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Abstract
Analysis of surgeons’ and novices’ movements in la-
paroscopic surgery and especially in their training has
become a novel field of application for motion cap-
ture technology. This paper defines emerging prob-
lems, relates to theoretical foundations necessary to
solve them, and presents elementary approaches. For
a final implementation and realization of the described
training system extension, there are eventually lots of
options to choose from. For these options this work
aims to provide a rich spectrum, especially when it
comes to the feature extraction. A specific solution ap-
proach is explained and practically tested to some ex-
tent in order to demonstrate and partially validate the
methodology.

1. MOTIVATION

In surgery training, up to date, there are only two
common ways of objectively determining the causes
of mistakes and poor performance. By precisely mon-
itoring the operations in a computer assisted surgery
trainer, the supervisor might be able to exactly describe
and point out what the trainee did wrong with the sur-
gical instruments. Those mistakes are mostly caused
by insufficient hand-eye coordination, which is still
to come in course of the training process. The other
way of giving reason for poor performance might be
to compare the body posture and manual techniques of
the trainee during an operation to the ones of expe-
rienced surgeons. Proctering trainees’ body postures
and explaining how they could improve turns out to
be not that easy, even for highly experienced surgeons.
The problem is further compounded since the opera-
tions are not usually recorded and the only examples
of optimized posture and movement are those the ex-

pert can demonstrate. This is an inefficient use of the
expert surgeon’s time. At this point, applying motion
capture technology could make a change.

Sampling body motion of surgical trainees and pro-
fessional surgeons in operation training, and then ap-
plying appropriate methods of pattern classification
to significant motion characteristics (or in terms of
pattern recognition referred to as calculated features)
could help to cast both the ideal body posture and
the most successful instrument handling techniques for
surgeons into figures. On this basis the objective com-
puter aided assessment of surgical trainees could be
advanced and the efficiency of their training could be
improved.

2. PROBLEM DEFINITION

Given motion capture data (MCD) of trainees’ and
expert surgeons’ body movement and posture, one can
follow three branches of applications.

Branch 1 could be the observation of the single
trainee’s progress in training. Here the aim would be
to find the most significant features which change over
time as the surgical trainee constantly succeeds in the
performed operations. These most significant chang-
ing features consist of two classes which are defined
in the following.

Definition of Changing Motion Feature Classes
(CMFC)
Regarding to how they change over time, there are
two classes of motion features CMFCd and CMFCi.
CMFCd includes the features which directly change
over time, because the trainee succeeds and his or
her hand-eye coordination and skills improve (for ex-
ample, the velocity). Assume a trainee who improved
handy-eye coordination during some training sessions
can now perform a certain task quicker than before.
This would be the perfect reason for an increased ve-
locity feature of the new MCD and could be used to
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reconfirm a good assessment for the performed task.
However suggesting that other trainees who perform
worse (with a lower velocity feature) should just in-
crease the speed of their motion cannot be consid-
ered as constructive advice and would probably cor-
rupt their performance even more instead of leading to
their success.
CMFCd basically depends on the trainee’s training
progress and skills.
CMFCi includes the features which can be easily
changed independently of time or training progress
without obvious risk of compromising performance.
The reason they change over time, but in a much more
indirect way is due to the fact that trainees steadily
learn how to improve their performance by optimiz-
ing operation techniques and so features change too.
These features depend on how the trainee decides to
carry out certain motions and techniques or how how
the trainee changes the body posture. When it comes
to certain tasks which require their own special tech-
niques trainees work with the principle of trial and er-
ror. Whether he or she carries out correction moves too
fitful or too smooth or whether the elbow should rest
against the hip, be uplifted in the air or hover in be-
tween during a certain task - problems like these are
solved and optimized by the trainee during training
sessions over time, by experience. Of course trainees
also needs to gain their own personal experience, but
comparing features of CMFCi would give them some
direction which could probably help them to shorten
their trial and error time.

Branch 2: By comparing two or more trainees with
similar experience (CMFCd features), the differences
in performance are likely to be explained by CMFCi

features. Hence, differences in body motion data can
be used to find CMFCi features.
The only big source of fuzziness (or dispersion) might
originate from the individual trainees’ general talent
for surgical tasks or they might have trained their man-
ual skills or hand-eye coordination previously else-
where. Most of the dispersion in CMFCi could be
caused by different approaches for handling the instru-
ments, for certain manual techniques and body pos-
ture among the trainees. Inside this set the features
belonging to trainees with better performance assess-
ment have to be discriminated from the one with worse
results. A model describing the significant differences
could then help the trainees to improve their approach,
similar as in branch 1.

Branch 3: In branch 3 trainees’ motion features are
contrasted with those of expert surgeons. The aim is
to assemble a model to assess trainees and provide
suggestions for improvement. This is similar to the

other branches, but the significant difference here is the
meaningfulness of expert surgeons’ CMFCi features,
which could serve as a much more reliable source of
suggestions for improvement. On the other hand the
challenge of separating CMFCi from CMFCd features
could be much harder to solve with experts’ MCD.

In the following the problem definition is presented
for branch 3.

2.1. Primary problem: Assessment
Given the MCD of a subject performing a laparo-

scopic exercise a previously trained classifier has to
decide whether he/she is novice or expert. For the clas-
sifier’s training a training set is needed. The training
set has to be refined from the raw MCD by feature pro-
cessing prior to the training process. During the train-
ing process the classifier has to learn the distribution of
the data components labeled as either expert or novices
and classify them into each group. After the training,
when MCD of a new subject are provided and the fea-
ture processing completed, the classifier has to be able
to estimate the most likely group to which the subject
belongs.

2.2. Secondary problem: Suggestion for
improvement

More desirable but also harder to elaborate are sug-
gestions for the improvement of surgical trainees per-
formance. The efficiency of the trainees’ training only
improves, when the feedback also tells them how their
motions differ from the one of an expert and how
they could change their body posture and manual tech-
niques in order to perform better. For this purpose the
calculated features have to be separated into CMFCi

and CMFCd . Only features included in CMFCi should
be compared between experts an novices and serve as
reference point for suggestion for improvement.

2.3. Problem summary illustration
For a more sophisticated depiction of the prob-

lems the diagram in Figure 1 illustrates the data and
feedback flow of the desired implementation and sup-
ports the disambiguation of both problems referring
to the definition of Changing Motion Feature Classes
(CMFC). The initial block is the one that represents the
subject. During the surgical training session the sub-
ject physically handles instruments in order to perform
laparoscopic tasks. How well he or she does basically
depends of his or her surgical skills. Accordingly, the
motion of the instruments and the subject’s body differ
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among the subjects. The next functional blocks repre-
sent the data that are acquired from that motion. One
block for the instrument data from the surgery train-
ing system’s motion tracking system and another block
for the motion capture data from the motion capture
(mocap) sensors attached to the subject’s body. Each
type of data is analyzed separately at first, but then in a
more advanced approach the analysis can be improved
by combining the data. This is why the analysis block
shares the data flows. The suggestion for improvement
benefits from the correlations between the instrument
data and the MCD, so that certain parameters can be
individualized for the suggestion procedure. The in-
strument data might even serve as a baseline for any
further suggestions. For instance, if the assessment of
the instrument data indicates the subject is an expert
with little room for improvement, then the suggestions
should take that into account. In this case the system
would have to be deterred from stating or implying,
that the expert performs like a novice, even if his or her
MCD look alike in terms of classification. The results
of the Analysis are stored as suggestion for improve-
ment data (from CMFCi features) and performance
assessment data (from CMFCd features and instru-
ment data/features), which are represented by corre-
sponding functional blocks. Finally, both are visually
presented to the subject as his or her training feedback.

Figure 1. data and feedback diagram

3. RELATED WORKS
The most relevant works related to this paper

are “Objective Evaluation of Laparoscopic Surgical
Skills Using Waseda Bioinstrumentation System WB-
3” [4] and its previous versions [5] [7]. In their re-
search the team of Zhuohua Lin, Student Member,
IEEE, Munenori Uemura, Massimiliano Zecca, Mem-
ber, IEEE, et. al. concentrates on an appropriate appli-
cation of Waseda Bioinstrumentation Systems. These
Sensor Systems are basically consisting of Inertial
Measurement Units (IMUs) and are connected to a
PC via a CAN BUS. Their most significant advan-

tage might be their low weight of 2.9g each. How-
ever, they are tethered, which results in some addi-
tional weight and increases the risk of a negative im-
pact on the measurements through subjects being both-
ered by the cables. The research efforts are focused on
the problem of surgical skill assessment. The classifi-
cation approach is based on Linear Discriminant Anal-
ysis (LDA). Although LDA is a relatively simple clas-
sification method, the rates of correct classification of
expert surgeons and novices in the two latest papers
reach 93.75% (total) each.

However, this paper aims to support wide approach
variations by introducing wireless, less invasive hard-
ware and a broader set of extractable features. It also
proposes the approach for a methodology which might
advance surgical training by generating suggestion for
improvement based on the detection of significant
aberrations of novices’ from experts’ MCD and sup-
ported by the combination with conventional assess-
ment data from instrument tracking.

4. THEORETICAL FOUNDATIONS

In the following a set of references to the basic the-
ory is provided. Generally speaking, it is a summary
of the knowledge required for understanding the appli-
cation of classification methods to MCD in the context
of surgical training.

4.1. Computer Assisted Surgery Trainer
(CAST)

CAST is a computer aided system developed in
its third generation (CAST III) by Prof. Rozenblit,
PhD (Model Based Design Laboratory, University of
Arizona). CAST includes a real life operation space,
which is virtually simulated and visualized by track-
ing the surgical instruments’ movements. It serves as
the basis of our study and tests.

4.2. Body posture and manual tech-
niques

When it comes to certain surgical tasks which re-
quire their own a special techniques trainees basically
work with the principle of trial and error. There are
practical problems to solve which are difficult to de-
scribe. These questions might serve as examples:

• “Are the correction moves during a path tracking
task carried out too fitful or too smooth?”
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• “Should the elbow rest against the hip, be uplifted
in the air, or hover in between during a certain
task?”

• “What is the ideal distance between body and sur-
gical instruments?”

Expert surgeons have learned to solve problems like
these by experience before they even have to think
about it [3].

4.3. Features and Classification Methods
The most relevant classification methods, which

might be chosen from for the classification of the MCD
are: Support Vector Machines (SVM), Decision Trees
(DT), Artificial neural networks (ANN), Bayesian Net-
works, and Clusters Analysis.

The amount of motion data captured by the sensors
and recorded by the mocap software is quite extensive.
At the Yost Engineering 3space sensors’ maximum 60
frames per second can be recorded. So several thou-
sands of frames gather quite quickly. For MCD there
are two options for the feature extraction:

1. either the feature is calculated for the entire scope
of the sample or

2. it is derived from the measurements by consecu-
tively dividing them into windows

The window size is quantified by the number of frames
included and can either vary from window to window
or be a fix parameter. The increment represents the
number of frames a window is shifted forward com-
pared to its predecessor window. A division has to
be determined prior to the feature extraction process.
Then, for each window, the selected feature can be
calculated [2]. A window division of the sample (sec-
ond option) can be generally recommended if it is as-
sumed that the observed feature changes over time, for
reasons which are directly induced by conditions also
changing over time. If such a change can be linked to
a certain point in time or an event (such as the pass-
ing of a corner point), the window increment should
be equal 100% of the predecessor window size, so that
the windows do not overlaps in this point. If none of
the windows overlaps the division can be considered a
partition.

Example: For a mocap sample recorded from a sur-
geon performing a simple path tracking task it can be
useful to establish a partition of windows, of which
each is covering one of the path sections in between the
corner points. This is because from each corner point

to its successor the path direction changes and the sur-
geon might adjust his or her instrument handling tech-
nique to the new direction (see Figure 2).

Figure 2. Example for a path with one corner point

However, it has to be taken into account, that each
window extends the feature space by one dimension.
At some point, the number of dimensions could be too
high for the selected classifier. This could lead to the
curse of dimensionality and ruin the resulting model’s
capabilities.

There are two different types of measures for the
captured motion - angular (also referred to as ro-
tational) and three dimensional (absolute coordi-
nates) - with three orders of derivation each, which
the features can be calculated for:

order\type angular 3D
zeroth order absolute angle displacement

first order angular
velocity

translational
velocity

second order angular
acceleration

translational
acceleration

The first order derivatives equate with the quanti-
tative intensity and the second order derivatives with
the quantitative dynamic of the motion. For the angular
metrics either one of the three rotation axes have to be
selected or a combination of angles have to be assem-
bled and transformed into an appropriate mean value
(e.g. arithmetic mean), depending on the purpose. In
the following, some of the many features conceivable
for the application to MCD are introduced. They are
dedicated to serve as the base for the feature extraction
processes during the classification testings in Section
6 [2]. Each feature has to be implemented in MAT-
LAB. As an example for the combination of the three
values from the degrees of freedom to a mean value, a
MATLAB function MeanOfThree is used to calcu-
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late the arithmetic mean for the value triples. The cu-
mulative displacement represents the total distance a
moving object traveled.

It’s value for N measurements x1 . . .xn is given by

CumDisp(x) =
N−1

∑
i=1

∣∣xi− xi+1
∣∣

Obviously it should be calculated for the absolute an-
gle (zeroth order) only.

The mean absolute value (MAV) represents the av-
erage absolute value of a given derivative metric [2].
It’s value for N measurements x1 . . .xn is given by

MAV (x) = X̄ =
1
N
·

N

∑
i=1
‖xi‖

The Root Mean Square, also known as the quadratic
mean, measures the average magnitude of a given
derivative metric and is calculated using [6]:

RMS (x) =

√
1

N−1
·

N

∑
i=1

x2
i

Generally speaking, both RMS and MAV commensu-
rate with the motion activity, if applied to first or sec-
ond order derivatives.

The variance (VAR) is a measure of how much the
measurements of the given derivative metric differ be-
tween each other [2]:

VAR(x) = σ
2 =

1
N
·

N

∑
i=1

(X̄− xi)
2

where X̄ is the average value of x, defined as:

1
N
·

N

∑
i=1

xi

The zero crossings (ZC) feature counts how often
the difference of the given derivative metric is chang-
ing its sign (crossings zero) within a window. As an ex-
ample: If applied to the angular velocity (first order), it
quantifies the changes in direction, from “clockwise”
to “counterclockwise” and vice versa. The feature is
calculated as follows, with a threshold T to reduce
noise [1]:

ZC (x) =
N−1

∑
k=1

gZC (xk)

with

gZC (x)=

1 if
(
xk · xk+1 < 0

)
∧
(∥∥xk− xk+1

∥∥≥ T
)

0 else

The zero crossings feature may not be applied to the
absolute angle (zeroth order), because it represents no
meaningful information about the data set.

5. SOLUTION APPROACH FOR A
STUDY AND TESTING

This section explains what would be necessary for
an appropriate study and conducts a preliminary test
of the methodology. For a meaningful study expert
surgeons have to be recruited and perform exemplary
operation tasks in order to sample MCD, which can
then serve as a statistically relevant baseline for pat-
tern recognition. For an initial proof of concept, how-
ever, some numbers can be reduced. The number of
surgeons could stay between one and two, the number
of observed upper limbs to one, applied sensors per
arm between two to four (hand and lower arm first,
then upper arm and chest), and the number of con-
sidered features per sensor between two to four (e.g.
cumulative displacement, average velocity, variance of
velocity and average acceleration).

Applied Theory: For an initial testing of the
methodology a subset of the theory introduced in Sec-
tion 4 is selected. As classifier a Artificial Neural Net-
work is trained in MATLAB. The following features
are calculated for the data samples: Cumulative Dis-
placement, Mean Absolute Value of the angular veloc-
ity, Mean Absolute Value of the angular acceleration
and the Variance of the angular velocity.

Hardware set: The applied motion capture sen-
sor set consists of three wireless inertial measurement
units (IMU) and one wireless USB dongle. The first
two sensors are attached to the upper arm and lower
arm using the straps. The third sensor is attached to
a short fingered glove, which is comfortable to wear
while handling the surgical instrument during motion
capture sessions. In order to acquire some prelimi-
nary data, the motion of two novices has been cap-
tured during a short and easy path tracking task with
three samples each. In the following the three applied
sensors are called S1 for the shoulder, S2 for the el-
bow, and S3 for the wrist. The one subject is abbre-
viated with A, the other one with B. The recorded
samples were numbered enumeratively, so there
are six samples: a1.bvh, a2.bvh, a3.bvh,
b1.bvh, b2.bvh, b3.bvh
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Setup: The third generation Computer Aided
Surgery Trainer (CAST III) served as a platform for
the path tracking task. It was configured for the opera-
tion with the right hand (single-arm), which the mocap
data has been captured from.

Figure 3. handling the instrument with sensors at-
tached

Task: As a basic surgical task for the novices the
Visualization Toolkit was configured to show a path in
the virtual operation space, which had to be tracked
with the instrument. At the start of each sample the
instrument was held in checkpoint 1. Mocap record-
ing and tracking the path were started simultaneously.
Then the path has to be followed via point 2 to corner
point 3 and from there to final point 5 (point 4 is off-
side) without losing contact. Contact means that there
is an intersection between path section and the cube
which represents the instrument end. As soon as final
point 5 was reached recording was stopped. The sub-

Figure 4. path tracking task

jects were standing straight, eyes front to the computer
screen, which showed the operation space visualiza-
tion.

6. ANALYSIS AND RESULTS
For the analysis the figures from the recorded

.bvh files were saved as a separate .txt file
and then imported into MATLAB as matrices

a1, a2, a3, b1, b2, b3. After calculating
the Cumulative Angular Displacement feature for a1
the data recorded for S1 turned out to be faulty. In
most of the samples the initial angle values almost
don’t change over time. So the first three columns
were deleted in all samples and features were cal-
culated only for S2 and S3 using the previously
implemented MATLAB functions CumAngDisp,
MAV_AngVel, MAV_AngAcc and VAR_AngVel as
well as MeanOfThee for the calculation of the arith-
metic mean of channels X, Y and Z.

CumAngDisp MAV_AngVel
S2 S3 S2 S3

a1 134.9666 129.7836 0.0857 0.0824
a2 116.3062 117.0620 0.0967 0.0973
a3 113.9635 114.1560 0.0826 0.0828
b1 124.7340 113.4774 0.1478 0.1345
b2 113.1551 112.7726 0.1130 0.1127
b3 137.3885 150.2262 0.1296 0.1417

MAV_AngAcc VAR_AngVel
S2 S3 S2 S3

a1 0.1009 0.0973 0.0099 0.0095
a2 0.0996 0.1015 0.0099 0.0102
a3 0.1088 0.1078 0.0125 0.0116
b1 0.1624 0.1346 0.0247 0.0141
b2 0.1285 0.1140 0.0125 0.0146
b3 0.1791 0.1786 0.0162 0.1609

These feature values represent the input data, with
which the Neural Network was trained in the next step.
They were saved as inputs.txt.
Before the training process can actually start, the class
labels have to be provided, too. For this purpose an
8-by-2 matrix, encoding subject A with 1 in the up-
per half of the second, subject B with 1 in the lower
half of the first column and else 0, was written into
targets.txt.
At this point, work with the Neural Network Pattern
Recognition Tool could begin. The two .txt files
were imported. After determining the number of hid-
den neurons, as well as the percentages of validation
and test data, the network can be trained and retrained
again and again, coming up with different output Mean
Square Error rates each time and low classification er-
ror rates most of the times (Figure 5).

7. CONCLUSION AND FUTURE
WORK

This paper proposed the idea of applying motion
capture technology and pattern recognition to surgical
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Figure 5. NN - example for confusion matrices

training. Three different branches of application have
been pointed out, of which branch 3 was followed in
the sequel. An appropriate problem definition includ-
ing a breakdown into subproblems as well as a prob-
lem illustration has been presented. An overview of
the theoretical foundations has been given which are
essential for the development, implementation, and re-
alization of an extension for laparoscopy training sys-
tems. This allows for the affirmation of the system’s
performance assessment and for the suggestion for im-
provement by analyzing their motion and body pos-
ture. A broad variety of possible approaches, concepts,
and designs have been introduced, which can be fol-
lowed to a final implementation and realization. The
paper especially focused on the feature extraction pro-
cess with its large set of available motion features.
The combination of the choice of a suitable classifi-
cation algorithm and the selection of the optimal fea-
ture subset is the key for successful classification. An
exemplary implementation was presented applying a
subset of the theoretical foundations. Finally this ap-
proach was practically tested by applying three motion
capture sensors as a preliminary demonstration of the
methodology.

In future work, this implementation has to be ap-
plied to a statistically relevant number of samples.
This means an extensive study has to be conducted,
recruiting a sufficient number of novices or surgi-
cal trainees and especially expert surgeons, which are
quite difficult to get hold of. After these samples have
been captured, the methodology from Section 6 can
be put to the test. At first, the primary problem of

performance assessment has to be tackled, beginning
with the training of a reliable expert/novice classifier.
Clearly, we will have to design a meaningful experi-
ment which will objectively measure movement char-
acteristics. We plan to leverage our existing platform
(CAST) to accomplish this goal.

For a more effective training, the rotational mea-
surements can be translated into three dimensional co-
ordinates using forward kinematics. For these dimen-
sional data the features can be calculated the same way
as for rotational data. But since they have a different
meaning regarding the carried out motion, adding them
to the set of training data might improve the classifier.
After such a classifier has been found, the performance
assessment aspect can be explored in a more sophisti-
cated way, evaluating significant features and utilizing
them for the affirmation and extension of already ex-
isting assessments.

When this subproblem has been solved, the sec-
ondary problem can be faced. Features of CMFCi have
to be separated from CMFCd in order to solve it. This
seems to be a challenging task, because the meaning
of single features have to be interpreted and put into
perspective of the body posture and the way manual
techniques are carried out. Only if CMFCi features can
be identified and interpreted, can suggestions for im-
provement be given to the trainees through their train-
ing feedback.

When this challenge is mastered, the whole proce-
dure can be expanded to a larger set of motion cap-
ture sensors. The set of three motion capture sensors
for one upper limb could be extended to six (or seven)
sensors for both upper limbs (and head), to a set cover-
ing the upper part of the body or even to a whole body
set.
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