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ABSTRACT 

An assessment system is presented to provide objective assessment results for laparoscopic surgery skills 
training. Six innovative evaluation metrics are introduced in the design of the proposed system. Like a 
video game, the system suggests achievable goals that are used to define evaluation metrics for a trainee 
who is performing a particular training task. To implement the proposed system, a design method of the 
hierarchical fuzzy system is used. The simulation results and the prototype illustrate the feasibility of the 
proposed evaluation approach. 

Keywords: Surgical Training, Objective Assessment, Hierarchical Fuzzy Inference System. 

1 INTRODUCTION 

Simulation-based training is widely used in various fields such as first-aid training, aviation, and military. 
For laparoscopic surgery skills training, many training simulators that range from cost effective trainers 
(eoSurgical 2016; Jaber 2010) to sophisticated virtual reality (VR) simulators (Simbionix 2016; 
Stylopoulos et al. 2004) have been proposed.  Low cost devices do not provide any guidance feedback 
and objective assessment results. In contrast, several VR trainers provide not only assistance information 
using graphical interface and haptic feedback (e.g., force feedback) to a trainee but they also give 
feedback on performance outcomes. 

To provide a better training environment, Computer Assisted Surgical Trainer (CAST) (Rozenblit et al. 
2014) has been developed by incorporating  several key features from both cost effective kits and the VR 
simulators. CAST provides realistic training environment with visual and haptic guidance to trainees. It 
consists of hardware, software, and electro-mechanical components. There are two mechanical fixtures to 
hold real surgical instruments, an exchangeable cassette to provide various practice scenarios, a web 
camera to display a training scenario, and motors with electronics to support haptic feedback and well as 
visual guidance.  

SpringSim-MSM 2017, April 23-26, Virginia Beach, VA, USA
©2017 Society for Modeling & Simulation International (SCS)

834



Hong, Rozenblit, and Hamilton 

There are four software modules, optMIS, optViz, optGuide, and optAssessment. The optMIS is a 
collision free and shortest path generator to provide recommended trajectories for a training scenario 
(Napalkova et al. 2014). The optViz (Rozenblit et al. 2014) and optGuide (Hong and Rozenblit 2016) are 
responsible for visual guidance and haptic guidance, respectively. Figure 1 illustrates the CAST system 
and an example of visual guidance. The optAssessment quantifies objectively trainee’s competency 
(Riojas et al. 2011). To improve the optAssessment, in this paper, we propose a simulation-based 
assessment system.   

Objective assessment metrics for laparoscopic surgery skills training have been proposed by several 
researchers (Chang et al. 2016; Cotin et al. 2002; Kowalewski et al. 2014; Maithel et al. 2006; Retrosi et 
al. 2015; Reiley et al. 2011; Oropesa et al. 2014; Ritter and Scott 2007). Some proposed to design a 
scoring system to classify trainees’ proficiency of surgical movements (Reiley et al. 2011; Oropesa et al. 
2014). Others proposed assessment metrics to design a better training curriculum and a training system 
for medical students (Cotin et al. 2002; Ritter and Scott 2007).  

In (Oropesa et al. 2014), three classifiers (linear discriminant analysis, support vector machine, and 
adaptive neuro-fuzzy inference systems) were developed to investigate the performance of the proposed 
classifiers that categorize participating groups. Several participants (i.e., 42 people divided into an expert 
group and a novice/intermediate group) were enrolled to verify the proposed classifiers. Also, the 
classifier’s results were compared with pre-categorized groups to verify the methods. In (Ritter and Scott 
2007), the authors designed a new training curriculum based on proficiency levels. To design the new 
curriculum, the authors hired five experts and asked them to perform 5 fundamentals of laparoscopic 
surgery (FLS) (FLS 2016) tasks several times. Based on the measured completion time for the training 
tasks, the authors proposed the curriculum for novice trainees. 

 
Figure 1: (a) Computer Assisted Surgical Trainer (CAST) and (b) an example of visual guidance. 

In this paper, we propose a novel assessment system using a hierarchical fuzzy inference system (HFIS) 
with several assessment metrics. The remainder of this paper is organized as follows: the assessment 
metrics are presented in Section 2. In Section 3, the proposed hierarchical fuzzy assessment system is 
described. Simulation and implementation result are given in Section 4. In Section 5, discussion and 
conclusion are presented. 
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2 OBJECTIVE ASSESSMENT METRICS 

Movement of economy (path length) and completion time are widely used as common metrics for 
laparoscopic surgery skills evaluation. Additional considerations are peak speed, average speed, and idle 
time (Riojas et al. 2011; Oropesa et al. 2014). We select several metrics from those measures and 
introduce a feature from video games to design the hierarchical fuzzy assessment system for the CAST 
system. 

Generally, a video game has four basic elements – play, pretending, goal(s), and rules (Adams 2014). 
Among them, a goal of the game is highly related to the assessment system. In (Moreno-Ger et al. 2008), 
adaptation and assessment were presented as requirements for an educational game design. By providing 
a goal to a user while performing a game, the game engine can evaluate  progress (e.g., achieving a goal) 
and provide a next goal based on the assessment results.  

Like a game, CAST provides a goal to a trainee and evaluates the trainee’s progress. The most important 
action of laparoscopic surgery training is moving an instrument accurately with reasonable speed. 
Therefore, CAST suggests a target speed with a recommended path as goals for a trainee to move an 
instrument while performing a particular training scenario. Based on these two basic goals, we consider 
six evaluation metrics as follows. 

Average speed ratio: The proposed simulation-based assessment system provides a recommended 
movement to a user. By using average speed, the CAST system provides a “mission” to a trainee (e.g., 
“Please move an instrument from position A to position B with 5cm/s speed”).  As mentioned above, in 
laparoscopy training, one of the training goal is to learn how to maneuver a surgical instrument with 
reasonable speed (i.e., not too fast and not too slow). If the average speed of the instrument movement is 
too slow while performing real surgery, it may mean that it takes more time to complete the surgery even 
though a surgeon minimizes the chance of erroneous moves. In contrast, if the average speed is too fast, it 
may cause critical mistake like hitting organs and tissues even though the operation is finished quickly. 
To evaluate a trainee’s performance in terms of the speed, an average speed ratio is proposed as follows: 

𝑆𝑝𝑒𝑒𝑑 𝑅𝑎𝑡𝑖𝑜(𝑆𝑅) =
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑
 

where the reference average speed is provided by the CAST system as a target goal and the actual average 
speed is calculated by capturing the movement of the instrument tip. The range of 𝑆𝑅 is [−𝐿, 𝐿] where 𝐿 
is a constant value. Using this metric, we can evaluate a trainee’s movement. An example of the 
evaluation is as follows: 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 = {

𝐺𝑜𝑜𝑑 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑏𝑢𝑡 𝑓𝑎𝑠𝑡 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡              𝑖𝑓  𝑆𝑅 < 0                
𝐺𝑜𝑜𝑑 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡                                                     𝑖𝑓  𝑆𝑅 → 0                
𝐵𝑎𝑑 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡                                                       𝑖𝑓 𝑆𝑅 → 𝐿.                

 

Completion time ratio: One of the basic assessment metrics for laparoscopic surgery training is the 
completion time. For example, hands-on exams of the fundamentals of laparoscopic surgery (FLS) have 
their own maximum time limit. Whenever a trainee performs a particular practice scenario, CAST 
measures completion time for this metric. This completion time is compared to a recommended 
completion time using the formula: 

𝑇𝑖𝑚𝑒 𝑅𝑎𝑡𝑖𝑜(𝑇𝑅) =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
 

where −𝐿 ≤ 𝑇𝑅 ≤ 𝐿  and 𝐿  is a constant value. Like using speed ratio, we can evaluate a trainee’s 
movement as follows: 
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𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 = {

𝐺𝑜𝑜𝑑 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑏𝑢𝑡 𝑓𝑎𝑠𝑡 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡              𝑖𝑓  𝑇𝑅 < 0       
𝐺𝑜𝑜𝑑 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡                                                      𝑖𝑓  𝑇𝑅 → 0      
𝐵𝑎𝑑 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡                                                        𝑖𝑓 𝑇𝑅 → 𝐿.     

 

Economy of movement (Path length) ratio: In CAST system, optMIS provides a recommended path to 
assist a trainee. The trainee maneuvers a surgical instrument to complete a training practice. By 
comparing the actual user’s traversed path length with a recommended path length, we can assess a 
trainee’s performance.  

𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ 𝑅𝑎𝑡𝑖𝑜(𝑃𝐿𝑅) = |
𝐴𝑐𝑡𝑢𝑎𝑙𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ
| ≥ 0 

If 𝑃𝐿𝑅  is close to zero (i.e., 𝑃𝐿𝑅 → 0), then we can conclude that a trainee’s performance is good. 
However, if 𝑃𝐿𝑅 is a large value (i.e., 𝑃𝐿𝑅 → 𝐿 where 𝐿 is a constant value), then a trainee’s performance 
is less strong. 

Idle time ratio: In order to complete a practice within a time limit, it is necessary for a trainee to move a 
surgical instrument with reasonable and constant speed. If movement speed is too slow, we consider this a 
“stop” (i.e., holding an instrument) motion.  The stop motion may indicate that a user has difficulty to 
maneuver an instrument. In this paper, we assume that a user’s performance is not good if there are many 
stop. To evaluate this, the formula below is used. 

𝐼𝑑𝑙𝑒 𝑇𝑖𝑚𝑒 𝑅𝑎𝑡𝑖𝑜(𝐼𝑇𝑅) =
𝐼𝑑𝑙𝑒 𝑇𝑖𝑚𝑒

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
≥ 0 

where 𝐼𝑑𝑙𝑒 𝑇𝑖𝑚𝑒 is measured when the speed is less than a certain value (e.g., 𝑠𝑝𝑒𝑒𝑑 < 0.3𝑐𝑚/𝑠). Like 
𝑃𝐿𝑅, if 𝐼𝑇𝑅 is close to zero, then we can say that a trainee performs well. Otherwise, we can say that a 
trainee has some difficulties while performing a training task. 

Deviation ratio: An ideal movement of the surgical instrument is precisely traversing a recommended 
path generated by optMIS. If a trainee is a novice, he or she may have a lot of difficulties and this causes 
large deviations from the recommended path. In actual surgery, huge deviation may cause life critical 
issues. Therefore, we consider a deviation ratio as an evaluation metric. To calculate the deviation ratio, 
we introduce a good movement counter and a bad movement counter. Generally, it is challenging to reach 
the ideal movement (i.e., deviation is zero). In order to take into account the general case, we set a 
reasonable distance bound (𝜀) to increase the bad movement counter. The instrument tip position (𝑝𝑡𝑖𝑝) is 
captured every sampling period. Also, using this updated tip position, the nearest point (𝑝𝑛𝑒𝑎𝑟) on the 
recommended path is determined and it is used to calculate the deviation (|𝑝𝑡𝑖𝑝 − 𝑝𝑛𝑒𝑎𝑟|). Each counter is 
updated as follows. 

𝑢𝑝𝑑𝑎𝑡𝑒 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠: {
𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑔𝑜𝑜𝑑 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑢𝑛𝑡𝑒𝑟    𝑖𝑓 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 < 𝜀
𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑏𝑎𝑑 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑢𝑛𝑡𝑒𝑟       𝑖𝑓 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 ≥ 𝜀

 

where 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 is the Euclidian distance between the recommended path and the instrument tip. Based 
on these two counters, the deviation ratio is calculated as follows. 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜(𝐷𝑅) =
# 𝑜𝑓 𝑏𝑎𝑑 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑢𝑛𝑡

# 𝑜𝑓 𝑔𝑜𝑜𝑑 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑢𝑛𝑡 + # 𝑜𝑓 𝑏𝑎𝑑 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑢𝑛𝑡
≥ 0 

If the number of bad movements count is zero, then the deviation ratio is zero and it shows that a user’s 
performance is good. However, if a user makes huge deviations, then the deviation ratio is a large value 
and it represents bad performance. 

Direction profile ratio: This metric is responsible for assessing movement of the instrument by using 
direction vectors. Two vector sets, recommended direction vectors and actual instrument’s direction 
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vectors, are used to calculate the direction profile ratio. Figure 2 illustrates an example of the direction 
vectors.   This direction profile indicates deviation and moving direction. For this metric, cosine of angle 
is calculated using two vectors (i.e., cos(𝜃) = |𝑟||�⃗�| 𝑟 ∙ �⃗�⁄  where  𝑟 and �⃗� are a recommended direction 
vector and an actual instrument tip’s direction vector, respectively). If the instrument tip traverses right on 
the path, the cosine of the angle is close to 1. In contrast, if the instrument tip deviates from the path, then 
the cosine of the angle is close to 0. Also, if the instrument tip moves backward direction, the value is 
close to -1. While a trainee performs a particular task, CAST system captures an instrument tip movement 
and calculates the cosine of the angle. The direction profile ratio is formed as follows. 

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝑅𝑎𝑡𝑖𝑜(𝐷𝑃𝑅) =
∑ (cos 𝜃𝑟𝑒𝑓 −𝑛

𝑖=1 cos 𝜃𝑖)

∑ cos 𝜃𝑟𝑒𝑓
𝑛
𝑖=1

 

where 𝜃𝑟𝑒𝑓 is a target angle, 𝜃𝑖 is an angle between a recommended direction vector and an actual tip 
direction vector for 𝑖𝑡ℎ sample, and 𝑛 is the number of samples. For instance, if a target angle is 0 (i.e., 
the goal of the task is to traverse on a recommend path) and 𝐷𝑃𝑅 is close to zero, then it represents good 
movement. However, if 𝐷𝑃𝑅 is close to 1 with same target angle, then it represents bad movement. 

 
Figure 2: An example of the direction profile: (a) recommended path and actual path and (b) direction 
vectors for both recommended path and actual path. 

3 HIERARCHICAL FUZZY ASSESSMENT SYSTEM 

For the existing optAssessment, five metrics (movement economy ratio, movement direction profile, peak 
speed width, continuity of movement, and completion time) were used to implement a scoring system 
(Riojas et al. 2011). To imitate human’s judgement, a fuzzy logic inference system was used for the 
scoring system. The rule base of this fuzzy system consists of single-input and single-output rules. The 
weakness of this rule base is that it is difficult to take into account interrelationships among metrics. To 
overcome this drawback, multi-input and single-output fuzzy inference system may be used. However, 
this system also has a weakness, such as increasing the number of rules dramatically if there are a lot of 
inputs with several membership functions. 

To overcome those shortcomings, we propose to use a hierarchical fuzzy logic inference system (HFLIS) 
(Lee et al. 2003) with the metrics specified in Section 2. The advantage of the HFLIS is that it is possible 
to reduce the number of rules dramatically without performance degradation. For instance, if four 
evaluation metrics are used and each metric is characterized by five membership functions, 625 (54) rules 
are needed for the rule base. However, if HFLIS is used for the same metrics with the same membership 
functions, only 75 (3×52) rules are needed for the rule base. The first layer’s outputs are used as inputs of 
the second layer. In this case, the output of the first layer is characterized by five membership functions. 
Figure 3 illustrates examples of using the single layer fuzzy inference system and using the HFLIS. 
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Figure 3: (a) Single layer fuzzy logic system vs. (b) Hierarchical fuzzy logic system (Lee et al. 2003). 

Our proposed hierarchical scoring system shown in Figure 4 consists of five fuzzy logic units (FLUs) that 
have their own fuzzifier, defuzzifier, rule base, and a fuzzy inference engine. There are 6 inputs and a 
single output to provide an evaluation score. For the inputs of the scoring system, proper membership 
functions are modeled to characterize for all layer’s inputs. In section 2, ranges for the six evaluation 
metrics are presented (e.g., −𝐿 ≤ 𝑇𝑅 ≤ 𝐿). We use limited ranges of inputs to design the proposed 
scoring system based on human’s knowledge. For instance, if the actual path is twice as long as the 
reference path, we can clearly conclude that the performance is not good. Therefore, the region of  interest 
for 𝑃𝐿𝑅 is [0, 1]. Similarly proper membership functions are designed based on human knowledge. Three 
linguistic terms (Good (G), Normal (N), and Bad (B)) are used to define inputs for  𝑃𝐿𝑅, 𝐼𝑇𝑅, 𝐷𝑅𝐷, and 
𝑃𝑅 with trapezoidal membership functions (Figure 5-(a)). These three terms are also used for inputs of 
𝐹𝐿𝑈4 and 𝐹𝐿𝑈5 with triangular membership functions (Figure 5-(b)). The output of 𝐹𝐿𝑈1 and the output 
of 𝐹𝐿𝑈2  are inputs of 𝐹𝐿𝑈4 . Also, the output of 𝐹𝐿𝑈4  and the output of  𝐹𝐿𝑈3  are inputs of 𝐹𝐿𝑈5 . 
Similarly, four linguistic terms (Fast (F), Good (G), Normal (N), and Bad (B)) are used to define 𝑆𝑅 and 
𝑇𝑅 with trapezoidal membership functions (Figure 5-(c)). 

For an output variable ( 𝑌𝑘 ) for each 𝐹𝐿𝑈𝑘  where 𝑘  is FLU index ( 𝑘 = 1,2,3,4, 𝑎𝑛𝑑 5 ), singleton 
membership functions are used to characterize the output fuzzy sets; 𝑌𝑘 is restricted to [0, 1]. Fuzzy IF-
THEN rules for all FLUs are as follows: 

𝑅𝑘,𝑙: If 𝑋𝑘
1 is  𝐹𝑘,𝑙

1  and  𝑋𝑘
2 𝑖𝑠 𝐹𝑘,𝑙

2 , 𝑡ℎ𝑒𝑛 𝑌𝑘,𝑙  𝑖𝑠 𝐺𝑘,𝑙 

where 𝑘 is FLU index, 𝑙 is the rule number, 𝑋𝑘
1  and 𝑋𝑘

2 are inputs for 𝐹𝐿𝑈𝑘 , 𝐹𝑘,𝑙
1  and 𝐹𝑘,𝑙

2  are linguistic 
terms, 𝑌𝑘,𝑙  is the 𝑙𝑡ℎ  rule output for 𝐹𝐿𝑈𝑘 , and 𝐺𝑘,𝑙  is a constant output value (0 ≤ 𝐺𝑘,𝑙 ≤ 1). Three 
linguistic terms are used to define antecedent variables for 𝐹𝐿𝑈1, 𝐹𝐿𝑈2, 𝐹𝐿𝑈4, and 𝐹𝐿𝑈5. Four linguistic 
terms are used for 𝐹𝐿𝑈3. Therefore, the number of rules is 52 (4×32 + 42). 

To generate a score, rule-bases are designed as follows: if an instrument’s tip movement is good, then a 
large value (i.e., close to 1) is assigned to provide a high score. If the movement is bad, a small value (i.e., 
close to 0) is assigned to report that the performance is not good. Fast movement may cause mistakes like 
hitting an object. Therefore, we assign a penalty in this case, which is applied in the rule table for 𝐹𝐿𝑈3. 
Based on these considerations, all rule tables are designed as presented in Table 1, Table 2, and Table 3. 

A singleton fuzzifier, product inference engine, and center average defuzzifier are used to calculate 𝑌𝑘 as 
given by the following equation. 

𝑌𝑘 =
∑ 𝑌𝑘,𝑙𝜇𝑘,𝑙(𝑋𝑘

1)𝜇𝑘,𝑙(𝑋𝑘
2)𝑚

𝑙=1

∑ 𝜇𝑘,𝑙(𝑋𝑘
1)𝜇𝑘,𝑙(𝑋𝑘

2)𝑚
𝑙=1
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Figure 4: Hierarchical fuzzy systems for a new optAssessment.

 

Figure 5: (a) Membership functions for 𝑃𝐿𝑅, 𝐼𝑇𝑅, 𝐷𝑅𝐷, and 𝑃𝑅, (b) membership functions for inputs of 
𝐹𝐿𝑈4 and 𝐹𝐿𝑈5, and (c) membership functions for 𝑆𝑅 and 𝑇𝑅. 

where 𝜇𝑘,𝑙(𝑋𝑘
1)  and 𝜇𝑘,𝑙(𝑋𝑘

2)  are the degrees of membership functions for two inputs, 𝑋𝑘
1  and 𝑋𝑘

1 , 
respectively, 𝑌𝑘,𝑙 is the singleton output value, and 𝑚 is the number of rules for each FLU (𝑚 = 9 when 
𝑘 = 1,2,4, 𝑎𝑛𝑑 5 and 𝑚 = 16 when 𝑘 = 3). 

The final score is generated based on 𝑌5, where 𝑌5 is a bounded value from 0 to 1 (0 ≤ 𝑌5 ≤ 1). To 
provide a score that ranges from 0 to 100, a constant scaling factor is used. 

Table 1: Rule table for 𝐹𝐿𝑈1 and 𝐹𝐿𝑈2 

  
Table 2: Rule table for 𝐹𝐿𝑈3 
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Table 3: Rule table for 𝐹𝐿𝑈4 and 𝐹𝐿𝑈5 

  

4 SIMULATION AND EXPERIMENTAL RESULTS 

To verify the proposed assessment system, a simple hand-eye coordination task was designed. In the 
training scenario, a trainee must traverse the space along the recommend trajectories to touch multiple 
targets (e.g., four targets labeled by R1, R2, R3, and R4) using the right instrument as shown in Figure 1-
(b). 

The goal for this task is given by the CAST system to assist a trainee. For instance, CAST suggests 
average moving speed (e.g., 1.0cm/s), completion time (e.g., 7.1 seconds), path length (e.g., 7.07 cm), idle 
time duration (e.g., 0 seconds), a distance bound (e.g., 𝜀 = 0.5𝑐𝑚) for a deviation, and a target angle 
(e.g., 𝜃𝑟𝑒𝑓 = 0°) for direction profile to move from R1 to R2, and to touch R2. While performing this 
task, actual movements of the right instrument tip are collected every 50 milliseconds by using encoders. 
Figure 6 illustrates the simulation results for two cases. The blue and red lines represent a recommended 
path and the actual instrument tip movement, respectively. The example depicts two different scenarios – 
good movement and bad movement. Intuitively, the system has to assign a high score for the good 
movement and report a poor grade for the bad movement. The simulation results show this concept well. 
Even though the average speed is relatively fast vis a vis the goal speed, other metrics clearly show that 
the overall performance is bad (see Figure 6-(a)).  Therefore, the proposed assessment system reports 
lower score (9.7715) as the evaluation result. In contrast, Figure 6-(b) illustrates that the overall 
performance is good and the score (89.6829) is close to 100. 

 
Figure 6: Simulation results for (a) bad performance and (b) good performance. 

Based on these simulation results, the proposed assessment system is implemented in the  CAST system. 
Figure 7 depicts the prototype of the implementation. There are four targets with three recommended 
paths. The system provides goals for a trainee. For each sub task (e.g., move to R2 from R1), the 
proposed system reports individual assessment results. To provide a user-friendly interface, the 
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assessment report also contains actual training results with the recommended goals (e.g., actual 
completion time is 6.25 seconds while moving from R2 to R3. The recommend completion time is 2.75 
seconds.). For the final score, the system presently takes the average score from all scores for sub-tasks 
(e.g., final score = 32.93 = (32.86+25.57+40.36)/3). We will investigate the better method to provide the 
final score (e.g., The median value may be used instead of the average score.). 

 
Figure 7: Prototype assessment report by the proposed assessment system. 

5 DISCUSSION AND CONCLUSION 

In this paper, we have explained a design method of the assessment system based on a hierarchical fuzzy 
system. To design the proposed system, we have introduced six assessment metrics. Due to using HFLIS, 
we can easily add more evaluation metrics if these are necessary. For example, if we consider motion 
smoothness and average acceleration as new metrics, we only design an individual FLU for two metrics 
and place the new FLU into the first layer.  In this case, we can reuse the upper layer’s FLUs to build the 
entire HFLIS. Also, if we use an adaptive technique to determine membership functions and linguistic 
terms with lots of training data (e.g., results from a human subjects study), it may be possible to design a 
more accurate evaluation system. 

The proposed assessment system provides an achievable goal to a trainee while he or she performs a 
particular training task. This goal enables a trainee to understand the training progress clearly by 
comparing outcomes with the provided goal. As for the future work, we will consider how to design an 
achievable goal based on experimental data that is collected by conducting a human subjects study. Also, 
the proposed system will be used to design a task generator that creates a new task once an exercise at 
hand has been completed. For instance, if a trainee has any difficulty while performing a particular task, 
the evaluation score may be low. In this case, the task generator might generate a somewhat easier 
training set. Finally, we will improve the graphic user interface to visualize assessment results more 
intuitively.  

The simulation results and the prototype implementation indicate that the proposed system is feasible to 
assess laparoscopic surgery skills. The key contributions of this work are introducing innovative 
evaluation metrics with achievable goals and designing HFLIS that has a potential to introduce adaptive 
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features. This work can be applied to any applications that need assessment score by redefining several 
metrics with new goals. 
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