Rec'd: 6/8/2011 8:40:05 AM

ivery

Document Deli

iversity of Arizona

Un

Journal Title: Lecture Notes in
Computer Science, 1992, Volume
585/1992, 634-646, DOI:
10.1007/BFb0021050

Article Author: Jacak, W. and
Rozenblit, J.W.

Article Title: Automatic Robot
Programming in CAST

Volume:
Issue: 585

Month/Year: 1992

Pages: 634-647 (scan notes and title/copyright

pages for chapter requests)

Imprint:

[}/S//n 10250 o
Paged by _(K (Initials)

Reason Not Filled (check one):

[0 NOS O LACK VOL/ISSUE

O PAGES MISSING FROM VOLUME
{0 NFAC (GIVE REASON):

Document Delivery
Article

Trans. #: 951106
AFAR AR R

Call #: TA345 .162 1991
Location: Science-Engineering Library

Item #:

CUSTOMER INFORMATION:

Liana Son Suantak
lianason@email.arizona.edu

STATUS: Faculty
DEPT: Electrical/lComputer Engr

University of Arizona Library

Document Delivery

1510 E. University Bivd.
Tucson, AZ 85721

(520) 621-6438

(520) 621-4619 (fax)
AskILL@u.library.arizona.edu

Automatic Robot Programming by CAST

Witold Jacak

Institute of Technical Cybernetics
Technical University of Wroclaw
50-370 Wroclaw, Poland

Jerzy W. Rozenblit

Dept. of Electrical and Computer Engineering
The University of Arizona
Tucson, Arizona 85721
U.S.A.

1 Introduction

In recent years, programmable and flexible automation has enabled partial or complete
automation of product machining and assembly. The economic pressure for increases in
quality, productivity, and efficiency of manufacturing processes has motivated the devel-
opment of more complex and detailed robot task planning systems. Such systems enable
an automatic synthesis of programs which control robot actions. Many of the domain-
independent approaches [6] ,(8],[11] to the automatic generation of robot action sequences
do not map well into the general machining, assembly, or fabrication problem.

The robot action sequence generation is only one phase in the hierarchy of steps
required to plan the robot’s behavior in programmable automation systems. More sys-
tematic approaches to the design and planning of actions are needed in order to make
the robot plan generation applicable to practical problems, to enhance their performance,
and to enable their cost-effective implementation. At the implementation level, the action
p}an generation system should also be capable of reasoning about the geometry and time
of actions.

In this paper we show that a stratified methodology can be applied to solve a problem
of automatic robot programming. This can be accomplished since robot actions can be
modelled in terms of different conceptual frameworks, namely, in terms of operational,
geometric, kinematic, and dynamic frameworks.

In general a task in a flexible production system is defined as a partially ordered set of
technological (machining or assembly) operations. To generate a program of actions for
a task, we have to find sensor-dependent time trajectories of the robot’s motions. These
trajectories must realize all the operations defined for the task.

This problem may have several possible solutions. They depend on the technological
operations and their order, sensor-dependent actions, geometric forms of the manipulator’s
paths, and the dynamics of movements along the paths. Thus it is necessary to apply
a hierarchical decomposition of the manufacturing task at hand into subproblems. We
then solve the program synthesis problem at several levels the system’s behavior modeling
abstraction. The system for automatic generation of robot programs consists of two basic
layers: a) Task Planning Layer, and b) Task-Level Programming Layer.

o e

i

.

———. e

635

" Task)

!

Task Planning Layer

Production Route Planner
T

Deadlock Avoidance Planner

1

|
(Fundamental Plan of Robot’s Actions)

)

Task Programming Planner

]
Motion Planner

T

Event-based Simulator
T

¥
(Apph'cable Program of Robot’s Actions)

Fig.1 Structure of Robot’s Program Synthesis System

Task-Level Planning is carried out based on a description of the operations of the
underlying manufacturing process, a description of the manufacturing system and its re-
sources such as devices, robots, fixtures, or sensors, and a description of the precedence
relation over the set of operations. The planner uses robot-independent planning tech-
niques. The resulting fundamental plan describes the decomposition of the task into a
sequence of elementary operations of robots and devices called Actions. The basic prob-
lem here is the derivation of an ordered sequence of robot actions that can be used to
perform the task. To solve it, two subproblems are defined. The first subproblem consists
in finding an ordered, feasible sequence of technological operations, called a production
route which can be transformed directly into the sequence of robot actions. In the second
subproblem we need to find the set of preconditions for each action, which guarantee that
deadlock does not occur once the actions are executed. The fundamental action plan for
a manufacturing task determines the robot’s program of manipulations required to carry
out this task. Such a program is a sequence of motion, grasp, and sensors instructions
expressed in the Task-Oriented Robot Programming Language (TORPL).

The implementation of the fundamental plan is carried out using a task-level program-
ming approach in which detailed paths and trajectories, gross and fine motion, grasping
and sensing instructions are specified. Variant interpretations of the plan’s TORPL-
instructions result in different realizations of the robot actions. To create and verify all
valid interpretations of the motion program, a two-level system is needed. The first level
is the Motion Planner [16], [12], for each individual robot action. The planner creates

636

variants of collision-free time-trajectories of the manipulator which executes each action.
Such a planner uses robot-dependent planning techniques and the discrete dynamical sys-
tem formalism [21]. The second level is the Discrete Event Simulator of the manufacturing
process. The simulator uses the Discrete Event System Specification (DEVS) (9] [10] for-
malism to model actions and technological devices. The motion interpretations variants
obtained from the Motion Planner form an experimental frame [QLof the DEVS simulator.
The simulation carried out at the second level is used to select the most effective variant
for realizing the robot’s program steps. The structure of the multilayer task planning
system is shown in Fig.1. In this paper we introduce basic research issues associated with
each level of the planner and discuss how different Computer Aided System Theory tools
and methods can address these issues. The paper is organized as follows: Section 2 gives a
detailed description and formulation of the automatic robot programming problem. Sec-
tion 3 presents the first layer of the task planning system. The second layer is described
in Section 4. The robot task planning problem is presented next.

2 Formulation of Robot Program Generation Prob-
lem

A flexible manufacturing system (FMS) is a set of programmable machines (technological
devices) D and product stores (buffers) M connected by a flexible material handling
facility (such as a robot or an automated guided vehicle), and controlled by a computer
connected with a system of sensors [5],[6].

An FMS performs technological operations, e.g., fabrication, machining, or assembly
operations. All machines and material handling systems (robots) have a high degree of
automation. The current state of an FMS is monitored by the sensory system (Sensor)
that collects and provides aggregate information about the state of the entire system, i.e.,

State = Sensor(FMS state) (1)
The FM S — state depends on the states of every machine and store. The state set of
each machine d; € D is defined as S; = {s,, s3, 3.} where

e s, signifies that machine is free
s 3, signifies that machine has completed an operation and is not free
e s signifies that machine is busy processing an operation

A task realized by an FMS is represented by a pair
Task = (0, <) (2)

where O is a finite set of technological operations necessary to process the task and-

< C O x O is the weak-ordering precedence relation in which o; < o; denotes that the
operation o; must precede the operation o;.

In this paper, the analysis 1s restricted to a class of tasks which transform only one
type of a part. Such tasks are called single-batch pipeline machining processes. Each
machining operation o; from the set O is assigned to a technological device (machine)
d; which can execute it and to a product store m; where a part can be stored after
the operation has been completed. Each machine has its own program for processing a
part. To automatically generate the robot’s program, we must determine for each robot
r servicing the process, a set of the FMS-state-dependent time trajectories of the robot’s
motions:

T, = {g-(z): 72 = Qr | z = Sensor(FMS state)} (3)

637

These trajectories realize the transfers of parts between machines. For each part, they
ensure that all operations from Task are executed. The trajectory g-(z) is a function
mapping the time interval 7, into the joint space Q- of the robot r. In addition, the

planned sequence of robot actions should minimize the makespan [6].
We propose that the robot program synthesis be realized by a multilayer, knowledge-
based robot task planning system. The architecture of this system is described in the

ensuing section.

3 Machining Task Planning Layer

The first phase of the robot’s program synthesis, namely the phase of the fundamental
plan generation is performed by the task planner. The basic problem at this level is the
derivation of an ordered sequence of robot actions that can be used to perform a machining
task. The set of fundamental actions that a robot can execute is defined. These actions

are represented by production rules {8],[11],[12] whose condition and conclusion parts
represent the precondition and add lists, respectively. The fundamental action or a robot

are:

Action, ;= TRANSFER FROM a TO b - transfer part from machine or store a to ma-
chine or store b, and

Action, ;= EXECUTE o ON b - start execution of operation o on machine b

In order to generate a plan of a task realization, actions have to be applied to affect
changes in the FMS states. An action can be applied to a sensor-monitored state of an
FMS if the preconditions are met. To establish the sequence of robot actions and their
precondition lists, we decompose the task planning problem into two su.bproblerns: a) the
technological process planning problem (called production route planning problem), and
bf the deadlock avoidance planning problem, solved on two respective levels of the task

planning layer.

3.1 Production Route Planning Level

The production route planning is based on finding an ordered sequence of technological
operations from Task with a minimum number of deadlock instances. This corresponds

to the operations scheduling problem [5]. o _
An ordered sequence of operations, called a pipeline sequential machining process, is

given by the following expression:
Process = (01,09, ...,0r) (4)
where:

(A) if for any two operations o;,0; from Task o; < o; holds, then i < j

(B) for each i = 1,...,L — 1 there should exist a robot which could transfer a part from
machine d; or store m; (assigned to the operation o;) to machine di4, (assigned to
the operation 0;4;)

(C) ilf two operations o; and o, are performed on the same machine, then | — k] =1 or
i — k| — max.

638

Oy Bl whviand

Fig.2 Production route in machining system

The technological process planning is based on the description of the machining oper-
ations, the description of the FMS’s geometry (i.e., relationships among robots servicing
machines and/or stores), the description of resources, and the precedence relation over
the set of operations. To solve the process planning problem, a graph representation of
Task can be used {7). Feasible decompositions of the machining task with respect to
the precedence relation are used to create an AND/OR graph that represents all valid
operation sequences. The scheduling problem is solved using a backtracking graph search
method with a heuristic penalty function.

Based on the sequence of operations Process that results from the machining process
planning, we create the fundamental plan of robot actions as follows:

' Plan = (Action]| i =1,...,L) (5)
-where:

Action! = (TRANSFER FROM d; or m; TO d;}1,EXECUTE o0;4; ON d;;)

In addition, we define a set of ordered sequences of technological devices and stores
(called resources) required by successive operations from the list Process = (o;]j =
1,...,L). This set of new sequences called production routes is denoted by P. Each
production route p€P is an ordered list of resources and has 2L + 1 stages, where L
denotes the length of the list Process. A production route p is created on-line during the
execution of the operations. In general, a route is defined as follows:

p=(p(1)li=0,1,...,2L) (6)
where:

(a) p(0) = mg where mq denotes & feeder conveyer,
(b) fori=2j—1and j=1,...,L, p(i) = d;

(c) fori=2jand j=1,...,L, p(i) =0 if direct transfer to machine d;;, is possible
or p(i) = m; otherwise.

Such a production route has always 2L + 1 elements. Some of them can be equal to zero.
The “minimal” production route has L+ 1 stages nonequal to zero. The “maximal” route
‘has 2L + 1 stages where p(i) = d; for odd 7 and p(z) = m; for even i. The production
route is illustrated in Fig. 2. The maximal route is denoted by pmaz.

In the production system considered in this paper, the so called circular wait deadlock
of pipeline processes can occur. Circular wait occurs if there is a closed chain of task
‘realizations, called jobs in which each job is waiting for a machine held by the next job
in the chain [2]. To eliminate deadlock, the execution preconditions for each robot action

639

are determined. This issue is addressed on the second level of the task planning layer,
which we call deadlock avoidance planning level.

3.2 Deadlock Avoidance Planning Level

Each execution of Process is called a job and is characterized by a production route
p. When a production route includes multiple uses of resources, jobs executing a single
route could become deadlocked. To avoid deadlock, the maximal production route pmaz
is partitioned into sublists called zones. A unique set of Z zones is defined as follows:

Pmez = (2zk|k = 1,...,Z) (7

where: z, = syu; and u; is the sublist of resources which appear only once in the
production route Pmas and sy is a sublist of resources which are used more than once in
this route. Given this decomposition, we specify preconditions for each action based on
theorems presented in [2],[3],(4]. These theorems determine the policy of required device
allocation to the current job, dependent on the states of the resources in each zone.

The preconditions of Action; are formulated as a boolean function of sensor signals
describing the states of the machines and production stores [5],(6]., i.e.,

ConAct; : Sensor(FMS states) — {0,1}

If the preconditions are satisfied by the current state of the FMS, then the parameters
of Action; can be established. The parameters of Action;, represented by the function
Paramy;, describe the objects between which action TRANSFER has to be performed, i.e.,

Param; : Sensor(FMS states) — {(d;, diy1),(di,m;), (mi,ditq)}

This completes the definition of the fundamental plan of robot actions. Each action
Action; from the Plan has the structure shown in Fig 3.

Given the sequence of Actions we should determine the program for robot operations
and the geometrical trajectories of robot movements for each operation.

4 Task-level Programming Layer

The elementary actions of a robot can be expressed as instructions of a robot programming
language, called Task-Oriented Robot Programming Language (TORPL). The instructions
can be interpreted in many different ways. The basic macro-instructions of TROPL are :
MOVE (EMPTY, HOLDING) TO position, GRASP, PICKUP AT position, PLACE ON
position, WAIT FOR sensor input signal, INITIALIZE output signal, OPEN GRIPPER,
CLOSE GRIPPER &}3%[14],[165). The basic instructions can be combined into higher level
macros such as the PICK-AND-PLACE instruction [15],[16].

In this set of instructions, the action TRANSFER FROM a TO b can be interpreted as
the PICK-AND-PLACE FROM x TO y macro-instruction, where x denotes geometrical
datq of the output port of the device (store) a, and y is the position and orientation of
the input port of the device b. This macro-instruction is decomposed into a sequence of
more primitive instructions as illustrated below [14],[15],{16]:

TRANSFER FROM a TO b :=
[begin PICK-AND-PLACE]
MOVE EMPTY TO x+v (x=position of output port of a
and v is approach vector)
PICKUP AT x 1=
[begin PICKUP]

640

Conditional Block Checking of action’s preconditions

ConAct;(Sensor) = 0or 1
T

Specification Block Specification of action’s parameters

Param;(Sensor) = (a,b)
il

Realization Block Execution of transfer between a and b

TRANSFER FROM a TO b
1

Execution Block Execution of technological operation

EXECUTE operation;y; ON &

Fig.3 Structure of Action; from Fundamental Plan

CENTER GRIPPER grasp orientation of effector
OPEN GRIPPER
MOVE EMPTY FROM x+v TO x
WITH APPROACH = v
CLOSE GRIPPER
WAIT FOR contact signal with part

MOVE HOLDING FROM x TQ x+v WITH DEPARTURE = v
[end PICKUP]

MOVE HOLDING FROM x+v TO y+v (y=position of input
port of b)
PLACE ON y
[end PICK~AND-PLACE]

The positions x and y are determined by the function Param;(Sensor) with a spec-
ification of geometric parameters for each action. The above instructions are used to
synthesize the robot’s program. The instructions for the action EXECUTE can be trans-
lated into TORPL in a similar manner.

The fundamental function of the Task Programming Layer is to synthesize the robot’s
motion trajectories. The trajectories realize the MOVE and GRASP instructions. They
also determine the duration of the moves. To generate the trajectories, we must have
available the geometric models of all the machines and stores of the production system
as well as models of the robot’s kinematic and dynamics.

The robot’s motion trajectory planning process is decomposed into two subproblems:

1) planning of the collision-free geometric track of motion, and 2) planning of the motion
dynamics along the computed track. :

641

41 Level of Collision-free Motion Planning

The first level in our framework employs only the kinematic model of the man.ipulator.
The planner should be able to determine the collision-free track of robot motion from
the initial to the final effector locations based on a) the geometric and kinematic de-
scription of the robot, and b) its environment and the initial and final positions of the
effector-end. This problem has been addressed in various ways and is widely reported in
literature [16],[17],[22]. The methods which solve the problem in question depend on the
assumed mathematical model of the robot’s kinematics. One possible-description of the
manipulator’s kinematics is a discrete dynamical system [18],{19],[21},{20].

R = (U’ C’ A) (8)
where:

U is the input signal set. In order to specify the set U the discretization of the robot’s
Joint Space [22] is performed. In this case the input signal set U is equal to B™
where B = {—1,0,1} and +1(-1) denotes a one-increment increase (decrease) of an
appropriate joint angle [18],[21].

C is the set of robot’s configurations (manipulator states) in the Cartesian space, i.e.,
configuration ¢ = (p;|¢ = 1,...n + 1) where p; is the point in the Cartesian base-
frame describing the actual position of the i-th joint.

A:C x U — C is the one step state transition function [18],{21].

The construction of the transition function A of the robot’s kinematics model allows us
to obtain, by simple computations, successive configurations of the robot with respect to
the base frame.

The problem of collision-free robot movement planning amounts to finding a sequence
uy = (vl .., u’f) of input signals such that the terminal configuration reaches the effector’s

final position, i.e.,
A*(co,uk) = cx and p,’fﬂ = final position of ef fector

and every configuration ¢; for i=1,..,K must not collide with any obstacle in the robot’s
environment.

In order to solve the terminal configuration reachability problem, we apply a graph
search procedure to the state-transition graph of the model R. The details concerning
the path and grasp planner are given in [16],[22].

From the path planner, we obtain an ordered sequence ¢* = (cy, .., ¢k) of the configura-
tions which define how to move the effector end from the initial into the final position. The
sequence ¢* can be easily transformed into a sequence ¢* = (qo, .., gk) of the manipulator
states described in the Joint Space [20]. Next, a geometric track can be constructed by
connecting the configurations from ¢*. This can be accomplished by using, for example,
cubic splines [23]. Finally, the geometric track can be given in the form of a parameterized
curve

q - [so,smaz] - Q
where the initial and final configurations of the track correspond to the points s = sg and
8 = Smagz, respectively.

Now, the optimal speed and acceleration of movements along the computed track

should be calculated. This task is solved on the trajectory planning level.

642

4.2 Level of Optimal Trajectory of Robot Motion Planning

The trajectory planner receives the geometrical tracks as input 'and determines a time
history of position, velocity, acceleration and input torques, which are then fed to the
trajectory tracker. On this level, the robot is represented by the manipulator’s dynamics
model {22],{23].

If the equations of the parameterized track q(s) are substituted into the dynamic
equations, they take on the following form [23],[22]

m(s)is +n(s)? + r(s)u + g(s) = F 9)
$=p
where: m(s) is the pseudo-inertia factor, n(gs) is the pseudo-Coriolis force factor, r(s) the
viscous friction factor and ¢(s) is the pseudo- gravitational force factor.

Here p is the time-derivative of the parameter s. The cost of motion along a track is
assumed to be:

Cost = /’mu L(s,pu, F)ds
80

The trajectory planning problem is then reduced to minimizing cost, subject to the dy-
namic model specification and the constraints on the torque F'. This is a classical dynam-
ical optimization problem for a non-linear system. It can be solved by using the dynamic
programming method [23], [24]. Hence, we can obtain an optimal trajectory and the time
of the manipulator’s movement along a geometrical track. Such a planner can generate
variant interpretations of robot action plans. For each instruction of the robot’s program,
we can change the geometry of the motion or change the motion dynamics along the
track, by selecting criteria for minimal-time or minimal-energy planning. Variant inter-
pretations of the language instructions result in different realizations of the robot actions.
This motivated us to introduce a procedure that would automatically verify the semantics
of the robot’s program. This procedure is described briefly in the next section.

4.3 Level of Discrete Event Simulation of Robot Actions

The variants of motion interpretation obtained from the motion planning level are tested
by a simulator. Simulation is used to select the most effective variant. The program
synthesis process requires that we introduce conditional instructions which depend on the
states of each machine d; of the machining line (see function ConAct in Section 3.2) and
the operational instructions that realize the actions. Thus, to define a simulator of the
program, we model conditions that enable program instructions. Each machine d; has the
following DEVS [15] representation:

Dev; =< X, S, Y, bins, 6c:cta /\a t, >

where:

X is a set, the external input event types
S is a set, the sequential states
Y is a set, the external output event types
6;nt 1s a function, the internal transition specification
deze 1s a function, the external transition specification
A is a function, the output function
t, is a function, the time advance function
with the following constraints:
(a) The total state set of the system specified by Dev; is
Q = {(s,e)ls € 5,0 < e < tafs)}s

643

(b) 8int is a mapping from S to S:
int + 0 D5
(€) begt is a function:
Oext Q XX —S5;
(d) t, is a mapping from S to the non-negative reals with infinity:
a : -)
(e) A is a mapping from S to Y:
A:S Y.
A complete explanation of DEVS and its semantics is presented in [10].
The state set S; of each Dev; is defined as S; = {s, s}, st} as given in Section 2.
Assume that the i-th position denotes the location of an input/output port of machine
at which a part is placed. The set of external events for Dev; is defined by the commands

of the TORPL, namely:
X,' = {zl.-,xZ,-,a:O} | 1= 1,...,L

where:

zl; = PLACE part ON i-th position,
t2; = PICKUP part AT i-th position,
z0 = DO NOTHING

The internal transition function for each machine i is given as follows:
5:nt(si) = si 53.:(33) = 3;; &nt(si) = 3;;
The external transition function for each machine ¢ is defined as:

a(sh,71) = 51 8l(siy22) = o
beze((s, 20) =3 8:2¢((.+-), .) = failure for all other states

The time advance function for Dev; determines the time needed to process a part in
the i-th machine. It is defined as follows: if s = s, then ta’(s) = ¥ (the tooling/assembly
time of operation k for machine 2), otherwise ta'(s) = oo.

The above specification defines a model of the machining system. The activation of
each machine Dev; is caused by an external event generated by the robot’s model. This
model is realized by a generator of an experimental frame component [10] associated with
the production system model. Since the events generated by each robot depend on the
states of the workcells Dev;|i = 1,..., L, we define an acceptor which observes the state
of each workcell. The block diagram of the entire simulation system is given in Figure 4.

Rather than provide a detailed mathematical description of the experimental frame
models here, we describe their functionality. (The reader is referred to [15] for a complete
formal specification of the simulator of Figure 4.) The acceptor is a DEVS that receives
as input state descriptions of each machine Dev;. It selects events which invoke a robot
to service a workcell. The acceptor state set is a class of subsets of indexes of workcells
Dev;. The state contains indexes of only those workecells which have completed processing
of a part and from which the part can be transported to another workcell (i.e., the
preconditions of next operation are satisfied (see function ConAct)). The states of the
acceptor also determine state components of the frame generator that models the behavior
of every robot.

The DEVS-model of each robot contains the state set Sg = S, X Positions x HS,
where S, is the state set of the acceptor, Positions is the set of positions of the robot’s
effector-end in the base-Cartesian space, HS is the set of states of the effector, i.e., HS =

{Empty, H olding}. The internal transition functions are represented by the following
sequences in TORPL:

644

DEVS Simulator of Work-Cells

mo d, m dy | e — df mpr,
'
s [s T L S
z z T
Events Control States

R R bot R

! 2 Robots * Acceptor
r []

Generator

Fig.4 Discrete Event Simulator of Machining System

MOVE EMPTY TO i- position
PICKUP part AT i- position

for the Empty state of the effector-end, and

MOVE HOLDING part TO k position
PLACE part ON k position
INITIALIZE start signal for machine k

for the Holding state of the effector-end.

This robot model reflects adequately each segment of the synthesized program. The
‘time advance functions determine a) the sum of the time of motion to position and the
time of the pickup operation, b) the sum of motion time from the position i to the position
k and the time of the place operation on the k-th machine, for Empty and Holding states,
respectively. The robot’s model also generates external events (i.e., PICKUP, and PLACE
) for machines Dev;, which trigger their corresponding simulators.

The simulation model of the machining system is the basis for testing the program
with a varying range of motion parameters. The most important parameters are the
time it takes to complete an operation k, 7¥, and the time the robot requires to service

a workcell. The time 7} depends on the type of machine on which the i-th operation
is being processed. It is fixed but can be changed by replacing the machine. Similarly,
the times of PICK UP and PLACE operations are determined by the type of part and
machine on which the part is processed.

The times of the robot’s inter-operational moves (transfers), 75, depend on the ge-
ometry of the work-scene and the cost function of the robot’s motion. This cost function
determines the dynamics of motion along the geometric tracks and the duration of the
moves. These data must be accessible in order to simulate the entire production system.

The simulation level completes the multilayer system for planning and programming
robot tasks in flexible machining.

645

5 Summary and Conclusions

A comprehensive framework for generating a robot’s program for an automated production
system will require an integration of several layers of system theory-based support methods
and tools. Each layer of the robot’s program synthesis system requires different CAST
tools. The tools for each level are:

o Level 1: graph search methods

o Level 2: Petri net methodology

o Level 3: discrete dynamical system methods
e Level 4: discrete optimization methods

o Level 5: event based system formalism
Our current research focuses on developing an architecture that will facilitate:

e automatic generation of different plans of sequencing operations realizing a given
technological task (operations scheduling problem)

e synthesis of programs for robots servicing the devices
e planning and interpretation of robots’ motion programs
e synthesis of autonomous robotic system’s simulation models

* testing and verification of effectiveness of program execution based on the inter-
preted programs of robots’ actions and simulation modeling of the overall system
architecture

The integration of all the above features is a complex task, with each of the functions
being a research topic in itself. Most existing planning systems facilitate only one mode
of operation, i.e., the off-line input of robot’s program and subsequent testing of the
program by graphic animation of robot’s motions in a geometric model of the work-scene.
The systems are capable of detecting collisions. However, they cannot plan collision free
motion. They do not facilitate simulation of a workeell in order to evaluate its efficiency.
They cannot emulate a programming language that would actively use a simulation model.
Such languages do not exist yet. Our future work will focus on the automatic generation
of such a language.

References

(1] F.Pichler, CAST Modeling Approaches in Engineering Design Lecture Notes in Com-
puter Science 410, 52-68, 1990

[2] E.G. Coffman, M. Elphick, A. Shoshani. System Deadlock.Computing Surveys,
3(2),67-78, 1971

(3] H.M. Deitel An Introduction to Operating Systems. Addison-Wesley,1983

[4] B.H.Krogh, Z.Banaszak. Deadlock Avoidance in Pipeline Concurrent Processes. Proc.
of Workshop on Real-Time Programming IFAC/IFIP, 1989

646

[5] A. Kusiak Intelligent Manufacturing Systems. Prentice Hall. 1990
(6] J.E. Lenz. Flezible Manufacturing. Marcel Dekker, Inc., 1989

[7] L.S. Homem De Mello and A. C. Sanderson. AND/OR Graph Representation of
Assembly Plans. IEEE Trans. on Robotics and Automation, 6(2), 188-199, 1990.

[8] A.C. Sanderson, L.S. Homem De Mello and H. Zhang. Assembly Sequence Planning.
Al Magazine, 11(1), Spring 1990

[9] J.W. Rozenblit and B.P. Zeigler. Design and Modelling Concepts, in: International
Encyclopedia of Robotics, Applications and Automation, (ed. Dorf, R.) John Wiley
and Sons, New York, 308-322, 1988

[10] B.P. Zeigler. Multifacetted Modelling and Discrete Event Simulation, Academic Press,
1984

[11] N.J. Nilsson. Principles of Artificial Intelligence, Tioga, Palo Alto, CA. 1980

[12] W.Jacak, Robot Task and Motion Planning. in: 41, Stmulation and Planning in High
Autonomy Systems, IEEE Computer Society Press, 168-176, 1990

[13] B. Faverjon. Object Level Programming of Industrial Robots. IEEE Int. Conf. on
Robotics and Automation, 2, 1406-1411. 1986

[14] R. Speed. Off-line Programming of Industrial Robots. Proc. of ISIR 87, 2110-2123,
1987.

[15) W. Jacak and J.W. Rozenblit. Automatic Simulation of a Robot Program for a
Sequential Manufacturing Process, Robotica (in print) 1991.

[16] T. Lozano-Perez. Task-Level Planning of Pick-and-Place Robot Motions. [EEE
Trans. on Computer 38(3), 21-29, 1989.

[17] R. Brooks. Planning Collision-Free Motions for Pick-and-Place Operations. Int. J. of
Robotics Research 2(4), 19-44, 1983.

[18] W. Jacak. Strategies for Searching Collision-Free Manipulator Motions: Automata
Theory Approach. Robotica, 7, 129-138, 1989.

[19] W. Jacak. Modeling and Simulation of Robot Motions. Lecture Notes in Computer
Science, 410, 751-758, Springer Verlag, 1990.

[20] W. Jacak. A Discrete Kinematic Model of Robot in the Cartesian Space. IEEE Trans.
on Robotics and Automation,5(4), 435-446, 1989

[21] W. Jacak. Discrete Kinematic Modelling Techniques in Cartesian Space for Robotic
System. in: Advances in Control and Dynamics Systems, ed. C.T. Leondes, Academic
Press, (in print) 1991

[22] M. Brady ed. Robot Motion: Planning and Control MIT Press, 1986

[23] K.Shin, N.McKay, A Dynamic Programming Approach to Trajectory Planning of
Robotic Manipulators. IEEE Trans. on Automatic Control, 31(6), 491-500, 1986

[24] K.Shin, N.McKay, Minimum Time Control of Robotic Manipulator with Geometric
Path Constrains. IEEE Trans. on Automatic Control, 30(6), 531-541, 1985

