
Subcomponent Timing-based Detection of Malware
in Embedded Systems

Sixing Lu, Roman Lysecky, Jerzy Rozenblit
Department of electrical and Computer Engineering, University of Arizona
sixinglu@email.arizona.edu, rlysecky@ece.arizona.edu, jr@ece.arizona.edu

Abstract—Network-connected embedded systems require multiple
lines of defense against malware. In addition to preventing
malware by designing secure interfaces and software, anomaly-
based detection is needed to detect malware that successfully
infiltrates these defenses. Timing based anomaly detection
strengthens embedded system security by detecting anomalies in
the execution time of critical software tasks. However, existing
timing based anomaly detection methods use a lumped timing
model that aggregates the timing of the software, processor
architecture, operating system scheduling, etc., and thereby incurs
significant variability. We present a non-intrusive hardware
detector supporting two novel timing models, including a lumped
timing multi-range model that clusters timing into multiple range
bounds, and a subcomponent timing model that defines bounds for
timing subcomponents of events. Timing subcomponents include
intrinsic software execution, instruction cache misses, data cache
misses, and interrupts. The experimental results demonstrate that
the detection based on subcomponent timing model achieves
greater malware detection accuracy compared to the lumped
timing model without increasing false positives.

Keywords—Timing-based detection; Timing subcomponents;
Anomaly detection; Embedded system security; Non-intrusive

I. INTRODUCTION
Historically, embedded systems were not dramatically

affected by malware because such systems were physically
secured and lacked network connections. With pervasive
network access, network-connected embedded systems face
increasing threats from malware. For example, the Internet of
Things (IoT), which includes devices for healthcare, home
monitoring, and smart city applications, among others, is
expected to reach several billion devices by 2020 [20], and their
security is of great concern given their impact on privacy and
safety. A few notable threats, including injecting a fatal dose of
insulin in an insulin pump, compromising smart TVs for click
fraud, exploiting a vehicle’s keyless entry system to steal cars,
etc. [19], have demonstrated the potential impacts (life
threatening in some cases) of malware.

While traditional proactive methods that seek to secure
embedded systems by eliminating vulnerabilities are essential,
they are not sufficient to fully secure systems. As system
complexity grows, the likelihood of undiscovered
vulnerabilities increases. Therefore, runtime detection is needed
to detect the presence of malware. Signature-based detection
methods [15] have limitations in detecting new and unknown
malware [9], leaving systems vulnerable to zero-day exploits.
In contrast, anomaly-based detection methods detect execution
deviations from a pre-established specification of normal
behavior, which can detect the anomalous execution of zero-

day malware. Additionally, anomaly-based detection reduces
the memory overhead required to store a large database of
known malware as only the specification of normal behavior
must be stored [3]. Several anomaly-based detection methods
have been developed to detect anomalies in an embedded
system’s execution sequences [25], dataflow [1], memory
accesses [23], and execution timing [7][12][13][24].

Modeling execution sequences is efficient and can be
implemented at different granularities [16], but these detection
methods are vulnerable to mimicry attacks. Mimicry attacks
avoid detection by mimicking the correct system execution by
interleaving normal operations with malicious operations [21].
Modeling dataflow and memory can detect malware intrusion
related to memory data changes, but the normal system model
is often very complicated, and data required for detection may
not be accessible at runtime.

Modeling the timing of embedded systems increases the
sophistication needed to construct mimicry malware, thereby
achieving higher detection rates [7]. Attackers may be able to
develop malware that mimics timing, but such attacks require a
higher degree of sophistication. Since embedded systems are
sensitive to timing, the scope of what a mimicry malware can
accomplish without changing the timing is restricted. However,
previous timing based anomaly detection methods use a lumped
timing model to create the specification of the normal system
behavior. A lumped timing model uses a single timing value
(e.g., wall clock time) to represent the time of events being
executed. Fine-grained lumped timing models have been
utilized to define timing bounds of basic blocks [12], for which
the fine granularity affords reasonably low timing variability
and can thus detect malware’s timing changes. The fine-grained
timing models incur significant performance overhead for
software-based implementations and significant area
requirements for hardware-assisted implementations.
Alternatively, coarse-grained timing models define timing
bounds at the function, system call, or task level events, which
reduce the overhead but introduce significant timing variability.

A lumped timing model with a single-range bound has the
advantage of a simple implementation and low storage
overhead, but has a few limitations. First, an event’s execution
may occur in different execution paths, application tasks, or
execution scenarios and may operate on different data. As such,
the timing for an event often naturally fits into multiple, non-
overlapping timing ranges. Thus, the single-range bound of a
lumped timing model is unable to detect malware whose timing
falls between the individual non-overlapping ranges. Second,
the lumped timing model includes all variability within the
system that can significantly increase the timing bounds.

This research was partially supported by the National Science Foundation
under Grant CNS-1615890.

2017 IEEE 35th International Conference on Computer Design

1063-6404/17 $31.00 © 2017 IEEE

DOI 10.1109/ICCD.2017.12

17

Timing variability is introduced by the processor architecture
(e.g., delays from cache misses, branch mispredictions),
memory hierarchy (e.g., off-chip memory access latency),
operating system (e.g., task scheduling and interrupts), etc. This
variability may mask malicious timing changes, limits the
effectiveness of malware detection and simplifies the mimicry
malware creation for attackers.

Toward overcoming the disadvantages of lumped timing
single-range models, we present two novel timing models,
including a lumped timing multi-range model and a
subcomponent timing model. The lumped timing multi-range
model decomposes the lumped timing into multiple ranges
using a standard clustering algorithm. The subcomponent
timing model extracts several timing subcomponents from the
lumped timing, including intrinsic software timing and
incidental timing from interrupts, instruction cache (I$) misses,
and data cache (D$) misses. We further design non-intrusive
hardware-assisted detectors with these models for monitoring
the timing of events using a processor’s trace port with zero
performance overhead. Using a smart connected pacemaker
prototype, experimental results demonstrate the effectiveness of
the subcomponent timing model in detecting sophisticated
mimicry malware while keeping false positives low.

II. RELATED WORK
Several efforts use event timing for malware detection.

SHIELD [12] detects violations of single lumped timing bounds
for basic block within an application, by instrumenting the
software binary with special instructions. Similarly, iCUFFs
[13] employs single lumped timing to detect code injection and
software errors. However, their instrumentation introduces code
size and performance overheads, ranging from 6.6% to 44%.
SecureCore [24] models the normal system behavior as a
distribution of a lumped timing model for each basic block.
Anomalous execution is detected if the probability of an
observed lumped timing value is lower than a specific threshold
(e.g., 5%). The probabilistic threshold used in SecureCore
increases the sensitivity to timing variability, and thus achieves
good detection rates. However, the threshold also introduces
false positives, which can be very high. For the file
manipulation malware considered in this paper, even with a low
threshold of 1%, SecureCore’s false positive rate exceeds 10%.
In addition, the fine-grained detection and uniform distribution
requirements for each bin incurs a high memory overhead to
store 1000s of bins for each basic block’s timing distribution.
Zimmer et al. [26] designed an intrusion detection method
based on the lumped worst-case execution time (WCET) of an
application’s function call return path. This detection system is
intrusive because it is implemented within the OS and requires
disabling caches to measure the timing.

These software-based detection methods require modifying
the software application to incorporate special instructions,
which modifies original system behavior, or require a separate
processor to perform the analysis needed to detect anomalies,
which incurs high overheads. Alternatively, hardware-assisted
approaches can eliminate or reduce this performance penalty.
Rahmatian et al. [14] designed a hardware-assisted anomaly
detector integrated within a processor datapath that monitors the
instruction register to detect system calls. This approach

provides faster detection compared to software-based methods
and can detect malicious activity without affecting the system
performance. However, the approach is susceptible to mimicry
attacks and requires modification to the processor core. S3A
[11] uses a trusted hardware component to detect if the
execution time or activation period of periodical tasks within
embedded control systems are too small or large. RAD [7] is a
hardware-assisted detector that detects single lumped best-case
execution time (BCET) and WCET bounds and monitors
function/system calls. These approaches achieve good detection
rates, but they all use a lumped timing model for coarse timing
that introduces significant timing variability, which then allows
some monitored events to be more easily mimicked.

III. SYSTEM ASSUMPTIONS AND THREAT MODEL
The focus of this paper is the design of timing models and

hardware for anomaly-based malware detection given the
following assumptions and pre-conditions:

1)� The target malware is sophisticated mimicry malware that
interleaves malicious code with normal execution by
nullifying events (e.g., null pointer arguments, nonexistent
files, arbitrary data) to mimic system execution [21]. Note
that mimicking is not the malicious goal but rather a way
of implementing malware. We integrate sequence-based
anomaly detection [8] in all malware detectors by default,
which can detect non-mimicry malware and necessitates
the need for an attacker to use mimicry malware.

2)� An attacker is able to create malware and remotely insert
the malware into the system utilizing a software exploit,
which may be unknown or known but unpatched at the time
of insertion. The attacker is able to determine the execution
order of the original software using binary analysis,
simulation, or direct access to the software code.

3)� Our target system is a smart connected pacemaker
prototype that enables the implementation and analysis of
different malware, which is not possible using standard
embedded application benchmarks. We currently consider
either a single core system or a multicore system with static
task to processor assignment. However, the detector
designs presented in this paper can be directly applied to
any embedded applications.

4)� The granularity of detection in this paper is at the level of
system/function calls in the software application and
interrupt service routines (ISR), which we collectively call
events. However, detection with coarser or finer
granularity (e.g., time between two system calls) is possible
and would follow the same design principles.

5)� Any system updates would simultaneously update the
binary and the normal execution model, the latter of which
is configured within the hardware detector, which is
assumed to be trusted, during the secure boot process.

Typical threats for embedded systems used within
healthcare applications include: a) manipulating cardiac log to
deceive the physician into making incorrect diagnoses, b)
leaking sensitive healthcare data to unauthorized third-parties,
or c) interfering with the system execution to affect the essential
functionality. While public malware repositories are available,
the malware attack templates contained therein focus on how to

18

exploit specific vulnerabilities, which is not the focus on this
paper. Instead, this paper focuses on detecting malware that has
already exploited such a vulnerability and is actively executing
in the system. As such, we used four mimicry malware that
achieve these malicious goals, including a file manipulation
malware, an information leakage malware, and two fuzz
malware, which are constructed based on known malware.

IV. TIMING MODEL ANALYSIS

A. Lumped Timing Single-Range (LTSR) Model
A lumped timing single-range (LTSR) model uses a single

timing value to represent the normal execution time of each
event and defines the timing bound as a single range [BCET,
WCET]. The problem of determining BCET and WCET has
been widely studied for embedded systems and numerous tools
have been developed to automate this process, in which this
problem can be solved either by statically analyzing the
software application or by dynamically training the system [23].

Figure 1(1) presents an example of how the LTSR model
can detect anomalous timing for three events, specifically the
mutexunlock, fileexists, and genhttpheader functions, from the
smart connected pacemaker application for a fuzz malware (see
Section VI). In Figure 1, LTSR can detect the malware when
the malware timing (dashed line) has non-overlapping parts
with normal single range (solid line). The probability of
detecting malware is higher if the malware timing has less
overlap with the normal execution’s lumped timing.

The advantage of the LTSR model is its simple
implementation in both the training and runtime detection. Only
the minimum and maximum timing values of each monitored
event need to be stored in the detector, which reduces storage
overhead. The disadvantage of the LTSR is twofold. First, an
event’s execution may be located in different paths under
different scenarios or with different arguments, such that the
normal timing may fit into multiple non-overlapping ranges.
Therefore, a single timing range cannot detect malware timing
that is located between these ranges. Second, lumped timing
includes all variability within the system and yields less
sensitivity to malware timing (e.g., an interrupt can extend the
normal range). Therefore, an extended normal timing range
cannot detect malware timing that deviates slightly. For the first

disadvantage, dividing the single range of the lumped timing
into multiple ranges can increase detection accuracy, which
leads to the idea of the lumped timing multi-range model. For
the second disadvantage, decomposing the lumped timing into
subcomponents can reduce the timing variability and thus
increase detection accuracy, which leads to the idea of
subcomponent timing model.

B. Lumped Timing Multi-Range (LTMR) Model
Compared to the LTSR model, the lumped timing multi-

range (LTMR) model divides the normal single range into
multiple ranges, which represents timing behavior at a finer
granularity. As shown in of Figure 1(2), using the LTMR model
can detect malware timing that falls outside the bound of each
range (e.g., malware timing values ranging from 891 to 894
cycles in Figure 1(2)(a)), which shows the potential to increase
detection rate with multi-ranges.

The finer timing detection of multiple ranges comes at the
expense of more complex training and higher hardware costs.
The number of ranges for an event depends on the path an event
belongs to, arguments passed to the event, and influences from
other events. Several approaches can be used to determine these
normal timing ranges and train the timing models. One
approach is to execute the application under different scenarios
(e.g., different data inputs) that define different ranges. An
alternative approach is to analyze all data post-collection by
statistically dividing all lumped timing into ranges.

A larger number of normal timing ranges provides finer
detection granularity but would result in longer training time
and more storage overhead at runtime. We currently consider a
LTMR model with three timing ranges, which allows for a
direct comparison with the subcomponent timing model that is
composed of three timing subcomponents.

C. Subcomponent Timing (ST) Model
The timing of specific operations is affected by the

underlying system architecture, operating system, and
execution environment, which can lead to unpredictable timing
behaviors (e.g., cache behaviors). For example, the execution
time of a function call is influenced by the instructions
generated during compilation, processor frequency, pipeline
structure, cache/memory access delays, interrupt execution,
context switches, etc. Therefore, the timing of events can vary
widely, such that detecting malicious execution may be
difficult. Consider the timing variability introduced by an
interrupt executing during another event. The interrupt adds a
time delay to perform a context switch to the ISR, execute the
routine, and perform a context switch back to the original task.
In a lumped timing model, the execution time of the ISR will be
lumped into the WCET bound. Nevertheless, the execution of a
malicious operation may only require a small amount of code
that has a comparatively low time delay. Thus, the prolonged
WCET may make the anomaly detection insensitive to the
malware timing.

Fortunately, the information from the microprocessor’s
trace port can be utilized to analyze the low-level execution
behavior of system operations to separate the timing into
several subcomponents. We define two classes of timing,
namely intrinsic timing and incidental timing. Intrinsic timing

(1)
Lumped Timing
 Single-Range

(5)
Subcomponent
Timing I$ Miss

(4)
Subcomponent

Timing D$ Miss

(3)
Subcomponent

Timing Intrinsic
Software

(a) mutexunlock

816 952926

611 719714

2 144136

132 152 159139

849

641

24

(b) fileexists

1587 1773 2548

542 11581068

323 629266

474 803463447

1657

968

224

(c) genhttpheader

11319 11461 22345

826 26951061

6366 102246327

4080 672840964073

11207

907

6213

(2)
Lumped Timing
 Multi-Ranges 891838816 833 926894849 952

2274
1924

1587 2548
2287

2029
2089

22345
11694

11319
11461

11207
13797

19398

Figure 1. Comparison of normal timing bound (solid line) and a fuzz
malware timing range (dashed line) for LTSR, LTMR, and ST models.
The ST model includes separate timing bounds for each
subcomponent. Time values are in clock cycles. Not to scale.

19

is the timing intrinsic to the execution of specific software and
its data inputs, in the absence of delays or interference from the
system architecture, OS, or other tasks. In other words, the
intrinsic timing is the ideal software execution time, which is
relatively stable. Incidental timing is the timing due to the
execution environment in which the software is executed, and
incorporates several subcomponents. Within the current
approach, incidental timing subcomponents include I$ misses
and D$ misses. These subcomponents can detect malware by
identifying changes in the temporal and spatial characteristics
of instruction and data addresses. For example, an information
leakage malware that increases the number of writes to data
memory may evict data stored in the D$, thereby leading to
increased data cache misses for other operations.

To determine accurate timing bounds for intrinsic and
incidental subcomponents, the interference from the execution
of interrupts and other tasks must be isolated. The frequency of
interrupts can be sporadic, and failing to isolate the interference
would lead to pessimistic WCETs, which in turn makes
detecting malware more difficult. Once isolated, the intrinsic
and incidental timing subcomponents represent the tightest
possible bounds on the execution time of software operations.
The resulting subcomponent timing (ST) model is more
accurate, more sensitive to malware execution, and provides
greater malware detection ability.

Figure 1(3)(4)(5) presents the normal subcomponent timing
ranges in solid lines (with single normal range for each
subcomponent) and the malware timing ranges for three
software events in dashed lines. Using the ST model, the
mutexunlock’s normal intrinsic timing only has a 65% overlap
with the malware’s intrinsic timing, while the LTSR and LTMR
models yield a 75% and 72% overlap, respectively. Although
the LTSR and LTMR models are able to detect the malware, the
smaller timing overlap in the ST model’s intrinsic timing leads
to a higher detection rate. For many events, the timing
variability is often attributed to a single subcomponent, such as
the D$ miss subcomponent for fileexists and the I$ miss
subcomponent for genhttpheader in Figure 1(b)(c).

The advantage of ST model is reduced timing variability, as
the timing variability of each subcomponent is isolated. This in
turn makes mimicking timing behavior of an event harder and
increases detection accuracy. However, the tradeoff is a more
complex data collection process.

V. NON-INTRUSIVE DETECTOR DESIGN
Hardware-assisted malware detection requires no additional

software code to specify or detect the occurrence of events.
Instead, a hardware detector can interface with the trace port of
the processor to analyze trace signals and detect both the
occurrence and timing of events. Processor trace ports are
common interfaces provided by processor manufacturers, and
widely used within systems-on-a-chip (SOCs) [6][7].
Interfacing to the trace port enables the runtime detector to be
non-intrusive, which in turn does not affect the execution of the
application (i.e., zero performance overhead). The proposed
approach accesses the processor trace port on-chip, and doesn’t
modify or require the external interface, thus ensuring security
of the trace interface. Additionally, the hardware detector is

used both at runtime to detect malware and at design time to
automatically collect timing to train the normal model.

A. Non-intrusive Malware Detection based on LTSR Model
To create the LTSR model, the lumped execution time is

measured from when the processor fetches the monitored
event’s first instruction until the processor fetches the same
event’s last instruction. This measurement process should not
affect the application’s execution timing behavior. Therefore,
we designed a hardware module, FindEventID, to monitor the
processor’s trace port and detect the execution of events by
observing the program counter (PC). As shown in Figure 2 (a)
and (c), when the PC from the processor’s trace port matches a
monitored event’s start address, an associated timer is activated.
When the PC matches the event’s end address, the timer is
stopped. The timer’s value thus represents lumped execution
time (in cycles) of the event. This lumped execution time is
compared to the current minimum and maximum timing value
to determine if these timing bounds must be updated. After
executing the normal system for all possible execution
scenarios and for a sufficient duration for each scenario, the
BCET and WCET of all monitored events can be achieved and
read from the hardware. These bounds will be configured into
the hardware detector for runtime detection. In the experimental
system, the operating frequency of the hardware detector is the
same as embedded processor. However, hardware FIFOs can be
used to interface to a higher frequency processor while running
the detector at a lower frequency [10].

For the LTSR model, the training process has been
embedded within data measurement process. The interface in
Figure 2(a) and FindEventID module in Figure 2(c) are also
used in the runtime detector. The detector consists of registers
to hold each event’s start address, end address, and [BCET,
WCET]s. A timer to measure each event’s total elapsed cycles
is enabled and disabled according to the event’s start and end
addresses, similar to the data measurement phase. The LTSR
detects anomalous timing by detecting when that time is either
less than the BCET or greater than the WCET. In the former
case, as soon as the end address is observed, the timing is
compared to the BCET, and the anomalous execution is
immediately detected. In the latter case, the anomalous
execution is detected when the elapsed time exceeds the WCET.

B. Non-intrusive Malware Detection based on LTMR Model
Post-collection analysis is used to create the LTMR model

for the following reasons: 1) achieving multi-range timing by
separately measuring timing under all different paths is
infeasible, 2) timing values under different scenarios may
overlap, and 3) separating timing ranges during data
measurement complicates the hardware design. Thus, we use a
similar data collection process for the LTMR as used for the
LTSR model. After collecting all timing data, the timing values
are clustered into multiple ranges. Instead of saving one BCET
and WCET during data collection, all training data needs to be
collected, such that multiple bounds can be determined.

The multi-range clustering can be done using statistical or
machine learning algorithms. Here, hierarchical clustering [5]
is used to automatically cluster the lumped timing into multiple
ranges by measuring the distance (e.g., average Euclidean
distance) between each timing sample. Although using

20

clustering algorithms for one-dimensional data may be overkill,
we do not adopt kernel density estimation [2] or other
algorithms because: 1) the distance-based method contributes
to detection since closer timing values share similar attributes,
2) hierarchical clustering makes full use of the data, 3)
hierarchical clustering can automatically control the resulting
number of clusters, which ensures the multi-range model is
comparable to other models, and 4) alternative algorithms (e.g.,
KNN, K-means) do not result in much difference in the
resulting ranges. One can use other statistical methods for range
division, but optimization of separating data under different
paths is beyond this paper’s scope.

The training process and hierarchical clustering is
performed offline using MATLAB’s machine learning toolbox
[18] after the timing measurement. The three basic steps in
hierarchical clustering are: 1) find data samples closest in terms
of distance, 2) group objects into hierarchical cluster tree, and
3) cut the hierarchical tree into the desired number of clusters.

The detector interface and structure for the LTMR model
(Figure 2(b) and (c)) has the same structure as the LTSR model
but requires storing and verifying three bounds for each event.

C. Non-intrusive Malware Detection based on ST Model
Figure 2(d) presents the interface to a MicroBlaze processor

trace port and the structure of the hardware detector for the ST
model. The detector interface uses 10 trace port signals: PC is
the current program counter; Valid is a one bit signal indicating
in which cycles the PC is valid; ExptTaken is a one bit signal
indicating if an exception occurs while executing the current
PC; ExptType is a 5-bit signal used to detect interrupts; I$Req
and D$Req are one-bit signals indicating if the instruction/data
address is within the instruction/data range; I$Hit and D$Hit are
one-bit signals indicating if instruction/data address is present
in the instruction/data cache; I$Rdy and D$Rdy are one-bit
signals indicating if the instruction/data access is completed.
The Subcomponent Separation Analysis module monitors trace

signals, maps PC addresses to event IDs, and measures the
subcomponent timing of each event. For each monitored event,
the hardware detector stores the [BCET, WCET] bounds for
intrinsic timing, D$ miss timing, and I$ miss timing. If the
timing for any of the three subcomponents is violated at
runtime, the hardware detector asserts a non-maskable interrupt
to the processor indicating the presence of malware.

Figure 2(e) presents an overview of the internal architecture
for the Subcomponent Separation Analysis module used in both
training and detection phases. Each monitored event has 3
timers to record the subcomponent timing. I$Timer and
D$Timer are enabled when I$ or D$ misses are detected using
the trace signals, respectively. I$Timer and D$Timer are
stopped when the instruction or data access has completed.
When either I$Timer or D$Timer is enabled, the IntrinsicTimer
is disabled, thereby separating the timing subcomponents.
During the execution of an interrupt, while the ISR is executing,
all timers for the interrupted events are disabled.

Algorithm 1 presents the pseudocode for the ST model
detection. EnDetect is a master enable signal for all timers
associated with each event, and its jth bit is set to 1 when eventj
is detected. EnInt indicates if the execution of an event has been
interrupted. An I$/D$ miss is detected when the corresponding
$Req is 1 but the $Hit is 0, in which case the $timers are

Algorithm 1: Detection Algorithm with the ST Model
Input: Trace Signals, StartEvent, EndEvent, I$BCET, D$BCET,
 IntriBCET, I$OWCET, D$OWCET, IntriOWCET
Output: Anomalous event index j
1. j = FindEventId(PC);
2. if (PC == StartEvent[j]) then
3. EnDetect[j] = true; IntriTimer[j] = -IntriBCET [j];
4. I$Timer[j] = -I$BCET [j]; D$Timer[j] = -D$BCET [j];
5. if (PC == EndEvent[j]) then
6. EnDetect[j] = false;
7. if (I$Timer[j] > 0 or D$Timer[j] > 0 or IntriTimer[j] > 0) then
8. return j;
9. if (EnDetect[j]) then
10. if (I$Req and not I$Hit) then EnI$[j] = true;
11. elseif (I$Rdy) then EnI$[j] = false;
12. if (D$Req and not D$Hit) then EnD$[j] = true;
13. elseif (D$Rdy) then EnD$[j] = false;
14. if (ExptTaken and ExptType == 01010) then EnInt[j]=true;
15. elseif (PC == ISRReturn) then EnInt[j] = false;
16. if (not EnInt[j] and not EnI$[j] and not EnD$[j]) then
17. IntriTimer[j]++;
18. if (not EnInt[j] and EnI$[j]) then
19. I$Timer[j]++;
20. if (not EnInt[j] and EnD$[j]) then
21. D$Timer[j]++;
22. if (I$Timer[j] > I$OWCET[j] or D$Timer[j] > D$OWCET[j] or
 IntriTimer[j] > IntriOWCET[j]) then
23. return j;

Tr
ac

e
Po

rt

PC
Valid
ExptTaken

I$Req
I$Hit

D$Req
D$Hit

ExptType

µp

Subcomponent
Separation
Analysis

I$ Miss
Timing

D$ Miss
Timing

Intrinsic
Timing

(b). Interface for
detection with LTMR

(d). Malware detector for ST model

I$Rdy

EventID

EnDetect

D$Rdy Find
EventID

I$ Miss
Detection

Interrupt
Detection

D$ Miss
Detection

Intrinsic
Timerj

I$
Timerj

PC

Valid
ExptTaken

I$Req

I$Hit

D$Req

D$Hit

ExptType

D$
Timerj

(e). Subcomponent separation analysis
module inside structure

Tr
ac

e
Po

rt

PC

µp

Tr
ac

e
Po

rt

PC

µp

(a). Interface for detection
with LTSR

Multi
Bounds

Malware
Detector

Single
Bound

Malware
Detector

(c). Malware detector for lumped
timing models

Malware Detector

PCsend

PCsstart Boundsi

Timeri

Range Detector
eventi

Find
Event

ID

I$ BCET
I$ WCET

Range
Detector

D$ BCET
D$ WCET
Intrinsic
BCET

Intrinsic
WCET

Malware Detector

PC

Figure 2. Hardware-assisted malware detector interface using (a)
LTSR, (b) LTMR, (c) hardware detector for lumped timing models,
(d) interface and hardware detector for ST model, and high-level
overview of (e) subcomponent timing analysis module showing for
one event. Note: Sequence-based detection is embedded but not shown.

Table 1. Hardware components required for storage and detection at
runtime for increasing number of monitored events.

of
Events Model

Hardware Components

Timer Addr.
register

Timing
bounds
register

Seq.
detect.
register

Comp
(==)

Comp
(<)

Comp
(>)

10
LTSR 10 20 20 15 10 10 0
LTMR 10 20 60 15 30 30 20

ST 30 20 60 15 30 30 0

30
LTSR 30 60 60 35 30 30 0
LTMR 30 60 180 35 90 90 60

ST 90 60 180 35 90 90 0

21

enabled, but only when the $ miss happens outside of an
interrupt handler. Once the instruction or data is ready, the
corresponding timers are disabled. If the execution is neither
interrupted nor waiting on a cache miss, the IntrinsicTimer is
enabled. To simplify the hardware, the timers use an offset
timing in which the timers are initialized with -BCET. This
strategy enables the BCET bound to be verified by checking the
timer’s most significant bit, rather than using a comparator. The
offset timing requires storing the WCET as an offset WCET
(OWCET), calculated as WCETj - BCETj. The WCET bound is
verified by checking if the timer exceeds an event’s OWCET.

D. Hardware Detectors Overhead Analysis
The detectors for all three models have been implemented

in hardware and integrated within the smart connected
pacemaker prototype (Section VI). Table 1 presents the number
of hardware components required to support the LTSR, LTMR,
and ST models. Within the hardware, each event’s start and end
addresses are stored using 24-bit registers, as 24 bits is the
number of bits needed to address the application’s code
segment. Note that further reduction in register size is possible,
such as identifying the least number of bits to differentiate
addresses for all monitored events.

For sequence detection, the hardware requires registers to
store information defining the expected event sequence, which
includes one register for each event. Additionally, the hardware
has five registers used for dynamic detection of execution
sequence violations. The size of all sequence detection registers
in bits is equal to the number of events.

For timing measurement and analysis, the bounds of single-
range or multi-range models are stored in 26-bit registers, which
are sufficient for the largest timing values across all monitored
events. The FindEventID module requires equality comparators
to match events’ addresses with the current PC. The
RangeDetector module requires magnitude comparators (i.e.,
less than) to verify upper bounds. For the LTSR and ST models,
only a single logic gate is required to verify the most significant
bit. However, because the LTMR model has only one timer for
lumped timing, this optimization can only be applied to the first
range’s lower bound verification.

As the number of monitored events increases, the required
hardware components increase linearly as shown in Table 1.
LTMR and ST have the same rate of increase for 26-bit registers
and comparators, which increase 3X faster than LTSR, while
all three detection models need the same number of 24-bit
registers. ST requires 3X the number of timers as LTSR and
LTMR. The LUTs and FFs required for the detecting all events
in pacemaker application is less than 1% of the pacemaker
prototype’s total area, and dynamic power consumption is less
than 2% of the overall system power consumption.

VI. EXPERIMENTAL EVALUATION

A. Smart Connected Pacemaker Benchmark
To evaluate the timing based anomaly detection, we

developed an FPGA-based prototype for a smart connected
pacemaker using a Xilinx Spartan-6 XL45 FPGA, presented in
Figure 3. The smart connected pacemaker prototype enables the
implementation and analysis of different vulnerabilities and

malware, and includes a simulated patient heart, a cardiac
sensor, an impulse pacer, and four timers. The simulated patient
heart generates irregular beats and reacts to the impulse pacer
signal controlled by the pacemaker software. The cardiac sensor
interfaces to the simulated heart model and sends the measured
heart signals to the microprocessor using interrupts. The output
from the cardiac sensor also controls the Atrio-Ventricular
Interval (AVI) timer and the Ventriculo-Atrial Interval (VAI)
timer. The VAI/AVI timers are used to maintain the appropriate
delay between the atrial/ventricular activation and the
ventricular/atrial activation, and will generate an interrupt if the
AVI/VAI exceeds a specific interval configured by the cardiac
physician. The PVARP/VRP timers filter noise in the
ventricular and atrial channels, respectively [4][17].

The pacemaker software, which executes on a MicroBlaze
processor, consists of three tasks and four ISRs. The ISRs
interact with the pacemaker’s cardiac sensor and timers, and
have the highest priority. ISR operations include atrial and
ventricular pacing, and recording ventricular and atrial activity.
The calculation task calculates the Upper Rate Interval (URI)
and records cardiac activity to a log file. A fault-exam task
analyzes the cardiac activity and detects a high URI, which
indicates the pacemaker cannot pace the heart correctly or that
pacemaker’s cardiac sensor has malfunctioned. In the event of
a high URI, the pacemaker immediate transmits a message to
alert the physician. The communication task is responsible for
communication, by which the physician can configure the
pacemaker’s settings or a home monitoring device to access
daily logs of the cardiac activity. Including the events in all
tasks and ISRs, there are 45 events in total that are monitored.

B. Malware Implementation
We utilized four mimicry malware targeting the pacemaker.

The file manipulation malware manipulates the cardiac activity
log to deceive the physician, with the intent of leading a
physician to an incorrect diagnosis or a potentially life-
threatening misconfiguration. This malware involves reading
the cardiac activity log file, manipulating the data, and writing
the modified data back to the log file. The file manipulation
malware affects the communication task’s execution and
mimics the software’s execution sequence to avoid sequence-
based anomaly detection. The information leakage malware
covertly reads data in the cardiac activity log of the patient
within the calculation task, and sends this information to a
malicious data center within the fault-exam task. The
information leakage malware also increases the execution
frequency of the fault-exam task in order to rapidly leak a large
amount of data. The fuzz attack malware [22] manipulates the
system execution by randomizing data values and

Pacer
PVARP/

VRP Timer

Heart
Sensor VAI/VAI

Timer

DDR Memory
Controller

Hardware
Detector

Interrupt
Controller

T
ra

ce
 P

or
t

μp

Figure 3. Smart connected pacemaker prototype system.

22

system/function call arguments, which is usually implemented
by interpolating data in memory. Two variants of the fuzz
malware are considered, one where the fuzz malware
randomizes the log buffer size by up to 20% and one where the
fuzz malware randomizes the same buffer size up to 100%. The
fuzz malware indirectly affects the system timing, and impact
the system’s time-sensitive control operations, which is a
common intent of fuzz attacks. We analyzed the fuzz attack to
evaluate the effectiveness of timing models to detect such
attacks, which are one of the hardest mimicry malware to detect.

C. Experimental Results
To characterize the normal system execution for the smart

connected pacemaker, we combined system-level timing
requirements with experimental training of timing bounds for
the monitored events. To train each timing model, we executed
the system 1000 times under all execution scenarios (i.e.,
healthy/unhealthy patient, different physician configurations)
to measure the lumped and subcomponent timing bounds of
each event. 1000 samples were sufficient for our system to
achieve a low false positive rate. However, the collection and
model building processes are automated and facilitated by the
hardware, so training can be efficiently scaled to larger sizes.
After creating the timing models, we configured each model in
the hardware detector. To evaluate the detection rate, we
executed each malware 100 times within the pacemaker
prototype. We further evaluated the false positive rates using
cross-validation. Specifically, 1000 timing values were
randomized, and for each slice of 100, the false positive rate
was calculated using the remaining 900 as the training set, and
averaged across these 10 slices.

Figure 4 presents the average detection rate across all
monitored events for the four malware considered. Overall,
detection with the LTMR model outperforms the LTSR model,
achieving on average a 17% higher and at best a 24% higher
detection rate than the LTSR model. Detection with the ST
model achieves the highest detection rate for fuzz attacks and
file manipulation malware, achieving a maximum detection rate
0.94. For the information leakage malware, the LTMR model
achieves the highest detection rate, which is primarily due to a
1.00 detection rate for the event xemacif. The LTSR and ST
models cannot detect that event, which results in the lower
average detection rate for this malware. On the other hand, the
LTMR model has the highest average and worst case false
positives, as shown in Table 2, which is 0.3% and 0.2% higher
than LTSR and ST on average, respectively.

Figure 5 presents the single event detection rate and the
cumulative detection rate for the fuzz buffer size 20% malware,

which affects the calculation and communication tasks. The
single event detection rate demonstrates the detection
performance of each model separately for each event. For most
events, the ST model achieves a higher single event detection
rate than LTSR and LTMR. For some events, such as filesleek,
the LTSR model is unable to detect the malware, whereas the
LTMR and ST have a detection rate of 1.00. This shows that
multi-ranges and subcomponent timing both have an advantage
in detection compared to single-range detection. One exception
is event tcpwrite, for which the LTSR model achieves a higher
detection rate. This is because the interference of interrupts is
included in the LTSR model but excluded in the ST model.
However, in most cases, the interference of interrupts
negatively affects the detection performance.

The LTMR model’s performance is bifurcated, having
either a low detection rate or a high detection rate for different
events. Specifically, five events have detection rates greater

Figure 4. Average detection rate across all events for all malware.

Table 2. Average and worst case false positive rate for all models.

Average False Positive Rate Worst-case False Positive Rate
LTSR LTMR ST LTSR LTMR ST
0.15% 0.46% 0.27% 0.2% 0.7% 0.6%

A
B
C

D
E
F
G
H
I
J

K
L
M
N
O
P
Q

R

S
T

U
V
W

semwait

calURI

cal>K

sempost

reachsize

mutexlock

fileopen

filewrite

fileclose

mutexunlock

xemacif

tcpreceive

fileexists

mutexlock

fileopen

filelseek

genhttpheader

tcpwrite

fileread

tcpwrite

fileclose

mutexunlock
pbuffree

0.01 (0.01)

0.01 (0.02)

0.03 (0.05)

0.01 (0.05)

0.00 (0.05)

0.00 (0.05)

0.00 (0.05)

0.04 (0.09)

0.00 (0.09)

0.00 (0.09)

0.00 (0.09)

Content
switch

0.84 (0.86)

0.00 (0.86)

0.00 (0.86)

0.00 (0.86)

0.00 (0.86)

0.02 (0.86)

0.80 (0.95)

0.00 (0.95)

0.00 (0.95)

0.96 (1.00)

0.01a (0.01)

0.02ac (0.02)

0.53ab (0.53)

0.01b (0.53)

0.75ab (0.92)

0.04ab (0.92)

0.03ab (0.92)

0.05a (0.92)

0.00 (0.92)

0.04abc (0.92)

0.00 (0.92)

0.98ab (1.00)

(a). Detection on Lumped
Timing Sing-Range

(LTSR)

(c). Detection on
Subcomponent Timing

(STR)

Event Single (Cumulative) Single (Cumulative)

A
B
C

D
E
F
G
H
I
J

K
L
M
N
O
P
Q

R

S
T

U
V
W

0.30 (1.00)

0.93a (1.00)

0.07bc (1.00)

0.61b (1.00)

1.00a (1.00)

1.00ab (1.00)

0.48abc (1.00)

0.00 (1.00)

0.00 (1.00)

1.00ab (1.00)

0.03a (1.00)

1.00abc (1.00)0.14 (1.00)

A
B
C

D
E
F
G
H
I
J

K
L
M
N
O
P
Q

R

S
T

U
V
W

0.01 (0.01)

0.52 (0.52)

0.04 (0.55)

0.01 (0.55)

0.75 (0.91)

0.04 (0.91)

0.00 (0.91)

0.01 (0.91)

0.05 (0.91)

0.05 (0.91)

0.00 (0.91)

0.84 (1.00)

0.00 (1.00)

0.00 (1.00)
1.00 (1.00)

1.00 (1.00)

0.02 (1.00)

0.08 (1.00)

0.04 (1.00)

0.00 (1.00)

0.96 (1.00)

(b). Detection on Lumped
Timing Multi-Ranges

(LTMR)

Single (Cumulative)

0.04 (1.00)

0.15 (1.00)

average 0.13 0.28 0.37

Figure 5. Single event and cumulative detection rate (in parentheses)
for fuzz buffer size 20% malware using (a) LTSR, (b) LTMR, and (c)
ST models. Superscript labels indicate if malware was detected by
aintrinsic, binstruction cache, or cdata cache timing. Letters indicates
monitored events, and arrows indicate control flow between events.

23

than 0.75, and 17 events have detection rates less than 0.15. For
example, the detection rate of LTMR for event cal>K is as low
as 0.01, while the ST model’s detection rate is 0.53. The reverse
situation occurs for event fileopen, for which the LTMR model
achieves a 1.00 detection rate, whereas the ST model has a 0.61
detection rate. The reason is that the malware’s lumped timing
happens to be between two normal lumped timing ranges.

The cumulative detection rate is the overall rate of detecting
malware within the execution sequence of events. When a
cumulative detection rate of 1.00 is reached, it indicates that the
malware’s execution is detected for all malware executions.
Using the LTSR model, the cumulative detection rate reaches
1.00 at the 21st event. But, using the LTMR and ST models, the
cumulative detection rate reaches 1.00 at the 12th event. In
addition, the LTMR and ST models achieve a cumulative
detection rate of 0.91 and 0.92, respectively, at just the 5th event.
For the ST model, Figure 5 is annotated to indicate which
subcomponent(s) detected the malicious execution. The
intrinsic timing and I$ miss timing contribute the most to the
detection rate and can detect malware for 13 events, whereas
the D$ timing detects malware for only 5 events. This behavior
is expected as the intrinsic timing and I$ timing have less
variability, and thus tighter timing bounds.

In conclusion, the ST model has both the best single event
and best cumulative detection accuracy, with only 0.12%
increase in false positives. Detection with the LTMR model
outperforms the LTSR model, and has better detection than the
ST model in a few isolated cases, but overall has lower average
and cumulative detection rates and a higher false positive rate.

VII. CONCLUSIONS AND FUTURE WORK
We presented a non-intrusive malware detection approach that
uses information available from a processor’s trace port to
separate the execution time into intrinsic timing, I$ miss timing,
and D$ miss timing, while eliminating the effects of
interference from interrupts and context switches. Experiments
with a smart connected pacemaker and four mimicry malware
demonstrate that the ST model achieves an average per event
detection rate of 0.66, which is 0.24 higher than the LTSR
model. In addition, the ST model detects malware faster,
reaching a 0.92 detection rate after 5 events and 100% detection
rate after only 12 events, which is a 52% fewer events than the
lumped timing models. Future work includes further analysis of
the ST model using statistical analysis (e.g., cumulative
distribution functions) within sliding execution, employing
machine learning methods (e.g., support vector machines), and
analyzing the tradeoffs in detection rate, false positive rates,
hardware area requirements, and energy consumption.

REFERENCES
[1].� Bhatkar, S., A. Chaturvedi, R., Sekar. Dataflow Anomaly Detection.

Symposium on Security and Privacy, pp. 15-62, 2006.
[2].� Botev, Z.I., J.F. Grotowski, and D.P. Kroese. Kernel density estimation

via diffusion. Annals of Statistics Vol. 38, No. 5, pp. 2916–2957, 2010.
[3].� Chandola, V., A. Banerjee, V. Kumar. Anomaly Detection: A Survey.

ACM Computing Survey, 41(3), 2009.
[4].� Jiang, Z., M. Pajic, S. Moarref, R. Alur, R. Mangharam. Modeling and

Verification of a Dual Chamber Implantable Pacemaker. International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pp. 188–203, 2012.

[5].� Kaufman, L., Rousseeuw, P. J. Finding Groups in Data: An Introduction
to Cluster Analysis. John Wiley, New York, 1990.

[6].� Lee Y., J. Lee, I. Heo, D. Hwang, Y. Paek, Integration of ROP/JOP
monitoring IPs in an ARM-based SoC, Conference on Design,
Automation & Test in Europe, March 14-18, 2016.

[7].� Lu, S., M. Seo, R. Lysecky. Timing-based Anomaly Detection in
Embedded Systems. Asia South Pacific Design Automation Conference,
pp. 809-814, 2015.

[8].� Lu. S., and R. Lysecky. Analysis of Control Flow Events for Timing-
based Runtime Anomaly Detection. Workshop on Embedded Systems
Security, 2015.

[9].� McAfee Labs. Threats Report 2015. http://www.mcafee.com/
us/resources/reports/rp-quarterly-threat-q1-2015.pdf.

[10].�Mu J., K. Shankar, R. Lysecky. Profiling and Online System-Level
Performance and Power Estimation for Dynamically Adaptable
Embedded Systems. ACM Transactions on Embedded Computing
Systems (TECS), Vol. 12, No. 3, Article 85, pp. 1-20, 2013.

[11].�Mohan, S., S. Bak, E. Betti, H. Yun, L. Sha, M. Caccamo. S3A: Secure
system simplex architecture for enhanced security and robustness of
cyber-physical systems. ACM Conference on High Confidence
Networked Systems, 2013.

[12].�Patel K., S. Parameswaran. SHIELD: A Software Hardware Design
Methodology for Security and Reliability of MPSOCs. Design
Automation Conference, pp. 858-861, 2008.

[13].�Patel, K., S. Parameswaran, R. Ragel. Architectural Frameworks for
Security and Reliability of MPSOCs. IEEE Transactions on Very Large
Scale Integration Systems, No. 99, pp. 1–14, 2010.

[14].�Rahmatian, M., H. Kooti, I. Harris, and E. Bozorgzadeh. Hardware-
Assisted Detection of Malicious Software in Embedded Systems. IEEE
Embedded Systems Letters (ESL), Vol.4, No.4, pp.94-97, 2012.

[15].�Ramilli, M. Bologna, M. Prandini. Always the Same, Never the Same.
IEEE Security & Privacy, Vol. 8, No. 2, pp. 73-75, 2012.

[16].�Sharif, M.I., K. Singh, J. T. Giffin, W. Lee. Understanding Precision in
Host based Intrusion Detection. International Symp. on Research in
Attacks, Intrusions and Defenses. Vol.4637, pp.21-41, 2007.

[17].�Singh, N.K., A.J. Wellings, A.L.C. Cavalcanti. The Cardiac Pacemaker
Case Study and its Implementation in Safety-Critical Java and Ravenscar
Ada. International Workshop on Java Technologies for Real-time and
Embedded Systems, 2012.

[18].�Statistics and Machine Learning Toolbox User's Guide.
https://www.mathworks.com/help/pdf_doc/stats/stats.pdf

[19].�Symantec. Internet Security Threat Report.
https://www.secure128.com/download/istr-21-2016-en.pdf, 2016.

[20].�Verizon. State of the Market: Internet of Things.
https://www.verizon.com/about/sites/default/files/state-of-the-internet-
of-things-market-report-2016.pdf, 2016.

[21].�Wagner, D., P. Soto. Mimicry Attacks on Host based Intrusion Detection
Systems. ACM Conference on Computer and Communications Security,
pp. 255-264, 2002.

[22].�Wasicek A., P. Derler, E. A. Lee, Aspect-oriented Modeling of Attacks in
Automotive Cyber-Physical Systems, Annual Design Automation
Conference, p.1-6, 2014.

[23].�Wilhelm, R., J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P.
Puschner, J. Staschulat, P. Stenstrom. The Worst-Case Execution-Time
Problem-Overview of Methods and Survey of Tools. ACM Transactions
on Embedded Computing Systems, Vol.7, No.36, pp.1-47, 2008.

[24].�Yoon M.-K., S. Mohan, J. Choi, J.-E. Kim, L. Sha. SecureCore: A
Multicore-based Intrusion Detection Architecture for Real-Time
Embedded Systems. Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2013.

[25].�Zhang, T., X. Zhuang, S. Pande, W. Lee. Anomalous Path Detection with
Hardware Support. Conference on Compilers Architectures and Synthesis
for Embedded Systems, pp.43-54, 2005.

[26].�Zimmer, C., B. Bhat, F. Mueller, S. Mohan. Time-Based Intrusion
Detection in Cyber-Physical Systems. ACM/IEEE International
Conference on Cyber-Physical Systems, pp. 109-118, 2010.

24

