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A B S T R A C T  

The methods for transforming real-world problem 
into simulation models are being increasingly explored 
with the availability of inexpensive computing power. In 
general, traditional model building procedures involve 
a lengthy problem formulation and interaction between 
the analyst and the client. Furthermore, after the model 
definition is arrived at, the simulation model is often 
programmed manually. Recent developments in simu- 
lation modeling have focused on automatic model gen- 
eration employing artificial intelligence (AI) techniques. 
Such developments focus on the transfer of the user's 
knowledge about the system into an executable simula, 
tion model. Current techniques still lack effective knowl- 
edge acquisition tools and a global database from which 
model alternatives can be generated. In this paper, a 
set of knowledge bases (KBs) will be proposed to aid in 
the hierarchical model construction. 

1. I N T R O D U C T I O N  

The schemes for modeling a real-world object are 
usually problem domain dependent. Different problem 
domains require different modeling schemes. Traditional 
approaches often involve a lengthy model formulation 
phase. This phase include time-consuming interactions 
between the analyst and the client, manual program- 
ming for executable model, visual simulation with model 
validation, and statistical packages with analysis of re- 
suits (Doukidis and Paul, 1985). With the increase of 
problem size, traditional approaches are becoming very 
complex. Along with the availability of inexpensive 
computing power, computer-aided model development 
is in a period of significant transition. Recent develop- 
ments in computer-aided systems embed Artificial Intel- 
ligence (AI) and Expert Systems (ESs) into the Simula- 
tion Modeling. 

Both AI and ESs create programs which simulate 
domain experts to achieve some tasks such as giving 
expert advice, proving theorems, and understanding 
natural language. These techniques can be applied 
in information management for the model formulation 
phase. Current implementations include Knowledge- 
Based Model Construction (KBMC), Computer Aided 
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Simulation Model (CASM), Knowledge-Based Simu- 
lation System (KBS) (Murray and Sheppard, 1988; 
Balmer and Paul, 1986; Reddy et al., 1986). Murray 
and Sheppard give a description of how to automate 
model construction using domain and modeling knowl- 
edge and implement KBMC. CASM is a project devel- 
oped at the London School of Economics (Balmer and 
Paul, 1986). It is used to investigate the ways of maldng 
the process of simulation modeling more efficient using 
a natural language understanding system (Balmer and 
Paul, 1986). Reddy et al. (1986) describe a knowledge- 
based simulation system (KBS) by employing AI-based 
knowledge representation system for modeling. The sys- 
tem provides several functions such as interactive model 
creation and alteration, simulation monitoring and con- 
trol, and graphics display. For other surveys, we refer 
readers to (Balci and Nance; 1987). 

In our previous work, we have implemented a model 
development environment called MODSYN (MODel 
SYNthesizer) (Huang, 1987; Rozenblit and Huang, 
1987). This environment is used to generate a model 
structure based on a set of modeling objectives and re- 
quirements expressed a.s production rules. MODSYN 
supports the hierarchical model development process. 
The model representation in MODSYN is the system 
entity structure (IIuang, 1987; Zeigler, 194). Recently, 
we have augmented the system entity structure by com- 
bining the frame and production rules formalisms into 
a new representation scheme called FRASES (Hu et al., 
1989). We have also proposed a knowledge acquisition 
process called KAR (Knowledge Acquisition based on 
Representation) to support model development using 
FRASES (ttu and Rozenblit, 1989). 

2. M O D E L  K N O W L E D G E  A C Q U I S I T I O N  
A N D  R E P R E S E N T A T I O N  

Applications of AI in simulation modeling empha- 
size how to build a simulation model without the knowl- 
edge of a domain simulation language. In other words, 
they focus on how to transfer user's knowledge about a 
system and its specifications into executable simulation 
code. Current implementations of simulation model gen- 
eration still lack: 1) an effective knowledge acquisition 



tool to direct modeUers in building complete simulation 
models for a complicated system; 2) a global database 
(or framework) to generate possible models. (A global 
database  is quite p r ~ t i c a l  to organize t ime-dependent 
da t a  so tha t  it  can keep generated models up-to-date 
or can retrieve new models by change without going 
through the model generation process again); 3) organi- 
zation of a hierarchical model abstraction which allows 
models to be described at any desired level of detail. 

Thus, model representation plays an important  role 
in the life cycle of model development. Here, we use 
FRASES as a framework for hierarchical model repre- 
sentation. We propose the following knowledge bases 
(KBs) to aid in the automat ic  model construction: 

• M e t a - A c q u i s i t i o n  K n o w l e d g e  Base  
( K A K B ) :  This knowledge base will direct users 
in building models by using the problem-reduction 
principle (Nllsson, 1971). KAKB will question 
users about  possible decompositions of compo- 
nents, their taxonomies a~ well as constraints on 
their couplings. We term this acquisition process 
Knowledge Acquisition Based on Representation 
(KAR) (ttu and Rozenblit, 1989). 

• G l o b a l  K n o w l e d g e  B a s e  ( G K B ) :  This KB 
will store a family of models generated by Meta~ 
Acquisition KB. Models will be selected from 
GKB based on one specification of model param- 
eters and at t r ibutes .  

* C o n s t r u c t i o n  K n o w l e d g e  B a s e  ( C K B ) :  This 
is a s tat ic  knowledge base that  will store modeling 
knowledge for the conversion of a model specifica. 
tion into simulation code. 

o V a l i d a t i o n  K n o w l e d g e  B a s e  ( V K B ) :  This 
base will contain rules for model validation after 
relevant da t a  have been collected from simulation 
runs. 

The  four knowledge bases for configuring the life 
cycle of automat ic  model development environment are 
shown in Figure I. 

(Meta-Acqul. KB ) 

KAR 
Extraction Rules 

( Coast~ct,on KB) 1 

] Modellln~ Knowledll, e 
rarfet  Land, ante 

Figure 1. Four KBs with an Opportums.c Reasomng Engine 

2.1  F R A S E S  R e p r e s e n t a t i o n  

To improve the model specification process and 
unify knowledge representations employed in the frame- 
work (i.e., the semantic net-like system entity struc- 
ture and production rule formalism), we have de- 
veloped an integrated representation scheme called 
FRASES (Rozenblit at.al.). FRASES combines an 
entity-based representation with production rules and 
frames. FRASES i s  a supercalss of the system entity 
structure. Although developed for model based system 
design, the scheme is generic and part icularly suitable 
for hierarchical modeling. 

Each entity node of a FRASES tree has a cluster of 
knowledge, termed Enti ty Information Frame (EIF)  as- 
sociated with it. An Enti ty Information Frame (EIF) is 
a frame object (Winston, 1984) containing the following 
slots: 

< M, ATTs,  DSF, ESF, CRS, CH > 

Where 
M: the name of associated nodes 
K I T s :  design a t t r ibutes  and parameters  of M 
DSF: the desig specification form 
ESF: the experimental  specification form 
CRS: constraint rules for pruning and model 

synthesis 
CH: children entities of M 

With FRASES representation, behavior character- 
istics of objects are described by simulation models de- 
fined in the model base. M represents the key to access 
the model of an entity to which the ElF  is attached. 
N I T s  are a t t r ibute•  or parameters  used to character- 
ize the associated objects. Design Specification Form 
(DSF) is a slot used to accept the user's design specifi- 
cation of objectives, constraints,  and criteria weighting 
scheme. The contents of DSF define the system require- 
ments such as an arrival process, service process, and 
simulation controls. ESF provides information to direct 
the automatic  construction of simulation experiments 
(experimental  frame). 

Constraint  Rules (CRS) slot contains pruning and 
synthesis knowledge expressed as production rules for 
generating a configuration of model components.  Selec- 
tion constraints for pruning alternatives are associated 
with specification nodes. Constraints  for synthesizing 
components are associated with the aspect nodes. Chil- 
dren (CII) indicate the children nodes of the entity. An 
example of a FRASES structure is presented in Figure 
2. 

The following features distinguish FRASES from 
other representation schemes: 

• G e n e r a t i v e  M o d e l  S t r u c t u r e  K n o w l e d g e :  
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Figure 2 Hierarchical Robot Model in FRASES 
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FRASES is a generative scheme capable of rep- 
resenting a family of model structures. 

• H i e r a r c h i c a l  O r g a n i z a t i o n  o f  t h e  K n o w l -  
e d g e  B a s e :  FRASES employs a top-down 
methodology to describe knowledge from an ab- 
s tract  level to more specific levels in a hierarchical 
manner. This approach reduces the complexity of 
knowledge manipulat ion and improves knowledge 
completeness and representation of modularity. 

• U n i f o r m i t y  o f  K n o w l e d g e  Base :  The charac- 
teristic of inheritance and uniformity reduces the 
size of the knowledge base. In FRASES, all the at- 
tached at t r ibutes  and substructures are inherited 
through the specification of an entity. Every oc- 
currence of an entity has the same Entity Informa- 
tion Frame and isomorphic substructures.  Iden- 
tical nodes located in different paths are updated 
automatically according to the axiom of unifor- 
mity. This eliminates duplicate descriptions of the 
same model objects. 

• I n c r e m e n t a l  R e f i n e m e n t  o f  t h e  K n o w l e d g e  
Base :  In simulation studies the knowledge base 
needs to be updated incrementally as new results 
are analyzed. With  FRASES, the hierarchy of 
knowledge organization facilitates refinements in 
depth (or levels of abstraction) and breadth (or 
decomposition details). Furthermore, the axiom 
of uniformity allows all modifications to be up- 
dated simultaneously for all other identical nodes 
distr ibuted in the FRASES tree. 

• V e r i f i c a t i o n  a n d  V a l i d a t i o n  o f  t h e  K n o w l -  
e d g e  B a s e :  The hierarchy and modularity of 
FRASES reduced potential  gaps in a knowledge 
base. In FRASES, heuristic rules are hierarchi- 
cally distributed. Each rule deals only with the 
knowledge about its subtree nodes. The charac- 
teristic of rule locality in FRASES facilitates ver- 
ification and validation of the knowledge base. 

2 .2  M o d e l i n g  K n o w l e d g e  A c q u i s i t i o n  B a s e d  
o n  R e p r e s e n t a t i o n  

Although a number of methodologies such as inter- 
viewing, protocol analysis, observing, induction, cluster- 
ing, prototyping (Waterman,  1971; Ericsson and Simon 
1984; Ritehie, 1984; Kahn, 1985; Kessel, 1986; Gaines, 
1987; Olson, 1987) etc., have been proposed for knowl- 
edge acquisition, it  is difficult to demonstrate their effi- 
ciency in simulation modeling applications. Different 
applications require different strategies for knowledge 
acquisition and representation to avoid misunderstand- 
ing and/or  loss of impor tant  knowledge from a human 
expert. Acquiring complex knowledge with conventional 
acquisition methods is costly due to preparation, ver- 
ification, organization, and translation of the informa- 
tion elicited from experts. Knowledge acquisition should 
be directed or supervised under a certain scheme. The 

scheme should help in: acquiring knowledge, detecting 
conflicts, identifying missing facts, and eliminating du- 
plicate or redundant  knowledge. 

A FRASES-based approach for modefing knowledge 
acquisition (Hu and Rozenblit 1989) is currently be- 
ing formulated. Termed K A R  (Knowledge Acquisition 
Based on Representation), the method consists in gener- 
ating question pat terns  about decomposition and taxo- 
nomic relationships of the model objects. At each itera- 
tive application, domain relevant query rules are referred 
to and are interpreted based on the structural  nature of 
FRASES to generate question patterns.  To assure the 
consistency of knowledge, information provided by users 
on each query cycle is automatical ly vafidated with ver- 
ification rules. A KAR example is given in Figure 3. 

Several advantages are expected from the applica- 
tion KAR approach to modeling knowledge acquisition: 

• Ef f i c iency :  Questions pat terns  necessary to ac- 
quire knowledge for decomposition, taxonomy, 
pruning, and synthesis of systems are expressed in 
the query templates.  Appropria te  questions can 
be generated automatical ly and directly trans- 
lated into FRASES representation. 

• U n i v e r s a l i t y :  FRASES is applicable to any 
modeling domain which can be structured using 
the system entity structure methodology. 

• C o s t - E f f e c t i v e n e s s :  Conventional approaches 
require human intervention in knowledge acqui- 
sition, verification, translation, and organization. 
Automat ing the knowledge acquisition task with 
KAR reduces the development cost of knowledge- 
based modeling support  systems. 

3. M O D E L  G E N E R A T I O N  

After the process of model acquisition, a family 
of models generated by Meta-Aequisition KB will be 
stored in the GlobM KB. These candidate models are 
represented by FRASES representation and can be later 
manipulated by an inferencing mechanism according to 
user's specifications. In our previous work, we devel- 
oped an inferencing mechanism using backward reason- 
ing strategy in the MODSYN environment (Rozenblit 
and Huang, 1987). MODSYN shell later incorporated 
forward reasoning and was rewritten in Common Lisp 
(Pan, 1989). Both reasoning strategies are optional in 
running the latest  version. In the following, we propose 
an adaptive inferencing mechanism to make model gen- 
eration more efficient. 

The model generation based on FRASES represen- 
tation can be regarded as the pruning process with re- 
spect to the knowledge sources and external specifica- 
tions. A problem-solving model is required for orga- 
nizing reasoning steps and domain knowledge to con- 
struct a solution for a problem. In a production system, 
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Expert/Question Pattern Generator Interaction System Internal Conversion 

1.) What is your design domain (a list)? 
=> (robot) 1.) ROBOT 

2.) Can you classify robots based on certain specialization 
(a list)? 

=> (intelligence motion) 

3.) Please specify selection rules for distinguishing 
intelligent and motion robots (IF-THEN clause) 

=> (if desired autonomy is not "don't care" 
then robot is determined by intelligent type) 

(if desired autonomy is "don't care" 
then robot is determined by motion type) 

==> You already specified two rules for them based on 
autonomy. Any other rules for them (y/n)? 

. > n  

4.) What are the components of a robot (a list)? 
=> (Cognition subsystem 

Mechanical subsystem 
Control subsystem 
Communication subsystem) 

==> You have specified four entities for robot decomposition. 
Any multiple decomposition for above entities (y/n)? 

> n  

5.) Is there any further specialization for intelligent robot? 
=> yes 

Please specify them (a list) 

ROBOT 

2.) I 

II II 
i n t e l l i g e n t  Motion 

spec  spec  

3 ) ROBOT 

4.) 

A'VI ' s : . . .  
CRS . . . . .  
CH: . . . .  

ROBOT 
I 

DSUbsystem 
ecomposlt~on 

I 

Cognition Mechanical Control Commu- 
;ubsys tem s u b s y s t e m  subsystem n ica t ion  

s u b s y s t e m  

==> (intelligent unintelligent) 

ROBOT 

I 

{a crtl key was entered to indicate no more construction} 

n.) Any modification for this model (y/n)? 
= >  n 

5.) 

II II 
i n t e l l i g e n t  Motion 

spec spec 

II 
I J 

intelligent unintelligent 

n.) Store the model at Global KB 

Figure 3 KAR with FRASES for Robot Model Construction 
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the forward-reasoning and backward-reasoning strate- 
gies are the basic schemes. The typical examples of them 
are the OPS system and the MYCIN shell (Waterman, 
1986). At the present time, we focus on a model gener- 
ation by exploring the best  reasoning strategy using the 
FRASES representation. 

3 .1  A u t o m a t i c  G e n e r a t i o n  o f  S e l e c t i o n  R u l e s  

A set of selection rules is defined for representing 
selection constraints imposed on an entity set to select 
appropr ia te  model objects  from taxonomic relations of 
FRASES (Rozenblit and Huang, 1987). With  the frame 
characteristics, the members of an entity set have at- 
t r ibutes and own values. The members of the entity set 
can be then distinguished by these values. One of the 
characteristics of frame representation is that  the selec- 
tion of instances is based on the objects '  slot values. Pos- 
sessing the features of frame representation, FR.ASES 
implicitly contains the selection rules. The inferencing 
mechanism should regard these features as a set of selec- 
tion rules. The implicit  selection rules will reduce the 
complexity of the knowledge base as well as facilitate 
future refinements of the rules by simply changing the 
values of objects '  slots. 

3 .2  R u l e  I n d e x i n g  

It may be infeasible to find the rule that  matches a 
given si tuation by systematical ly checking each rule in 
a knowledge-based system with a large number of pro- 
duction rules. We add an addit ional index slot for each 
EIF frame. All the rules associated with an EIF frame 
have the same index. The purpose is to find a much 
more limited set of applicable rules and thus improve 
the search efficiency. This method reduces the number 
of rules that  need to be considered as compared with 
an exhaustive consideration of each rule. This approach 
is especially beneficial in a hierarchical knowledge base 
since the searchin 9 area usually occurs in the neigh- 
borhood of the current s tate .  There are actually two 
numbers in the rule index. One indicates the degree of 
breadth.  The other indicates the degree of depth.  They 
are used for forward-reasoning and backward- reasoning 
strategies respectively. 

3 .3  O p p o r t u n i s t i c  I n f e r e n c i n g  

Top-down and bot tom-up strategies have often 
been employed in problem solving. In MODSYN, we 
have incorporated a backward-reasoning strategy with a 
bot tom-up instantiat ion (Rozenblit  and Huang, 1989). 
The al ternative is to employ a forward-reasoning s t r a t -  
egy with top-down instantiat ion process for model gen- 
eration. For example, a blackboard model has been pro- 
posed and successfully applied in Hearsay-II system by 
using both reasoning strategies alternatively (Erman et 
al., 1080). The central issue of dealing with real-word 
problem is "What  pieces of knowledge should be ap- 
plied, when and how?" (Nil, 1986). In other words, 

pieces of knowledge should "know" when they should 
apply and how they could apply (forward or backward 
reasoning). This is called opportunist ic  reasoning. The 
blackboard model is a typical example of opportunis- 
tic problem solving by using several highly structured 
queues. Our efforts are focusing on exploring an oppor- 
tunistic reasoning for design model generation by inte- 
grating both reasoning strategies we have explored so 
far. 

One possible method to implement this kind of rea- 
soning is to use two ext ra  working memories to store 
traversing status and fired-rule status.  For example, 
when backward chaining is being used, the inference en- 
gine may check the fired-rule status.  If there are only 
a few rules tha t  have not been fired, then forward rea- 
soning may be applied. We can consider both reason- 
ing chains as linked lists. As shown in Figure 4, the 
blocks stand for candidate rules. In part  a) of the fig- 
ure, forward chaining begins with the premises of some 
block. Then a subset of next candidate rules is fired. 
The process will s top after exploring all candidate rules 
and will form a singly-linked list. Backward reasoning 
is the same as forward reasoning except that  it  begins 
with the conclusion parts  of some candidate  rules. The 
purpose of opportunist ic  reasoning is to create a doubly- 
linked list. The "reasoning direction" is not restricted to 
forward or backward. In order to achieve the reasoning, 
the traversing status (or pointer  status) and fired-rule 
s tatus are needed as shown in part  c) of Figure 4. 

Forward 
Reasoning 

• premiscst : 
onclustonsj Candidate rules 

Backward 

Opportunistic 
Reasoning t i, 

Working Memories: 
traversing ) 

fired-rules ) 

Figure 4 Compaurlsons of Reasomng Chains 
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4. E X E C U T A B L E  S I M U L A T I O N  M O D E L  
C O N S T R U C T I O N  

The model construction process can be divided into 
three subtasks: 

• Construction of design models. 

• Construct ion of experimental  frames. 

• Synthesis of design models and experimental  
frames. 

The construction of experimental  frames based on 
the Atomic Frame concept has been developed in our 
previous work. For implementat ion details, readers are 
referred to [Hu 1989; l:{ozenblit and Hu 1989]. 

The atomic frame concept can be extended to 
serve as the basic scheme for construction of simulation 
models. Once the design specification characterizing 
the i npu t / ou tpu t  requirements, performance require- 
ments, and technical constraints is given, the rule-based 
model constructor  analyzes and extracts  all the required 
atomic frames (e.g., a F I F O / L I F O / P r i o r i t y  queue, a 
Up/Down-Counter ,  etc.) for construction of a Generic 
Model that  will logically fit the needs of model speci- 
fications. Here generic s tands for simulation language- 
independent .  The generic models are then translated 
into simulation models based on the target  language em- 
ployed. This enables the system to adapt  to different 
simulation environments by adding grammars  of simu- 
lation languages. 

After models and experimental  frames are gener- 
ated, the system s tar ts  the synthesis of a simulator mod- 
ule. This is accomplished by acquiring coupling informa~ 
tion of a composition tree. Formally, a pruned FRASES 
structure can be converted into a number of composi- 
tion trees, each of which represents a model alternative. 
The  coupling information on decomposition nodes to- 
gether with the desired performance indices indicated 
on each entity node will direct the system to conduct a 
bot tom-up model synthesis process. 

The  final synthesized model is then validated and 
simulated for performance analysis. Model refinements 
may be required if none of the synthesized models fit 
the performance requirements. This requires the appli- 
cation of learning from experience for refinement of the 
knowledge base. The overall model construction process 
is depicted in Figure 5. 

5. R U L E - B A S E D  A U T O M A T I C  A N A L Y -  
S I S  

The  simulation results must be collected and evalu- 
ated to see if the generated model is satisfactory. Two 
methods have been developed for the purpose: causal 
path  analysis and rule-based diagnosis (Reddy et al., 
1986). The former is derived from stat ist ic concepts. 

The regression and correlation between variables are in- 
vestigated. The la t ter  uses simple rules to determine 
whether some variables'  values should be changed or not. 

The rule base proposed here contains the expert ise 
of simulation domain analysts. Two kinds of actions 
will be taken if necessary after the analysis: a local re- 
finement and model regeneration. If there are only few 
results which are not satisfactory, the rule base will be 
responsible to inference the possible update  on input  
constraints.  In other words, some at tached variables '  
values (i.e. constraints) may need to be changed to 
maintain the consistency of behavior constraints.  The 
inference engine takes the results of analysis as new facts 
to inference using Global KB. If there axe only few spec- 
ifications that  need to be specified again, the VKB will 
suggest the user to replace some submodels.  In the ex- 
treme case then the simulation results of the generated 
model are very far away from the goal, another consul- 
tation phase will be suggested. 

I - ' ' ° '  Knowledge Frame Base 

Pruned 
Entity 

Structure 

Model  
Construction 

Analysis 

Generic 
Model 

Formulation 

Simulalion 
Model 

Translalion 

t 
Executable 
Simulalion 

Model 

~ _ ~  Target 
Language 
Grammar 

Figure 5 Model Construction Process 

6. C O N C L U S I O N S  

To unify the operations among the four KBs, a 
unique inferencing mechanism should be designed to 
drive them. A working memory will be shared by all 
KBs to maintain the consistency. When running the 
system, the user will be directed by Meta-Acquisit ion 
KB to create a family of models using his or exper t ' s  
knowledge. The model represented in FRASES will be 
stored in the Global KB. Then,  the system will enter 
the consultation phase. The  system will question the 
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user for constraints for a desired model. A set of speci- 
fications will be given by the user to generate the final 
model. The system will use the modeling knowledge 
from the Construction KB to generate an executable 
simulation model. Finally, the simulation results will be 
collected and evaluated by Validation KB. The opera- 
tion process of knowledge management in model devel- 
opment is shown in Figure 6. 

We have presented the concept design of an au- 
tomatic model development using knowledge bases ap- 
proach. The expected advantages over other approaches 
are the speed up the model construction. This speed 
up will be afforded by using the FRASES acquisition 
process and a global model database for facilitating the 
refinements. 

model regeneration 

~ ~Frame_~ 
....... a family 

L pruned I 

K~ ,imutltlo;[ K~ [ ,o,u.. ;, 

(S'm°""°O 

Figure 0 Operauon Process of Knowledge Management 
in Model Development 

R E F E R E N C E S  

Balci, O. and Nance, 1t. E. (1987). Simulation model 
development enviroments: a research prototype. J. Opl 
Res. Soc. Vol. 38, No. 8, 753-763. 

Balmer, D. W. and Paul, R. J. (1986). CASM-the right 
environment for simulation. J. Opl Res. Soc. 37, 443- 
452. 

Doukidis, G. and Paul, R. J. (1985). Research into ex- 
pert systems to aid simulation model formulation. J. 
Opl Res. Soc. Voi. 36, No. 4,319-325. 

Erman, D. L., Hayes-Roth, F., Lesser, V. R., and Reddy, 
D. Raj. (1980). The HEARSAY-II speech understand- 
ing system: Integrating knowledge to resolve uncer- 

591 

tainty. ACM Computing Survey 12:213-253. 

Ericsson, K. A. and Simon, H. A. (1984). Protocol Anal- 
ysis: Verbal Report as Data. Cambridge, Mass: MIT 
Press. 

Gaines, B. R. (1987). An overview of knowledge- 
acquisition and transfer, lnt. J. Man-Machine Studies, 
No.26,453-472. 

I-Iu, J., Huang, Y. M., and Rozenblit, J. W. (1989). 
FRASES - A knowledge representation scheme for en- 
gineering design. Advances in AI  and Simulation, SCS 
Simulation Series, vol.20, no.4, 141-146. 

I-Iu, Jhyfang and Rozenblit, J. W. (1989). Knowledge 
acquisition based on representation (KAR) for design 
model development, to appeax in: Knowledge-Based 
Simulation: Methodology and Applications, (ed. P. Fish- 
wick and R. Modejeski), Springer-Verlag, NY. 

Hu, Jhyfang (1989). Towards a knowlege-based design 
support environment for design automation and per- 
formance evaluation. Ph.D. Dissertation, University of 
Arizona, Tucson, Arizona. 

Huang, Y. M. (1987). Building an expert system shell 
for design model synthesis in logic programming. Master 
Thesis, Dept. of Electrical and Computer Engineering, 
Univ. of Arizona, Tucson, Arizona. 

Kahn, G. (1985). Strategies for knowledge acquisition. 
IEEE Transactions on Pattern Analysis and Machine 
Intelligence, No.7, 511-522. 

Kessel, K. L. (1986). Methodological tools for knowl- 
edge acquisition. Proceedings o] the 1986 1EEE Inter- 
national Conference on System, Man, and Cybernetics, 
Atlanta, GA. 

Murray K. J. and Sheppard, S. V. (1988). Knowledge- 
based simulation model specification, Simulation, 
March, 1988, 112-119. 

Nil, II. P. (1986). Blackboard systems: the blackboard 
model of problem solving and the evolution of black- 
board architecture. The A1 Magazine, Summer, 1986, 
38-53. 

Olson, J. R. and Rueter, H. H. (1987). Extracting exper- 
tise from experts: methods for knowledge acquisition. 
Expert Systems, August 1987, Vol.4, No.3, 152-168. 

Pan, N. (1989). A lisp-based shell for model structuring 
in system design. Master Thesis, Dept. of ECE, Univ. 
of Arizona, Tucson, Arizona. 

Reddy Y. V. et al., (1986). The knowledge-based simu- 
lation system. IEEE Software, March, 1988, 26-37. 

Ritchie, I. C. (1984). Knowledge acquisition by com- 
puter induction. Proceedings of UNICOM Seminar, 
London, England. 

Rozenblit, J. W. and Hu, J. (1989). Experimental frame 



generation in a knowledge-based system design and sim- 
ulation environment. To appear in Modeling and Simu- 
lation Methodology: Knowledge System Paradigms, (M. 
Elzas et. al., eds), North Holland, Amsterdam. 

Rozenblit, J. W. and Huang, Y. M. (1987). Constraint- 
driven generation of model structures. Proceedings of 
the 1987 Winter Simulation Conference, Atlanta, Geor- 
gia. 

Rozenblit, J. W. and Y. M. Huang (1989). Rule-based 
generation of model structures in multifacetted model- 
ing and system design, ORSA Journal on Computing (in 
review). 

Waterman, D. A. and Newell, N. (1971). Protocol anal- 
ysis as a task for artificial intelligence, Artificial Intelli- 
gence, 2, p.285. 

Waterman, D. A. (1986). A Guide to Expert Systems, 
Addison-Wesley, Reading, Mass.. 

Zeigler, B. P. (1984). Multifacetted Modeling and Dis- 
crete Event Simulation, Academic Press, London. 

A U T H O R S '  B I O G R A P H I E S  

Yueh-Min Huang is a Ph.D. student in the Depart- 
ment of Electrical and Computer Engineering at Uni- 
versity of Arizona. He received a B.S. in Engineering 
Science from National Cheng Kung University (Taiwan) 
in 1982, and M.S. in Electrical Engineering from Univer- 
sity of Arizona in 1987. His current research interests in- 
clude artificial intelligence, knowledge-based system de- 
sign, and system modeling, tie is a student member of 
Eta Kappa Nu, AAAI and IEEE Computer Society. 

Yueh-Min Huang 
Dept. of Electr. and Computer Engr. 
The University of Arizona 
Tucson, Arizona 85721 
(602)621-3517 

Jhyfang Hu received his M.S. and Ph.D. degrees 
in Electrical Engineering from University of Arizona in 
1986 and 1989. His research interests include artificial 
intelligence, modeling and simulation, and design au- 
tomation. He is a member of Eta Kappa Nu and IEEE 
Computer Society. 

Jhyfang Hu 
Dept. of Electr. and Computer Engr. 
The University of Arizona 
Tucson, Arizona 85721 
(602)621-3517 

Jerzy W. Rozenblit is an assistant professor in the 
Department of Electrical and Computer Engineering at 
University of Arizona. He received his Ph.D. in Com- 
puter Science from Wayne State University in Detroit, in 
1985. His research interests are in the areas of modeling 
and simulation, system design, and artificial intelligence. 
He is a member of ACM, IEEE Computer Society, and 
The society for Computer Simulation. 

Jerzy W. Rozenblit 
Dept. of Electr. and Computer Engr. 
The University of Arizona 
Tucson, Arizona 85721 
(602)621-6177 

592 


