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Abstract—Network-connected embedded systems require multiple 
lines of defense against malware. In addition to preventing 
malware by designing secure interfaces and software, anomaly-
based detection is needed to detect malware that successfully 
infiltrates these defenses. Timing based anomaly detection 
strengthens embedded system security by detecting anomalies in 
the execution time of critical software tasks. However, existing 
timing based anomaly detection methods use a lumped timing 
model that aggregates the timing of the software, processor 
architecture, operating system scheduling, etc., and thereby incurs 
significant variability. We present a non-intrusive hardware 
detector supporting two novel timing models, including a lumped 
timing multi-range model that clusters timing into multiple range 
bounds, and a subcomponent timing model that defines bounds for 
timing subcomponents of events. Timing subcomponents include 
intrinsic software execution, instruction cache misses, data cache 
misses, and interrupts. The experimental results demonstrate that 
the detection based on subcomponent timing model achieves 
greater malware detection accuracy compared to the lumped 
timing model without increasing false positives. 

Keywords—Timing-based detection; Timing subcomponents; 
Anomaly detection; Embedded system security; Non-intrusive 

I. INTRODUCTION 
Historically, embedded systems were not dramatically 

affected by malware because such systems were physically 
secured and lacked network connections. With pervasive 
network access, network-connected embedded systems face 
increasing threats from malware. For example, the Internet of 
Things (IoT), which includes devices for healthcare, home 
monitoring, and smart city applications, among others, is 
expected to reach several billion devices by 2020 [20], and their 
security is of great concern given their impact on privacy and 
safety. A few notable threats, including injecting a fatal dose of 
insulin in an insulin pump, compromising smart TVs for click 
fraud, exploiting a vehicle’s keyless entry system to steal cars, 
etc. [19], have demonstrated the potential impacts (life 
threatening in some cases) of malware. 

While traditional proactive methods that seek to secure 
embedded systems by eliminating vulnerabilities are essential, 
they are not sufficient to fully secure systems. As system 
complexity grows, the likelihood of undiscovered 
vulnerabilities increases. Therefore, runtime detection is needed 
to detect the presence of malware. Signature-based detection 
methods [15] have limitations in detecting new and unknown 
malware [9], leaving systems vulnerable to zero-day exploits. 
In contrast, anomaly-based detection methods detect execution 
deviations from a pre-established specification of normal 
behavior, which can detect the anomalous execution of zero-

day malware. Additionally, anomaly-based detection reduces 
the memory overhead required to store a large database of 
known malware as only the specification of normal behavior 
must be stored [3]. Several anomaly-based detection methods 
have been developed to detect anomalies in an embedded 
system’s execution sequences [25], dataflow [1], memory 
accesses [23], and execution timing [7][12][13][24].  

Modeling execution sequences is efficient and can be 
implemented at different granularities [16], but these detection 
methods are vulnerable to mimicry attacks. Mimicry attacks 
avoid detection by mimicking the correct system execution by 
interleaving normal operations with malicious operations [21]. 
Modeling dataflow and memory can detect malware intrusion 
related to memory data changes, but the normal system model 
is often very complicated, and data required for detection may 
not be accessible at runtime.  

Modeling the timing of embedded systems increases the 
sophistication needed to construct mimicry malware, thereby 
achieving higher detection rates [7]. Attackers may be able to 
develop malware that mimics timing, but such attacks require a 
higher degree of sophistication. Since embedded systems are 
sensitive to timing, the scope of what a mimicry malware can 
accomplish without changing the timing is restricted. However, 
previous timing based anomaly detection methods use a lumped 
timing model to create the specification of the normal system 
behavior. A lumped timing model uses a single timing value 
(e.g., wall clock time) to represent the time of events being 
executed. Fine-grained lumped timing models have been 
utilized to define timing bounds of basic blocks [12], for which 
the fine granularity affords reasonably low timing variability 
and can thus detect malware’s timing changes. The fine-grained 
timing models incur significant performance overhead for 
software-based implementations and significant area 
requirements for hardware-assisted implementations. 
Alternatively, coarse-grained timing models define timing 
bounds at the function, system call, or task level events, which 
reduce the overhead but introduce significant timing variability.  

A lumped timing model with a single-range bound has the 
advantage of a simple implementation and low storage 
overhead, but has a few limitations. First, an event’s execution 
may occur in different execution paths, application tasks, or 
execution scenarios and may operate on different data. As such, 
the timing for an event often naturally fits into multiple, non-
overlapping timing ranges. Thus, the single-range bound of a 
lumped timing model is unable to detect malware whose timing 
falls between the individual non-overlapping ranges. Second, 
the lumped timing model includes all variability within the 
system that can significantly increase the timing bounds. 
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Timing variability is introduced by the processor architecture 
(e.g., delays from cache misses, branch mispredictions), 
memory hierarchy (e.g., off-chip memory access latency), 
operating system (e.g., task scheduling and interrupts), etc. This 
variability may mask malicious timing changes, limits the 
effectiveness of malware detection and simplifies the mimicry 
malware creation for attackers. 

Toward overcoming the disadvantages of lumped timing 
single-range models, we present two novel timing models, 
including a lumped timing multi-range model and a 
subcomponent timing model. The lumped timing multi-range 
model decomposes the lumped timing into multiple ranges 
using a standard clustering algorithm. The subcomponent 
timing model extracts several timing subcomponents from the 
lumped timing, including intrinsic software timing and 
incidental timing from interrupts, instruction cache (I$) misses, 
and data cache (D$) misses. We further design non-intrusive 
hardware-assisted detectors with these models for monitoring 
the timing of events using a processor’s trace port with zero 
performance overhead. Using a smart connected pacemaker 
prototype, experimental results demonstrate the effectiveness of 
the subcomponent timing model in detecting sophisticated 
mimicry malware while keeping false positives low. 

II. RELATED WORK 
Several efforts use event timing for malware detection. 

SHIELD [12] detects violations of single lumped timing bounds 
for basic block within an application, by instrumenting the 
software binary with special instructions. Similarly, iCUFFs 
[13] employs single lumped timing to detect code injection and 
software errors. However, their instrumentation introduces code 
size and performance overheads, ranging from 6.6% to 44%. 
SecureCore [24] models the normal system behavior as a 
distribution of a lumped timing model for each basic block. 
Anomalous execution is detected if the probability of an 
observed lumped timing value is lower than a specific threshold 
(e.g., 5%). The probabilistic threshold used in SecureCore 
increases the sensitivity to timing variability, and thus achieves 
good detection rates. However, the threshold also introduces 
false positives, which can be very high. For the file 
manipulation malware considered in this paper, even with a low 
threshold of 1%, SecureCore’s false positive rate exceeds 10%. 
In addition, the fine-grained detection and uniform distribution 
requirements for each bin incurs a high memory overhead to 
store 1000s of bins for each basic block’s timing distribution. 
Zimmer et al. [26] designed an intrusion detection method 
based on the lumped worst-case execution time (WCET) of an 
application’s function call return path. This detection system is 
intrusive because it is implemented within the OS and requires 
disabling caches to measure the timing.  

These software-based detection methods require modifying 
the software application to incorporate special instructions, 
which modifies original system behavior, or require a separate 
processor to perform the analysis needed to detect anomalies, 
which incurs high overheads. Alternatively, hardware-assisted 
approaches can eliminate or reduce this performance penalty. 
Rahmatian et al. [14] designed a hardware-assisted anomaly 
detector integrated within a processor datapath that monitors the 
instruction register to detect system calls. This approach 

provides faster detection compared to software-based methods 
and can detect malicious activity without affecting the system 
performance. However, the approach is susceptible to mimicry 
attacks and requires modification to the processor core. S3A 
[11] uses a trusted hardware component to detect if the 
execution time or activation period of periodical tasks within 
embedded control systems are too small or large. RAD [7] is a 
hardware-assisted detector that detects single lumped best-case 
execution time (BCET) and WCET bounds and monitors 
function/system calls. These approaches achieve good detection 
rates, but they all use a lumped timing model for coarse timing 
that introduces significant timing variability, which then allows 
some monitored events to be more easily mimicked.  

III. SYSTEM ASSUMPTIONS AND THREAT MODEL 
The focus of this paper is the design of timing models and 

hardware for anomaly-based malware detection given the 
following assumptions and pre-conditions: 

1)� The target malware is sophisticated mimicry malware that 
interleaves malicious code with normal execution by 
nullifying events (e.g., null pointer arguments, nonexistent 
files, arbitrary data) to mimic system execution [21]. Note 
that mimicking is not the malicious goal but rather a way 
of implementing malware. We integrate sequence-based 
anomaly detection [8] in all malware detectors by default, 
which can detect non-mimicry malware and necessitates 
the need for an attacker to use mimicry malware.  

2)� An attacker is able to create malware and remotely insert 
the malware into the system utilizing a software exploit, 
which may be unknown or known but unpatched at the time 
of insertion. The attacker is able to determine the execution 
order of the original software using binary analysis, 
simulation, or direct access to the software code. 

3)� Our target system is a smart connected pacemaker 
prototype that enables the implementation and analysis of 
different malware, which is not possible using standard 
embedded application benchmarks. We currently consider 
either a single core system or a multicore system with static 
task to processor assignment. However, the detector 
designs presented in this paper can be directly applied to 
any embedded applications. 

4)� The granularity of detection in this paper is at the level of 
system/function calls in the software application and 
interrupt service routines (ISR), which we collectively call 
events. However, detection with coarser or finer 
granularity (e.g., time between two system calls) is possible 
and would follow the same design principles.  

5)� Any system updates would simultaneously update the 
binary and the normal execution model, the latter of which 
is configured within the hardware detector, which is 
assumed to be trusted, during the secure boot process. 

Typical threats for embedded systems used within 
healthcare applications include: a) manipulating cardiac log to 
deceive the physician into making incorrect diagnoses, b) 
leaking sensitive healthcare data to unauthorized third-parties, 
or c) interfering with the system execution to affect the essential 
functionality. While public malware repositories are available, 
the malware attack templates contained therein focus on how to 
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exploit specific vulnerabilities, which is not the focus on this 
paper. Instead, this paper focuses on detecting malware that has 
already exploited such a vulnerability and is actively executing 
in the system. As such, we used four mimicry malware that 
achieve these malicious goals, including a file manipulation 
malware, an information leakage malware, and two fuzz 
malware, which are constructed based on known malware.  

IV. TIMING MODEL ANALYSIS 

A. Lumped Timing Single-Range (LTSR) Model  
A lumped timing single-range (LTSR) model uses a single 

timing value to represent the normal execution time of each 
event and defines the timing bound as a single range [BCET, 
WCET]. The problem of determining BCET and WCET has 
been widely studied for embedded systems and numerous tools 
have been developed to automate this process, in which this 
problem can be solved either by statically analyzing the 
software application or by dynamically training the system [23].  

Figure 1(1) presents an example of how the LTSR model 
can detect anomalous timing for three events, specifically the 
mutexunlock, fileexists, and genhttpheader functions, from the 
smart connected pacemaker application for a fuzz malware (see 
Section VI). In Figure 1, LTSR can detect the malware when 
the malware timing (dashed line) has non-overlapping parts 
with normal single range (solid line). The probability of 
detecting malware is higher if the malware timing has less 
overlap with the normal execution’s lumped timing.  

The advantage of the LTSR model is its simple 
implementation in both the training and runtime detection. Only 
the minimum and maximum timing values of each monitored 
event need to be stored in the detector, which reduces storage 
overhead. The disadvantage of the LTSR is twofold. First, an 
event’s execution may be located in different paths under 
different scenarios or with different arguments, such that the 
normal timing may fit into multiple non-overlapping ranges. 
Therefore, a single timing range cannot detect malware timing 
that is located between these ranges. Second, lumped timing 
includes all variability within the system and yields less 
sensitivity to malware timing (e.g., an interrupt can extend the 
normal range). Therefore, an extended normal timing range 
cannot detect malware timing that deviates slightly. For the first 

disadvantage, dividing the single range of the lumped timing 
into multiple ranges can increase detection accuracy, which 
leads to the idea of the lumped timing multi-range model. For 
the second disadvantage, decomposing the lumped timing into 
subcomponents can reduce the timing variability and thus 
increase detection accuracy, which leads to the idea of 
subcomponent timing model. 

B. Lumped Timing Multi-Range (LTMR) Model 
Compared to the LTSR model, the lumped timing multi-

range (LTMR) model divides the normal single range into 
multiple ranges, which represents timing behavior at a finer 
granularity. As shown in of Figure 1(2), using the LTMR model 
can detect malware timing that falls outside the bound of each 
range (e.g., malware timing values ranging from 891 to 894 
cycles in Figure 1(2)(a)), which shows the potential to increase 
detection rate with multi-ranges. 

The finer timing detection of multiple ranges comes at the 
expense of more complex training and higher hardware costs. 
The number of ranges for an event depends on the path an event 
belongs to, arguments passed to the event, and influences from 
other events. Several approaches can be used to determine these 
normal timing ranges and train the timing models. One 
approach is to execute the application under different scenarios 
(e.g., different data inputs) that define different ranges. An 
alternative approach is to analyze all data post-collection by 
statistically dividing all lumped timing into ranges.  

A larger number of normal timing ranges provides finer 
detection granularity but would result in longer training time 
and more storage overhead at runtime. We currently consider a 
LTMR model with three timing ranges, which allows for a 
direct comparison with the subcomponent timing model that is 
composed of three timing subcomponents. 

C. Subcomponent Timing (ST) Model 
The timing of specific operations is affected by the 

underlying system architecture, operating system, and 
execution environment, which can lead to unpredictable timing 
behaviors (e.g., cache behaviors). For example, the execution 
time of a function call is influenced by the instructions 
generated during compilation, processor frequency, pipeline 
structure, cache/memory access delays, interrupt execution, 
context switches, etc. Therefore, the timing of events can vary 
widely, such that detecting malicious execution may be 
difficult. Consider the timing variability introduced by an 
interrupt executing during another event. The interrupt adds a 
time delay to perform a context switch to the ISR, execute the 
routine, and perform a context switch back to the original task. 
In a lumped timing model, the execution time of the ISR will be 
lumped into the WCET bound. Nevertheless, the execution of a 
malicious operation may only require a small amount of code 
that has a comparatively low time delay. Thus, the prolonged 
WCET may make the anomaly detection insensitive to the 
malware timing. 

Fortunately, the information from the microprocessor’s 
trace port can be utilized to analyze the low-level execution 
behavior of system operations to separate the timing into 
several subcomponents. We define two classes of timing, 
namely intrinsic timing and incidental timing. Intrinsic timing 
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Figure 1. Comparison of normal timing bound (solid line) and a fuzz 
malware timing range (dashed line) for LTSR, LTMR, and ST models. 
The ST model includes separate timing bounds for each 
subcomponent. Time values are in clock cycles. Not to scale. 
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is the timing intrinsic to the execution of specific software and 
its data inputs, in the absence of delays or interference from the 
system architecture, OS, or other tasks. In other words, the 
intrinsic timing is the ideal software execution time, which is 
relatively stable. Incidental timing is the timing due to the 
execution environment in which the software is executed, and 
incorporates several subcomponents. Within the current 
approach, incidental timing subcomponents include I$ misses 
and D$ misses. These subcomponents can detect malware by 
identifying changes in the temporal and spatial characteristics 
of instruction and data addresses. For example, an information 
leakage malware that increases the number of writes to data 
memory may evict data stored in the D$, thereby leading to 
increased data cache misses for other operations. 

To determine accurate timing bounds for intrinsic and 
incidental subcomponents, the interference from the execution 
of interrupts and other tasks must be isolated. The frequency of 
interrupts can be sporadic, and failing to isolate the interference 
would lead to pessimistic WCETs, which in turn makes 
detecting malware more difficult. Once isolated, the intrinsic 
and incidental timing subcomponents represent the tightest 
possible bounds on the execution time of software operations. 
The resulting subcomponent timing (ST) model is more 
accurate, more sensitive to malware execution, and provides 
greater malware detection ability.  

Figure 1(3)(4)(5) presents the normal subcomponent timing 
ranges in solid lines (with single normal range for each 
subcomponent) and the malware timing ranges for three 
software events in dashed lines. Using the ST model, the 
mutexunlock’s normal intrinsic timing only has a 65% overlap 
with the malware’s intrinsic timing, while the LTSR and LTMR 
models yield a 75% and 72% overlap, respectively. Although 
the LTSR and LTMR models are able to detect the malware, the 
smaller timing overlap in the ST model’s intrinsic timing leads 
to a higher detection rate. For many events, the timing 
variability is often attributed to a single subcomponent, such as 
the D$ miss subcomponent for fileexists and the I$ miss 
subcomponent for genhttpheader in Figure 1(b)(c).  

The advantage of ST model is reduced timing variability, as 
the timing variability of each subcomponent is isolated. This in 
turn makes mimicking timing behavior of an event harder and 
increases detection accuracy. However, the tradeoff is a more 
complex data collection process. 

V. NON-INTRUSIVE DETECTOR DESIGN 
Hardware-assisted malware detection requires no additional 

software code to specify or detect the occurrence of events. 
Instead, a hardware detector can interface with the trace port of 
the processor to analyze trace signals and detect both the 
occurrence and timing of events. Processor trace ports are 
common interfaces provided by processor manufacturers, and 
widely used within systems-on-a-chip (SOCs) [6][7]. 
Interfacing to the trace port enables the runtime detector to be 
non-intrusive, which in turn does not affect the execution of the 
application (i.e., zero performance overhead). The proposed 
approach accesses the processor trace port on-chip, and doesn’t 
modify or require the external interface, thus ensuring security 
of the trace interface. Additionally, the hardware detector is 

used both at runtime to detect malware and at design time to 
automatically collect timing to train the normal model.  

A. Non-intrusive Malware Detection based on LTSR Model 
To create the LTSR model, the lumped execution time is 

measured from when the processor fetches the monitored 
event’s first instruction until the processor fetches the same 
event’s last instruction. This measurement process should not 
affect the application’s execution timing behavior. Therefore, 
we designed a hardware module, FindEventID, to monitor the 
processor’s trace port and detect the execution of events by 
observing the program counter (PC). As shown in Figure 2 (a) 
and (c), when the PC from the processor’s trace port matches a 
monitored event’s start address, an associated timer is activated. 
When the PC matches the event’s end address, the timer is 
stopped. The timer’s value thus represents lumped execution 
time (in cycles) of the event. This lumped execution time is 
compared to the current minimum and maximum timing value 
to determine if these timing bounds must be updated. After 
executing the normal system for all possible execution 
scenarios and for a sufficient duration for each scenario, the 
BCET and WCET of all monitored events can be achieved and 
read from the hardware. These bounds will be configured into 
the hardware detector for runtime detection. In the experimental 
system, the operating frequency of the hardware detector is the 
same as embedded processor. However, hardware FIFOs can be 
used to interface to a higher frequency processor while running 
the detector at a lower frequency [10]. 

For the LTSR model, the training process has been 
embedded within data measurement process. The interface in 
Figure 2(a) and FindEventID module in Figure 2(c) are also 
used in the runtime detector. The detector consists of registers 
to hold each event’s start address, end address, and [BCET, 
WCET]s. A timer to measure each event’s total elapsed cycles 
is enabled and disabled according to the event’s start and end 
addresses, similar to the data measurement phase. The LTSR 
detects anomalous timing by detecting when that time is either 
less than the BCET or greater than the WCET. In the former 
case, as soon as the end address is observed, the timing is 
compared to the BCET, and the anomalous execution is 
immediately detected. In the latter case, the anomalous 
execution is detected when the elapsed time exceeds the WCET. 

B. Non-intrusive Malware Detection based on LTMR Model 
Post-collection analysis is used to create the LTMR model 

for the following reasons: 1) achieving multi-range timing by 
separately measuring timing under all different paths is 
infeasible, 2) timing values under different scenarios may 
overlap, and 3) separating timing ranges during data 
measurement complicates the hardware design. Thus, we use a 
similar data collection process for the LTMR as used for the 
LTSR model. After collecting all timing data, the timing values 
are clustered into multiple ranges. Instead of saving one BCET 
and WCET during data collection, all training data needs to be 
collected, such that multiple bounds can be determined. 

The multi-range clustering can be done using statistical or 
machine learning algorithms. Here, hierarchical clustering [5] 
is used to automatically cluster the lumped timing into multiple 
ranges by measuring the distance (e.g., average Euclidean 
distance) between each timing sample. Although using 
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clustering algorithms for one-dimensional data may be overkill, 
we do not adopt kernel density estimation [2] or other 
algorithms because: 1) the distance-based method contributes 
to detection since closer timing values share similar attributes, 
2) hierarchical clustering makes full use of the data, 3) 
hierarchical clustering can automatically control the resulting 
number of clusters, which ensures the multi-range model is 
comparable to other models, and 4) alternative algorithms (e.g., 
KNN, K-means) do not result in much difference in the 
resulting ranges. One can use other statistical methods for range 
division, but optimization of separating data under different 
paths is beyond this paper’s scope.  

The training process and hierarchical clustering is 
performed offline using MATLAB’s machine learning toolbox 
[18] after the timing measurement. The three basic steps in 
hierarchical clustering are: 1) find data samples closest in terms 
of distance, 2) group objects into hierarchical cluster tree, and 
3) cut the hierarchical tree into the desired number of clusters.  

The detector interface and structure for the LTMR model 
(Figure 2(b) and (c)) has the same structure as the LTSR model 
but requires storing and verifying three bounds for each event.  

C. Non-intrusive Malware Detection based on ST Model 
Figure 2(d) presents the interface to a MicroBlaze processor 

trace port and the structure of the hardware detector for the ST 
model. The detector interface uses 10 trace port signals: PC is 
the current program counter; Valid is a one bit signal indicating 
in which cycles the PC is valid; ExptTaken is a one bit signal 
indicating if an exception occurs while executing the current 
PC; ExptType is a 5-bit signal used to detect interrupts; I$Req 
and D$Req are one-bit signals indicating if the instruction/data 
address is within the instruction/data range; I$Hit and D$Hit are 
one-bit signals indicating if instruction/data address is present 
in the instruction/data cache; I$Rdy and D$Rdy are one-bit 
signals indicating if the instruction/data access is completed. 
The Subcomponent Separation Analysis module monitors trace 

signals, maps PC addresses to event IDs, and measures the 
subcomponent timing of each event. For each monitored event, 
the hardware detector stores the [BCET, WCET] bounds for 
intrinsic timing, D$ miss timing, and I$ miss timing. If the 
timing for any of the three subcomponents is violated at 
runtime, the hardware detector asserts a non-maskable interrupt 
to the processor indicating the presence of malware. 

Figure 2(e) presents an overview of the internal architecture 
for the Subcomponent Separation Analysis module used in both 
training and detection phases. Each monitored event has 3 
timers to record the subcomponent timing. I$Timer and 
D$Timer are enabled when I$ or D$ misses are detected using 
the trace signals, respectively. I$Timer and D$Timer are 
stopped when the instruction or data access has completed. 
When either I$Timer or D$Timer is enabled, the IntrinsicTimer 
is disabled, thereby separating the timing subcomponents. 
During the execution of an interrupt, while the ISR is executing, 
all timers for the interrupted events are disabled.  

Algorithm 1 presents the pseudocode for the ST model 
detection. EnDetect is a master enable signal for all timers 
associated with each event, and its jth bit is set to 1 when eventj 
is detected. EnInt indicates if the execution of an event has been 
interrupted. An I$/D$ miss is detected when the corresponding 
$Req is 1 but the $Hit is 0, in which case the $timers are 

                                                                                                                                                                   
Algorithm 1: Detection Algorithm with the ST Model            
Input: Trace Signals, StartEvent, EndEvent, I$BCET, D$BCET,   
      IntriBCET, I$OWCET, D$OWCET, IntriOWCET 
Output: Anomalous event index j 
1. j = FindEventId(PC);  
2. if ( PC == StartEvent[j] ) then   
3.   EnDetect[j] = true;        IntriTimer[j] = -IntriBCET [j];  
4.   I$Timer[j] = -I$BCET [j];  D$Timer[j] = -D$BCET [j]; 
5. if ( PC == EndEvent[j] ) then 
6.   EnDetect[j] = false; 
7.   if ( I$Timer[j] > 0 or D$Timer[j] > 0 or IntriTimer[j] > 0 ) then      
8.      return j;  
9. if ( EnDetect[j] ) then 
10.  if ( I$Req and not I$Hit )  then EnI$[j] = true; 
11.  elseif ( I$Rdy )          then EnI$[j] = false; 
12.  if ( D$Req and not D$Hit ) then EnD$[j] = true; 
13.  elseif ( D$Rdy )          then EnD$[j] = false; 
14.  if ( ExptTaken and ExptType == 01010 )  then EnInt[j]=true; 
15.  elseif ( PC == ISRReturn )              then EnInt[j] = false;  
16.  if ( not EnInt[j] and not EnI$[j] and not EnD$[j] ) then  
17.     IntriTimer[j]++;       
18.  if ( not EnInt[j] and EnI$[j] ) then 
19.     I$Timer[j]++;       
20.  if ( not EnInt[j] and EnD$[j] ) then 
21.     D$Timer[j]++;   
22.  if ( I$Timer[j] > I$OWCET[j] or D$Timer[j] > D$OWCET[j] or    
       IntriTimer[j] > IntriOWCET[j] ) then 
23.     return j;                                             
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Figure 2. Hardware-assisted malware detector interface using (a) 
LTSR, (b) LTMR, (c) hardware detector for lumped timing models, 
(d) interface and hardware detector for ST model, and high-level 
overview of (e) subcomponent timing analysis module showing for 
one event. Note: Sequence-based detection is embedded but not shown. 

Table 1. Hardware components required for storage and detection at 
runtime for increasing number of monitored events. 

# of 
Events Model 

Hardware Components 

Timer Addr. 
register 

Timing 
bounds 
register 

Seq. 
detect. 
register 

Comp 
(==) 

Comp 
(<) 

Comp 
(>) 

10 
LTSR  10  20 20 15 10 10 0 
LTMR  10  20 60 15 30 30 20 

ST  30  20 60 15 30 30 0 

30 
LTSR  30  60 60 35 30 30 0 
LTMR  30  60 180 35 90 90 60 

ST  90  60 180 35 90 90 0 
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enabled, but only when the $ miss happens outside of an 
interrupt handler. Once the instruction or data is ready, the 
corresponding timers are disabled. If the execution is neither 
interrupted nor waiting on a cache miss, the IntrinsicTimer is 
enabled. To simplify the hardware, the timers use an offset 
timing in which the timers are initialized with -BCET. This 
strategy enables the BCET bound to be verified by checking the 
timer’s most significant bit, rather than using a comparator. The 
offset timing requires storing the WCET as an offset WCET 
(OWCET), calculated as WCETj - BCETj. The WCET bound is 
verified by checking if the timer exceeds an event’s OWCET. 

D. Hardware Detectors Overhead Analysis 
The detectors for all three models have been implemented 

in hardware and integrated within the smart connected 
pacemaker prototype (Section VI). Table 1 presents the number 
of hardware components required to support the LTSR, LTMR, 
and ST models. Within the hardware, each event’s start and end 
addresses are stored using 24-bit registers, as 24 bits is the 
number of bits needed to address the application’s code 
segment. Note that further reduction in register size is possible, 
such as identifying the least number of bits to differentiate 
addresses for all monitored events.  

For sequence detection, the hardware requires registers to 
store information defining the expected event sequence, which 
includes one register for each event. Additionally, the hardware 
has five registers used for dynamic detection of execution 
sequence violations. The size of all sequence detection registers 
in bits is equal to the number of events. 

For timing measurement and analysis, the bounds of single-
range or multi-range models are stored in 26-bit registers, which 
are sufficient for the largest timing values across all monitored 
events. The FindEventID module requires equality comparators 
to match events’ addresses with the current PC. The 
RangeDetector module requires magnitude comparators (i.e., 
less than) to verify upper bounds. For the LTSR and ST models, 
only a single logic gate is required to verify the most significant 
bit. However, because the LTMR model has only one timer for 
lumped timing, this optimization can only be applied to the first 
range’s lower bound verification. 

As the number of monitored events increases, the required 
hardware components increase linearly as shown in Table 1. 
LTMR and ST have the same rate of increase for 26-bit registers 
and comparators, which increase 3X faster than LTSR, while 
all three detection models need the same number of 24-bit 
registers. ST requires 3X the number of timers as LTSR and 
LTMR. The LUTs and FFs required for the detecting all events 
in pacemaker application is less than 1% of the pacemaker 
prototype’s total area, and dynamic power consumption is less 
than 2% of the overall system power consumption. 

VI. EXPERIMENTAL EVALUATION 

A. Smart Connected Pacemaker Benchmark 
To evaluate the timing based anomaly detection, we 

developed an FPGA-based prototype for a smart connected 
pacemaker using a Xilinx Spartan-6 XL45 FPGA, presented in 
Figure 3. The smart connected pacemaker prototype enables the 
implementation and analysis of different vulnerabilities and 

malware, and includes a simulated patient heart, a cardiac 
sensor, an impulse pacer, and four timers. The simulated patient 
heart generates irregular beats and reacts to the impulse pacer 
signal controlled by the pacemaker software. The cardiac sensor 
interfaces to the simulated heart model and sends the measured 
heart signals to the microprocessor using interrupts. The output 
from the cardiac sensor also controls the Atrio-Ventricular 
Interval (AVI) timer and the Ventriculo-Atrial Interval (VAI) 
timer. The VAI/AVI timers are used to maintain the appropriate 
delay between the atrial/ventricular activation and the 
ventricular/atrial activation, and will generate an interrupt if the 
AVI/VAI exceeds a specific interval configured by the cardiac 
physician. The PVARP/VRP timers filter noise in the 
ventricular and atrial channels, respectively [4][17]. 

The pacemaker software, which executes on a MicroBlaze 
processor, consists of three tasks and four ISRs. The ISRs 
interact with the pacemaker’s cardiac sensor and timers, and 
have the highest priority. ISR operations include atrial and 
ventricular pacing, and recording ventricular and atrial activity. 
The calculation task calculates the Upper Rate Interval (URI) 
and records cardiac activity to a log file. A fault-exam task 
analyzes the cardiac activity and detects a high URI, which 
indicates the pacemaker cannot pace the heart correctly or that 
pacemaker’s cardiac sensor has malfunctioned. In the event of 
a high URI, the pacemaker immediate transmits a message to 
alert the physician. The communication task is responsible for 
communication, by which the physician can configure the 
pacemaker’s settings or a home monitoring device to access 
daily logs of the cardiac activity. Including the events in all 
tasks and ISRs, there are 45 events in total that are monitored. 

B. Malware Implementation 
We utilized four mimicry malware targeting the pacemaker. 

The file manipulation malware manipulates the cardiac activity 
log to deceive the physician, with the intent of leading a 
physician to an incorrect diagnosis or a potentially life-
threatening misconfiguration. This malware involves reading 
the cardiac activity log file, manipulating the data, and writing 
the modified data back to the log file. The file manipulation 
malware affects the communication task’s execution and 
mimics the software’s execution sequence to avoid sequence-
based anomaly detection. The information leakage malware 
covertly reads data in the cardiac activity log of the patient 
within the calculation task, and sends this information to a 
malicious data center within the fault-exam task. The 
information leakage malware also increases the execution 
frequency of the fault-exam task in order to rapidly leak a large 
amount of data. The fuzz attack malware [22] manipulates the 
system execution by randomizing data values and 
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Figure 3. Smart connected pacemaker prototype system. 
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system/function call arguments, which is usually implemented 
by interpolating data in memory. Two variants of the fuzz 
malware are considered, one where the fuzz malware 
randomizes the log buffer size by up to 20% and one where the 
fuzz malware randomizes the same buffer size up to 100%. The 
fuzz malware indirectly affects the system timing, and impact 
the system’s time-sensitive control operations, which is a 
common intent of fuzz attacks. We analyzed the fuzz attack to 
evaluate the effectiveness of timing models to detect such 
attacks, which are one of the hardest mimicry malware to detect.  

C. Experimental Results 
To characterize the normal system execution for the smart 

connected pacemaker, we combined system-level timing 
requirements with experimental training of timing bounds for 
the monitored events. To train each timing model, we executed 
the system 1000 times under all execution scenarios (i.e., 
healthy/unhealthy patient, different physician configurations) 
to measure the lumped and subcomponent timing bounds of 
each event. 1000 samples were sufficient for our system to 
achieve a low false positive rate. However, the collection and 
model building processes are automated and facilitated by the 
hardware, so training can be efficiently scaled to larger sizes. 
After creating the timing models, we configured each model in 
the hardware detector. To evaluate the detection rate, we 
executed each malware 100 times within the pacemaker 
prototype. We further evaluated the false positive rates using 
cross-validation. Specifically, 1000 timing values were 
randomized, and for each slice of 100, the false positive rate 
was calculated using the remaining 900 as the training set, and 
averaged across these 10 slices. 

Figure 4 presents the average detection rate across all 
monitored events for the four malware considered. Overall, 
detection with the LTMR model outperforms the LTSR model, 
achieving on average a 17% higher and at best a 24% higher 
detection rate than the LTSR model. Detection with the ST 
model achieves the highest detection rate for fuzz attacks and 
file manipulation malware, achieving a maximum detection rate 
0.94. For the information leakage malware, the LTMR model 
achieves the highest detection rate, which is primarily due to a 
1.00 detection rate for the event xemacif. The LTSR and ST 
models cannot detect that event, which results in the lower 
average detection rate for this malware. On the other hand, the 
LTMR model has the highest average and worst case false 
positives, as shown in Table 2, which is 0.3% and 0.2% higher 
than LTSR and ST on average, respectively. 

Figure 5 presents the single event detection rate and the 
cumulative detection rate for the fuzz buffer size 20% malware, 

which affects the calculation and communication tasks. The 
single event detection rate demonstrates the detection 
performance of each model separately for each event. For most 
events, the ST model achieves a higher single event detection 
rate than LTSR and LTMR. For some events, such as filesleek, 
the LTSR model is unable to detect the malware, whereas the 
LTMR and ST have a detection rate of 1.00. This shows that 
multi-ranges and subcomponent timing both have an advantage 
in detection compared to single-range detection. One exception 
is event tcpwrite, for which the LTSR model achieves a higher 
detection rate. This is because the interference of interrupts is 
included in the LTSR model but excluded in the ST model. 
However, in most cases, the interference of interrupts 
negatively affects the detection performance.  

The LTMR model’s performance is bifurcated, having 
either a low detection rate or a high detection rate for different 
events. Specifically, five events have detection rates greater 

 

Figure 4. Average detection rate across all events for all malware. 

Table 2. Average and worst case false positive rate for all models. 
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Figure 5. Single event and cumulative detection rate (in parentheses) 
for fuzz buffer size 20% malware using (a) LTSR, (b) LTMR, and (c) 
ST models. Superscript labels indicate if malware was detected by 
aintrinsic, binstruction cache, or cdata cache timing. Letters indicates 
monitored events, and arrows indicate control flow between events. 
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than 0.75, and 17 events have detection rates less than 0.15. For 
example, the detection rate of LTMR for event cal>K is as low 
as 0.01, while the ST model’s detection rate is 0.53. The reverse 
situation occurs for event fileopen, for which the LTMR model 
achieves a 1.00 detection rate, whereas the ST model has a 0.61 
detection rate. The reason is that the malware’s lumped timing 
happens to be between two normal lumped timing ranges. 

The cumulative detection rate is the overall rate of detecting 
malware within the execution sequence of events. When a 
cumulative detection rate of 1.00 is reached, it indicates that the 
malware’s execution is detected for all malware executions. 
Using the LTSR model, the cumulative detection rate reaches 
1.00 at the 21st event. But, using the LTMR and ST models, the 
cumulative detection rate reaches 1.00 at the 12th event. In 
addition, the LTMR and ST models achieve a cumulative 
detection rate of 0.91 and 0.92, respectively, at just the 5th event. 
For the ST model, Figure 5 is annotated to indicate which 
subcomponent(s) detected the malicious execution. The 
intrinsic timing and I$ miss timing contribute the most to the 
detection rate and can detect malware for 13 events, whereas 
the D$ timing detects malware for only 5 events. This behavior 
is expected as the intrinsic timing and I$ timing have less 
variability, and thus tighter timing bounds. 

In conclusion, the ST model has both the best single event 
and best cumulative detection accuracy, with only 0.12% 
increase in false positives. Detection with the LTMR model 
outperforms the LTSR model, and has better detection than the 
ST model in a few isolated cases, but overall has lower average 
and cumulative detection rates and a higher false positive rate. 

VII. CONCLUSIONS AND FUTURE WORK 
We presented a non-intrusive malware detection approach that 
uses information available from a processor’s trace port to 
separate the execution time into intrinsic timing, I$ miss timing, 
and D$ miss timing, while eliminating the effects of 
interference from interrupts and context switches. Experiments 
with a smart connected pacemaker and four mimicry malware 
demonstrate that the ST model achieves an average per event 
detection rate of 0.66, which is 0.24 higher than the LTSR 
model. In addition, the ST model detects malware faster, 
reaching a 0.92 detection rate after 5 events and 100% detection 
rate after only 12 events, which is a 52% fewer events than the 
lumped timing models. Future work includes further analysis of 
the ST model using statistical analysis (e.g., cumulative 
distribution functions) within sliding execution, employing 
machine learning methods (e.g., support vector machines), and 
analyzing the tradeoffs in detection rate, false positive rates, 
hardware area requirements, and energy consumption. 
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