graph has maximal
SUC(C):

Ve mec,,.,, laeU-{0)) (52
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A (?onﬁguration ¢ is said to be feasible if it does not
c<.)lhde‘ with any obstacle in the workscene. Using the
dxsc'retlzation of the ¢, joint angle, the checking for the
collision-freeness of the configuration ¢ can be reduced
to the “brocken line-polygon™ intersection detection
problem in the plane. This problem can be solved by a
few efficient algorithms.

The development of the search graph will start from
Fhe node c,,, by the action of function f for all possible
inputs &. The way of expanding the graph will depend on
the form of the evaluation function.

The evaluation function e(c) at any node ¢ gives the
sum of the cost of path from Cinit 10 ¢ plus the cost of the
path from c to a terminal node i.e,

e(c)=k(c) + h(c) (53)

The cost of path k(c) between two nodes is the sum of
the cost of all the arcs connecting the nodes along the
path. As the cost function between two nodes ¢ and
¢'=f(c, @), joined by an arc, we shall assume an
Euclidean distance travelled along by the effector while
passing from configuration ¢ to ¢’.’S The heuristic
function h(c) with estimates of the distance from the
actual configuration ¢ to the set C will be defined as the
rectilinear distance between the current effector position
and the terminal position P;,,,.

Now, we can use the A* algorithm' to find the
shortest path in the state-transition graph of system
M, b0 connecting the initial node c,,;, and the final node
cr € Cp. The result the A*-algorithm work is the
sequence c¢* of collision-free configurations in the
Cartesian Space, or the sequence path* (51) of robot
configurations in the Joint Space. The collision-free
motion trajectory of the manipulator is minimal only
with respect to the geometric distance for the
end-effector. This does not imply that this is a
time-minimal trajectory. However, by changing the
evaluation function, we can obtain another motion path,
e.g. trajectories tracking a given path of the effector

motion.

4.3 The time-trajectory planning system

From the path planner we obtain an ordered sequence of
robot’s configurations c¢* (or path*), which represents the
collision-free  track of robot motion. Usuglly, a
continuous geometric track of robot motion is con-
structed by connecting configuration from path* (pom.ts
in the Joint Space) with some means §uch as 'cubxc
splines.?! In this case, the geometric track is given in the

form of the parameterized curve

path* =g =¢q(s), 5€[0, Smal (54

where the initial and final configurations of the'path
correspond to the points s =0 and § = Spaxs r.espectlvel);i
The time-trajectory planning system, brl'eﬂy calle

trajectory planner, receives these geometric paths‘ as
input and determines a time histor'y of position, velom;}y,
acceleration and input torques which are then fed to the
trajectory tracker. While the Qroblem of av%ldmg
obstacles in the robot’s workspace is not a control theory
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problem in the normal sense, the problem of moving a
mechanical system at minimum cost is. On this level of
robot specification, a robot is represented by a model of
manipulator dynamics. There are a number of ways of
obtaining the dynamic equations of a robot arm, i.e. the
cquations which relate joint forces and torques to
positions, velocitics and accelerations, One of them, the
Lagrange method, yiclds a set of differential equations in

the form:'**

M@)i+N@d+RG+G@=U (53

where U is the vector of gencralized forces, M is the
inertia matrix, N the Coriolis force array, G the
gravitational force and R is the viscous friction matrix.

We assume that the set of realizable torques can be
given in terms of the state ¢. Then we have

U=(U|; ey U,,)E E((i, (?)

where w«; is the i-th actuator torque/force. Given the
position § and velocity ¢, E determinates a set of input
space. If the equations of the parameterized path q(s)
are plugged into the dynamic equations, then they
become?** form:

ma+npt+rut+g=u

pEntrptg (56)

s=u
Here u is the time-derivative of the parameter s. The
cost C will be assumed to take the form

Smax

C= L(s, u, u)ds

0

(57)

The trajectory planning problem then becomes that of
minimizing cost subject to dynamic model and the
constraints of w. This problem is a classical dynamical
optimization problem for non-linear system and can be
solved, for example, by using the dynamic programming
method or graph searching method.?*** As we can show
by using the parameterized path, the dimensionality of
the problem has been reduced. There exist only two
states s and p, regardless of how many joints the robot
has.

To apply dynamic programming one must divide the
“phase plane” s—p into a discrete grid (sg, py, (s0)).
Next, under the assumption, that i, =const in the
interval [s,, 5x41], one can compute u and u as functions
of s from interval [s¢, Sk+1]-% Given the formulas (56) for
the pseudo-velocity p and the joint torques u, the
incremental cost of going from one point on the grid to
the next can be found as

Sk 41

Cltlo weoslse) = | LG, uGs), u) ds. - (58)

k

Once costs have been computed, the usual dynamic
programming algorithm can be applied with respect to
the following recursive form

L () = min [CQrals)s tic1(Sic+1))

+ L1 (i) (59)
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where [ (u,) is the optimal cost from (s, ) to
(Smaxs> Mana). Given the optimal sequence (sg, fi) from
the grid, it is then possible to calculate joint positions,
velocities and torques. Hence we can obtain an optimi
trajectory and the time of manipulator movement along
a geometrical path. The time-trajectories of the roba
movement allows us to establish times for each action of
the robot. The simplifications of the dynamic model and
discretization of the s parameter result in some errors in
the solution of the optimal trajectory problem. Mor
detail describing the errors can be found in refs. 22 & 23,
The times of motion computed by the planner are goof
estimates of the actual times despite the fact that they
are subject to errors resulting from the simplification of
the dynamic model and discretization of the motion
trajectory. The two-tier decomposition of the motion
planner is particularly suitable for evaluating th
operation of a manufacturing system where seven
variant interpretations of the robot’s motion are applied
Without changing the simulation model we can vary th
parameters of the experimental frame. More specifically
for each program command we can change the geometry
of the motion (change in the evaluation function), o
change the motion dynamics along the motion
trajectories (selection of criteria for time-minimal of
energy-minimal planning). Thus we can select the mod
effective variant for realizing the robot’s motion steps
Conventional manufacturing systems simulation tech
niques do not provide such facilities,'™ since they do ngt
embed the experimental frame/planner interface in ther
simulation layer.

5. AN EXAMPLE

Let us consider the technological process PRO(
consisting of the following operations: Op, = mill a deta!
and Op,=turn a detail. To every operation Op; tI
following devices are assigned: Op, — miller A as M; ant
robot R, Op,—>lathe B as M, and robot R, feede!
conveyor I as M, and output conveyor 0 as M.

The structure of a coupled DEVS simulation model d
this technological line (workcell) is shown in Figure 6
where mXY denote a robot’s motion between ¥
X-device and the Y-device. .

The geometrical model of the technological workeell®
shown in Figure 7. The figure presents the objects ant

m Ol
/ A = - m BI
/[ _mOA_f s X
Output mBo|Lathe B |maAB| Miller A
conveyor O Mo | Areee
Mg ﬁ Ty =

Xeg X

Robot R Acceptor

Fig. 6. Structure of a DEVS-model of the workcell.

/
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X, X
object | object R object O
WORK CELL
STATIC MODEL

Fig. 7. Geometrical model of the workcell.

their locations and orientations in the base Cartesian
frame EO'. The points I, A, B, 0 determine the initial and
ﬁ“al. POSItions of the effector-end for each robot’s
motion. Figyre g depicts one of the planned path of a
obo! Motion ;g path realizes a traslocation of part
from the myyje A to the lathe B. This collision-free path

# (t)]:)(:?i”j:g by an application of the graph searching
6 .

The mipj

dBalg Mum-time trajectory of movement between A

"8 the designed path is shown in Figure 9. The
SVent gimulation of the work-cell action is
Figure 10. The productivity of the work-cell
One detail each 634 sec. Figure 10a shows the
O}‘k of objects A —miller, B-lathe and
the Woékclg‘lre 10b illu§t§'ate_s the time of de_tail s'tays
i ating ti. Cll and jts division in the translocation time,
{f pot Moy, ° and waiting time. The global time of every
;‘; g 10, Ment, during 8 hours work is presented in

N

Q.
B Coy N LUsion-FREE PATH OF mov. AB
’ lS\
,4% ly

( n\free track of robot motion,
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time

3 J[sec)
2.24

RIS S 1
0 142
MINIMUM TIME TRAJECTORY OF mov.AB

minimum time = 2,24 sec

Fig. 9. Minimum-time trajectory of robot motion.

1245
4100 % Tﬂnslo::’g.
32%
. 72.2%
543%] 8149 . resting
Al B FT [249%|uaiting
a) b)
T'?OD%
257 28.5
22,8 15,2,
0 78
c) 01 TA AB R0 Bl 0A

Fig. 10. The result of a workcell action simulation.

6. FINAL REMARKS

We have presented a framework for automatic synthesis
of a discrete event-based simulator of a robotized flexible
manufacturing system. The simulator is a two-layer
system. The first layer comprises a discrete event model
of the manufacturing system and a model of a robot
servicing this system. The robot’s model is parametrized
by variables obtained from the simulator’s second layer.
This layer plans the robot’s motion steps. The steps
realize particular robot actions required to service the
manufacturing system. The second layer consists of two
subsystems: a) A subsystem responsible for planning the
geometry of motion; and b) subsystem responsible for
planning the motion dynamics. Such an architecture
facilitates convenient simulation of several realization
variants of the robot’s moves. This, in turn, allows us to
evaluate the operation of the manufacturing system
under different interpretations of the robot’s program.
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