
Queral Networks: Toward an Approach for
Engineering Large Artificial Neural Networks

Travis A. Hoffman, Jerzy W. Rozenblit, Ali Akoglu, Liana Suantak
Electrical and Computer Engineering Department, The University of Arizona

travish@email.arizona.edu, {jr,akoglu,liana}@ece.arizona.edu

Abstract—A generalization of an artificial neuron is introduced
in this paper. Called the queron1, this abstraction is the basic
computational node of Queral Networks (QN). QNs are intro-
duced as a parallel architecture expected to be an improve-
ment upon Artificial Neural Networks (ANN). The fundamental
properties of QNs are presented here: reusability, complexity
management and human-readability. It is expected that this
proposed architecture will allow the engineering of large, highly
parallel computer systems with the computational benefits of
ANNs while overcoming the challenge of developing ANNs. A
brief case study is given to illustrate the QN concept.

Index Terms—Artificial Neural Networks, Automatic Program-
ming, Computation Theory, Evolutionary Computation, Parallel
Architecture

I. INTRODUCTION

MOORE’S Law suggests improving transistor technology
may only allow speed advancements for 16 more years.

Silicon transistors have been clocked at 500GHz[1]. Research
suggests that carbon-based transistors could operate at 10THz
[2]. Recently, processors have been demonstrated at 5GHz,
with a distinct emphasis on parallelism [3]. Indeed, the only
way to scale overall system computational power beyond the
physical limitations of integrated circuits is through greater
parallelism. However, Amdahl’s Law [4] shows that paralleliz-
ing the von Neumann architecture yields diminishing returns
except in specific cases [5].

There have been several attempts to create alternative
parallel architectures, with varying degrees of success. The
Connection Machine [6] is the progenitor of the Network-On-
Chip (NOC) architecture [7]. NOCs reduce the communication
overhead and are effective for easily parallelizable problems
but are still bound by Amdahl’s Law because they must
synchronize shared states.

One parallel architecture of note is the Kahn Process Net-
work (KPN) [8]. KPNs avoid the need for synchronization by
defining non-blocking communication channels between inde-
pendent computational agents which share state only through
message passing. Dataflow languages derive from KPNs, but
most recent research focuses on synchronous models [9],
which undermines the benefit of parallelization.

Biological Neural Networks (BNNs) offer a very different
parallel model of computation (MoC). The neuron’s maximum
firing rate is only 1kHz, typically around 300Hz, yet BNNs
outperform computers in many problems, are more energy

1Queron and queral are pronounced like query.

efficient, offer unmatched scalable and have been shown to
be Turing Computable [10].

Artificial Neural Networks (ANN) help investigate the
properties of BNNs, but little progress has been made to-
ward engineering large systems of ANNs. We argue this is
because ANNs represent a low-level language analogous to
an assembly language for a single-operation CPU. Consider
the challenge of developing a complex system with such a
language; beyond the simplest of systems, the challenge would
quickly become intractable. With a few notable exceptions[11],
ANNs are trained in toto, limiting the scale of systems which
can be investigated.

We argue a high-level language for ANN-like highly con-
nected networks is required to develop large systems. We
introduce Queral Networks (QNs) as a high-level language
specification, providing human-readability, reusability, and
complexity management by separation of concerns [12]. In
the remaining sections, we describe the queron, QNs, and the
properties of each. We present our system for investigating
QNs and present examples of their use, illustrating their
advantages over ANNs. We close with a discussion of the
work required to fully develop this new approach.

II. THE QUERON

The term queron is derived from the ability to investigate
(or query) every computational node’s structure and behavior.
The goal of the queron is to generalize the concept of a neuron
so that ANNs can be analyzed, as is common with modern
computational systems. The queron generalizes the neuron by
allowing other operations to be implemented, by adding typing
to the data which may be passed, and by providing meta-
information about the queron.

exteriorInput Ports
Queron

interior

Output Ports

Figure 1. The queron, input and output ports.

The queron may informally be defined as an independent
computation node with a structure and behavior fulfilling

2011 18th IEEE International Conference and Workshops on Engineering of Computer-Based Systems

978-0-7695-4379-6/11 $26.00 © 2011 IEEE

DOI 10.1109/ECBS.2011.27

81

a contract. The queron accepts messages to its input ports
and produces messages from its output ports according to
the behavior described by the set of acceptance tests in its
contract. To fulfill a contract, a queron must have input ports
accepting all input types, output ports offering all output
types, and pass all acceptance tests defined in the contract.
A queron may be implemented in one of two ways: by a
network of child querons connected to the interor of its input
ports and output ports, or by a native implementation. The
emphasis is on the contracts; details of the implementation
are unimportant as long as the contract is fulfilled. We now
present a formal definition of the queron, key sub-components
and brief discussions of each.

Definition 1. A VALUE is an ELEMENT of one or more TYPEs.

Definition 2. A TYPE is a SET of zero or more VALUEs.

A type is conceptually identical to a set in set theory. A
type may be described in a number of ways. In querons and
QNs, types are used to constrain which connections may be
established. A complex type is like a tuple in set theory; they
are aggregates of other types. A composite type is created
from combinations of any number of types using standard set
operations: union, intersection, etc.

Definition 3. A MESSAGE is a 3-TUPLE (ps, pd, v), where

1) ps is a PORT called the source port.
2) pd is a PORT called the destination port.
3) v is a VALUE called the payload such that T (v) ∩

T (ps)∩T (pd) 6= ∅. T (p) is a FUNCTION which returns
the SET of all TYPEs accepted by the PORT p. T (v) is a
FUNCTION which returns the SET of TYPEs containing
the VALUE v.

Definition 4. A TEST is a PAIR (IIN , IOUT), where

1) IIN ∈ {λIN ,MIN} where λIN is a FUNCTION called
the test source which produces MIN . MIN is a finite
SEQUENCE of MESSAGEs, called the source messages.

2) IOUT ∈ {λOUT ,MOUT } where λOUT is a FUNC-
TION called the test expectation which produces MOUT .
MOUT is a finite SEQUENCE of MESSAGEs, called the
expected messages.

Test implementation is flexible; what matters is conformance
to the inputs and outputs specified in the contract.

Definition 5. A CONTRACT is a 3-TUPLE (TIN , TOUT , B)
where

1) TIN is a non-empty SET of TYPEs called the input types,
or inputs.

2) TOUT is a non-empty SET of TYPEs called the output
types, or outputs.

3) B is a non-empty finite SET of TESTs called the behav-
ior, tests, or acceptance tests.

Definition 6. A PORT is a 4-TUPLE (Q,T,M,m0), where

1) Q is a QUERON called the owner.
2) T is a SET of TYPEs called the acceptable types.
3) M is a SEQUENCE of MESSAGEs called the input

messages, in the order received.
4) m0 ∈M is a MESSAGE where ∀mi ∈M−{mo} ,mo �

mi called the current message.
A port allows passage between the exterior and interior of its
owner, creating contextual separation of elements. Separation
is enforced by requiring all messages to flow through a port.

Definition 7. A QUERON is a 4-TUPLE (PIN , POUT , C, I),
where:

1) PIN is a SET of PORTs called the input ports.
2) POUT is a SET of PORTs called the output ports.
3) Cf is a SET of CONTRACTs called the fulfilled contracts.
4) I ∈ {λ,QN} is called the implementation, where:

a) λ is a FUNCTION called the reaction function.
b) QN is a QUERAL NETWORK called the internal

queral network.
The queron is conceptually similar to a computational agent
in KPNs or a system in the Discrete Event Simulation System
(DEVS) [13]. As in a KPN, a queron’s state persists between
receipt of input messages; state is only shared between querons
by messages via connections. Thus, every queron may execute
asynchronously [14] and a collection of querons is infinitely
parallelizable [15].

III. THE QUERAL NETWORK

A QN is a directed graph with ports as vertices, and
connections as the edges of the graph. A QN only exists
as the implementation of a queron. The ports in the QN
may only connect with the ports of the owner and the other
child querons, subject to the restrictions in the definition of a
connection.

qb

qa

qc

α

β

γ

α

γ
γ

αβ

βγ αγ

γ

αγ

αγγ

Figure 2. Valid connections between the typed ports of the queron qa and
the ports of qa’s child querons qb and qc

Connections are limited by a few simple, yet fundamental
restrictions, described in (3). The source port and destination
port must not be the same (1). The source and destination
must have at least one type in common (2). The source must
be a input port of q, or an output of a child queron of q (3).
The destination must be an output port of q, or an input port
of a child queron of q (4). Figure 2 illustrates proper internal
connections between qa’s ports and the ports of its children qb
and qc. Each port is labeled with a type in {α, β, γ}, composite
types are labeled with strings of the types, e.g. αβ, βγ, αγ.

Definition 8. A CONNECTION is a 3-TUPLE (ps, pd, q), sub-
ject to

(ps 6= pd)∧ (1)

82

(T (ps) ∩ T (pd) 6= ∅)∧ (2)

(ps ∈ PI ({q}) ∪ PO (QC (q)))∧ (3)

(pd ∈ PO ({q}) ∪ PI (QC (q))) (4)

where

1) ps is a PORT called the source port, or source.
2) pd is a PORT called the destination port, or destination.
3) q is a QUERON called the parent. T (p) is a FUNCTION

which returns the SET of TYPEs accepted by PORT p.
QC(q) is a FUNCTION which returns the SET of child
querons owned by the QUERON q. PI (Q) is a FUNC-
TION which returns the union of input ports owned by
QUERONS in the SET Q. PO (Q) is a FUNCTION which
returns the union of output ports owned by QUERONS
in the SET Q.

There is no theoretical limit on the number of connections in
which a port may participate but hardware and design consid-
erations will certainly enforce practical limits. Other custom
restrictions may be added for specific design criteria, but
these fundamental restrictions are always required to ensure
consistent separation of implementation from interface and
proper flow of messages. In Figure 3, examples (d), (h) and
(i) violate the separation of interface from implementation;
examples (a) through (f) break the proper flow of messages
in the system. Example (j) is a duplicate connection; this is
disallowed simply for efficiency.

exterior

interior

exterior

interior

b c

d

i
h

a

g

f

j

e

Figure 3. Invalid connections: (a), (f), (h) and (i) invalid end; (b), (c) and
(e) wrong direction; (d) same end and start; (g) invalid start; (d), (h) and (i)
crossing scope; and (j) duplicate connection

Definition 9. A QUERAL NETWORK is a 3-TUPLE
(QC , CN , q), where:

1) QC is a set of QUERONs called the children or child
querons.

2) CN is a set of CONNECTIONs called the internal con-
nections.

3) q is a QUERON called the owner such that ∀qi ∈ QC

q = Q (qi). Q (qi) is a FUNCTION which returns the
owner of the ith QUERON in QC .

The flexible structure of QNs allows for a very large number
of possible QC . Consider, as an example, developing a QC

for a queron with two inputs and one output from a Library
with ten querons each with two inputs and one output, there
are(

103

3!

)
· 2(6+1)·(3+2) =

(
500

3

)
· 235 u 1.145× 1013 (5)

possible QC to search. Clearly, a brute-force search is im-
practical for QC with more than a few querons. It is not

necessary to exhaustively search for solutions. We believe
we can iteratively build complexity gradually by training
increasingly more complicated querons. We will manually
write some querons and evolve others. We believe this hybrid
approach will yield positive results.

The strategy by which new QNs are developed is incon-
sequential to the runtime, as long as the contract is properly
fulfilled. Evolutionary Programming (EP) has been applied to
evolving neural networks[16], machine-language software[17],
and has been shown to be an effective search technique for a
wide range of problems. QNs are not restricted to any solution
for development of new QNs, but initial efforts will investigate
EP.

The investigator may construct QNs manually, but the power
of QNs comes from this hybrid approach where some pieces
of the system are developed by hand, and some by the
investigator. It is our goal that an investigator will be able
to comprehend an evolved solution, using that knowledge to
develop alternative solutions.

Developing complex querons will be a process akin to teach-
ing a person to solve a differential equation. It is impossible to
start with a lesson on differential calculus; instead, there must
be a large amount of training from basic principles: arithmetic,
algebra, geometry, calculus. Each level of complexity builds
upon the previous. There are many interesting features of
QNs we will be able to leverage in their development and
application. Thus far, we have identified:

Code Reuse: Querons are stored in a Library indexed
by their contract. The contract makes it possible for the
investigator to identify querons to be used in their solution.
Each queron in a QN is a separate runtime instantiation of
the queron, allowing many copies of the same queron to exist
concurrently.

Scale-Free: A queron may be implemented with a QN of
any number of querons, and may itself be included in a QN of
arbitrary size. At every layer of such a hierarchy, the topology
of the QN is similar. This feature helps manage complexity
and allows a queron to be used at any layer of a hierarchy.

Runtime Efficiency: Querons recalculate their output values
only when new input is received. Additionally, querons can
provide answers with only partial information. Querons nat-
urally perform just the right amount of computation required
by a new input received. Their inherent modularity makes it
possible to tune querons to the available hardware.

Scalability: The focus on contracts means a particular
queron may be realized in customized hardware or in software
with no effect on the overall operation of the system. Delays
in message propogation affects only the overall speed of the
system, not the behavior of the system. Thus, it is possible to
distribute very large QNs over multiple machines. The effects
of these delays can be easily mitigated by co-locating heavily-
communicating querons on the same machine, or by allocating
faster communication channels to querons with the heaviest
traffic.

Automatic Development of QNs: The features of querons
and QNs support automatic software development by machine
learning. Querons can solve problems by reusing existing
querons while incrementally increasing complexity. It is also

83

possible to continuously develop more efficient solutions to
a contract, replacing existing querons with more efficient
versions.

IV. THE QUERAL ENVIRONMENT FOR DEVELOPMENT

The Queral Environment for Development (QED) is a
suite of tools for running, developing and investigating the
properties of QNs. We have identified four key components
for this system: Nursery, Library, Runtime and Editor, which
we discuss below. Each are relatively standard, but will require
tailoring for developing QNs. We have designed the system
with an emphasis on parallelism, flexibility and interoperabil-
ity, illustrated in Figure 4.

Library

QED

Runtime Nursery

Editor

Figure 4. The QED architecture.

Nursery: A subsystem where machine learning techniques
are applied to identify new solutions for unfulfilled contracts.
This subsystem allows for investigating varied strategies for
automatic development, including alternative strategies in par-
allel. A plug-in architecture enables easy integration of new
strategies.

Library: A database storing querons which may be retrieved
by contract, or by a portion of contracts. For example, it will
be possible to search for all querons with a Boolean input
port. There will be a variety of Libraries, tailored to their
use case. For example, the Nursery will require storage of
multiple variations of a queron for a given contract during the
evolutionary process, but the Runtime will require only the
best known queron per contract.

Runtime: A virtual machine for running querons. The Run-
time handles loading of querons and routing messages between
them. The initial implementation features a message-passing
kernel running on a single machine, routing messages between
ports, and schedules querons to recalculate their output when
messages are received. Future versions will allow for Runtimes
to be distributed across any number of machines, routing
messages between them. Each Runtime has its own custom
Library, which allow for versions of querons specific to the
underlying hardware.

Editor: A graphical user interface for investigating querons.
QNs may be represented in a textual format, but with poten-
tially high-order graphs, they will be more easily understood
visually. We are developing a visual programming environment
which enforces the core restrictions on connections, allows
additional user-defined restrictions, provides contextual help
based on types, suggests querons based on contracts, manages
complexity by scoping of the view and allows the user to view

a QN in a variety of ways. Understanding large QNs will be
a very challenging task; an equally advanced tool is necessary
for the investigator to succeed.

V. ILLUSTRATIVE EXAMPLE

A local farmer, Mr. Lausted, has grown frustrated with the
unreliability of weather prediction for the area around his farm.
He has tried, without success, to come up with some general
rules using recent weather conditions to predict whether the
next few days will be favorable for making hay. To cure
properly, hay needs one to two days of zero rainfall and
moderate winds to dry the cut hay before baling. If the hay
has not dried properly, it can begin to grow mold, and will
be unusable. If the cut hay is rained on, it can lose nutritional
value, also making the hay unusable. Having better predictions
of the weather will improve the yield of hay by minimizing
wasted hay.

Mr. Lausted has meticulously recorded the local weather
conditions at his farm, and has collected the weather recorded
at weather stations in the four closest communities–Wheeler,
Colfax, Elk Mound and Menomonie–every day for the last ten
years. A map of the farm and the surrounding area is shown in
Figure 5, with the weather stations marked. The data collected
each day includes the following: the maximum, minimum and
average temperature, the relative humidity, the average wind
speed and direction, and the amount of precipitation. The
database table structure is shown in Table I.

da
te

lo
ca

tio
n

m
ax

°C

m
in

°C

av
g

°C

hu
m

%

sp
ee

d
m

/s

di
re

ct
io

n
°

pr
ec

ip
cm

...
...

...
...

...
...

...
...

...
7/12/06 WHLR 24 17 20 54 10 345° 0.00
7/12/06 CLFX 23 15 17 67 12 0° 1.20
7/12/06 ELKM 27 21 24 51 7 331° 0.50
7/12/06 MENO 25 21 23 55 9 330° 0.00
7/12/06 FARM 25 18 21 65 8 323° 0.00

...
...

...
...

...
...

...
...

...

Table I
WEATHER DATA

A rule-based approach (as attempted by Mr. Lausted) based
solely on the current weather conditions has proven ineffective,
as has interpolating the predictions of the local weather
forecasters. While it is likely that an expert in meteorology
would be able to create a detailed model of the micro-climate
around the farm, for the sake of this example, we will attempt
to create a solution based only on the data available. We
have a complete set of observed weather data for the last
ten years. Additionally, we have obtained the predictions of
weather forecasters in the area, shown in Table II.

We now present three solutions using different strategies:
an analytical approach, using a ANN and with a QN. Each
example should be considered independently of the others. We
will give only an outline solution for the first two strategies;
the fine details of implementation are not important. We will
go into greater detail for the QN solution, to give a better

84

sense of the system, which is new. In doing so, we hope to
give the reader an understanding of how QNs solve problems,
their capabilities and how one uses them to solve complex
computational problems.

Lausted Farm

Elk Mound

Menomonie

Wheeler

Colfax

Figure 5. Map of the area around the farm, with locations of weather stations.

A. Solution Using an Analytical Approach

We approach this problem by first performing a meta-
analysis of the data. The data may be grouped into classifica-
tions: temporal, spatial and meteorological. This suggests that
it is prudent to evaluate the data along those three axes. We
proceed by next analyzing the data along each of these three
axes followed by another meta-analysis of the data within each
of the three groupings. Along the meteorological axis, we look
for first- and second-order patterns. For example, upon calcu-
lating a three-day sliding window average of meteorological
data, we find the average temperature and the humidity are
relatively good predictors of the day after the window and
find the other meteorological data to be less useful. Along
the temporal axis, we compare the data at each location year
after year, and season by season. This alternating data/meta-
data analysis strategy is continued until we have developed
sufficiently robust understanding of the data.

We also look for ways to improve the data. For example, the
location information is minimal; we enrich this by determining
the latitude and longitude of each weather station, then calcu-
lating vectors from the farm to each, normalizing the location
data to the farm. Other sources of data are added, such as
weather forecasts for the towns so that we may evaluate the
predictions and integrate them.

Having developed a feel for the data, we create hypotheses
about data between axes. As an example, we have created
and verified hypotheses about the relative importance of each
weather station’s data by time of year. Another hypothesis is
that upwind weather stations are better predictors of weather

da
te

da
ys

pr
io

r

lo
ca

tio
n

m
ax

°C

m
in

°C

av
g

°C

hu
m

%

sp
ee

d
m

/s

di
re

ct
io

n
°

ra
in

cm

...
...

...
...

...
...

...
...

...
7/12/06 4 WHLR 26 18 22 45 7 12° 0.00
7/12/06 3 WHLR 25 18 22 49 8 2° 0.50
7/12/06 2 WHLR 24 16 21 53 12 350° 0.00
7/12/06 1 WHLR 24 17 20 57 9 340° 0.00

...
...

...
...

...
...

...
...

...

Table II
WEATHER PREDICTION DATA

to come. Yet another posits that certain weather stations are
better predictors at different times of the year. The hypotheses
are catalogued and ranked.

Lastly, we create software based on this set of hypotheses.
Integrating and weighting the various components is very
complicated and requires a lot of hand-tuning, but we have
a robust set of data to confirm correct behavior. With the
experience we have gained, we have a good idea about how to
proceed on similar projects, several sources of data identified,
and hypotheses to leverage in future endeavors. Even with
these tools, it is clear that analysis of a different set of data
will require significant effort.

B. Solution Using an Artificial Neural Network Approach

We review the sources of data with a focus on quality for
training a neural network. It is helpful to normalize some data
to values in the range [0,1). Other data, such as the dates of
measurements are normalized in the training data, in terms of
relative dates.

There are many ANN designs which would successfully
solve this problem. Because the data has three major axes for
comparison we choose a two-layer non-linear perceptron, as
illustrated in Figure 6, a feed-forward ANN with two hidden
layers. There are a large number of inputs: the last four days
of weather data for each weather station plus the farm, and
the last four days of predictions for each weather station. The
weather records have 10 values, predictions have 11. Thus, we
have 376 raw inputs.

Selecting the appropriate number of hidden nodes is not an
exact science. With too many hidden nodes, the ANN will
memorize the training data, not find a general solution; with
too few, the ANN will generalize the solution, but with too
high an error rate. Selecting an appropriate training data set
is similarly inexact and requires care. One common heuristic
is to use 10% of the full set of data.

We randomly sample 365 days (10%) of data for our
training data. To start, we construct an ANN with a relatively
small number of hidden nodes following a 3/2/1 heuristic. This
first ANN has 376 input neurons, 230 neurons in the first
hidden layer, 115 in the second hidden layer, with one output
neuron.

Next, we iteratively try ANN solutions; training the ANN
and evaluating its accuracy during each step. If the error rate

85

Inputs

Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

Outputs

Figure 6. ANN with two hidden layers

is low enough, the process is complete. If the error rate is
too high, we modify the number of hidden nodes in the ANN,
train it and evaluate its accuracy. We repeat this process until a
suitable solution is found. With the experience we have gained,
we have a good idea about how to proceed on similar projects,
several sources of data identified for use in future endeavors.
Even with these tools, it is clear that we will have to repeat
the entire process of training any subsequent ANN.

C. Solution Using a Queral Network Approach

We identify the types used along these axes. The basic types
include: Location, Date, Temperature, Humidity, Windspeed,
Direction, Name, Precipitation. From these basic types, we
can compose two other types: WeatherData and Prediction,
representing the high-level data structures shown in Table I
and Table II.

Continuing, we develop a contract for the goal queron.
Recall that a contract defines the structure and behavior of
a queron; we first need to define the structure, which provides
the interface to the queron. Restating in terms of a contract,
the structure of the goal queron is: a queron which accepts
weather data and predictions from nearby weather stations,
then produces a prediction for the farm and answers the
question, “Are conditions right to make hay?” The most
concise representation has just two inputs and two outputs,
illustrated in Figure 7. For this design, we leverage the ability
of a queron’s output value to reflect more than just the most
recently received message.

Next, we define the behavior of the contract as a set of
acceptance tests derived from the gathered data. Each test must
adhere to the structure of the contract and specifies the correct
output messages for a set of input messages. The goal queron
will accept new WeatherData and Predictions each day while
retaining the previous day’s data, then sending new output
messages. Our tests are sets of input messages and the resulting
output messages expected to be received. By carefully altering
the order and randomizing the input messages within a test we
create a much larger number of tests from the data at hand.
Doing so helps ensure the queron does not become dependent
on the ordering of input messages, only on which messages
have been received. By strategically removing, modifying and
adding some messages, we can introduce noise into the inputs,
creating additional tests which adds robustness and helps
generalize the solution.

WeatherData PredictionFARM

Prediction BooleanMAKEHAY

Figure 7. Structure of queron to predict weather at the farm

With a well-specified structure and behavior of the goal
queron we can now pass the contract to the Nursery to begin
the search for solutions. The Nursery is a task which eventually
returns an appropriate QN implementation for the specified
contract. In practice, the search space is incredibly large, and
the search is very expensive. We can help by reducing the
search space by a process, which should sound familiar to
any experienced problem solver.

Taking a top-down perspective, we break the problem down
into sub-problems, specifying contracts for querons which can
be used by the Nursery. In doing so, we can begin to solve
the problem in layers. The first simplification is a queron with
an input port accepting Prediction messages and an output
port offering Boolean messages answering the question, “Are
conditions right to make hay?” This effectively splits the
problem into two sub-problems. Another useful queron accepts
each component of the Prediction type individually and returns
a Prediction. Yet another converts a Prediction input message
into a WeatherData output message.

Turning to a bottom-up perspective, we create a suite of
basic querons from which complex solutions can be built.
We initialize the suite with all querons accepting or sending
messages of any of the types in use. We find a full suite of
querons in the Library that perform basic arithmetic (addition,
subtraction, etc.), higher-level mathematical (sine, cosine, in-
tegration, etc.) and comparison (less than, greater than, etc.)
operations on real numbers, integers and booleans. The suite
also includes querons for working with Dates and Locations.
Next, we add querons to convert a Precipitation, Temperature
and Humidity value to a RealNumber. We also create querons
for converting Windspeed, Direction and a Location into a
Vector; we think these may prove useful in normalizing and
evaluating the relative impact of a prediction, by its location
and wind conditions.

WeatherData TemperatureAVG

TemperatureMAX

TemperatureMIN

WeatherData Humidity

Precipitation

VectorWIND

Windspeed VectorWIND

Direction

WeatherData RealNumberERR

Prediction

Location VectorLOCATION

WeatherData VectorWINDSPEED

Prediction VectorWINDSPEED

Figure 8. A sampling of sub-components for the solution QN

We continue to develop more complex components from
both the “bottom” and problem sub-components from the

86

“top” of the problem, until we have a manageable gap be-
tween querons in the “middle” of the problem. Ideally, this
progresses until the Nursery only has to find a solution for the
“mysterious” part of the solution. We then pass the bootstrap
suite of querons for the Nursery to begin its search.

D. Discussion

The example given is simple enough that an effective
solution can be developed by any of the three techniques. Let
us assume we have successfully developed a reliable system.
The farmer is so pleased with the results that he has told all
his friends and now we have several potential customers with
similar requests.

With the traditional software solution, we have easily
reusable software and a good understanding of the area’s
weather patterns. With a little effort, we should be able
to reapply our knowledge to adapt the system to any new
customers. If a customer is skeptical, we can explain how our
software works at a conceptual level.

With the ANN solution, we have not developed an under-
standing of the weather patterns. If we are lucky, we will
be able to reuse our ANN for the other farmers. It seems
most likely, however, that we will have to retrain an ANN for
each farmer’s conditions, duplicating effort and providing a
unique solution for each. It would be challenging to estimate
the reliability of each solution since there is no code reuse
between them. One alternative approach is to train a new ANN
which works with the data for all farmers. A solution for this
will certainly be more complex and, therefore, more difficult
to train successfully. In either case, if a customer is skeptical,
we most likely cannot explain how our software works at a
conceptual level.

QNs provide a hybrid approach to development, allowing
the investigator to focus on the architecture of the solution,
letting the details of the implementation be evolved by the
system. In the process of incrementally developing the queron
to predict the weather, we have gained insight into the structure
of the QN and required sub-components. We have a suite of
components that can be reused to create similar solutions for
new customers. With careful analysis of the QN, we can gain
additional insight into the way these components are connected
to each other. With a solution in hand, using the Editor, we can
explore modifications as a means toward improvement and to
gain insight into the workings of the QN. With careful analysis,
we can develop a conceptual understanding of how the QN
works at a conceptual level.

VI. PERCEIVED BENEFITS

We believe QNs have several features which provide distinct
advantages over ANNs and the von Neumann architecture.
QNs represent a generalization of the computational model
of ANNs. We can create a queron which behaves just like a
neuron, and connect these in the same ways that neurons are
connected in ANNs. With this, we can seamlessly integrate
ANNs into QNs, by implementing the desired ANN as a
queron. The benefit of this is the ability to leverage existing
research into ANNs.

The queron architecture also has a distinct advantage
over the von Neumann architecture in terms of parallelism.
Querons, as with KPNs are naturally parallelizable. They do
not require synchronization because there is no shared memory
resources. Therefore, we claim querons are not subject to the
limitations of Amdahl’s Law. Experimentation will demon-
strate the validity of this claim.

Querons have tight integration between specification and
implementation; every queron must fulfill a contract. Most
programming languages rely on a carefully-worded natural-
language specification of behavior, and perhaps a suite of tests
for key libraries; in QNs a more rigorous, less ambiguous
definition is the focus. From the beginning, the investigator
focuses on specification of the contract for a queron, with
solutions to fulfill the contract developed later by the system,
freeing the investigator to focus on the goals for the system,
less on the details.

Lastly, we argue that QNs may make it possible to develop
systems in more challenging problem spaces, potentially by
subject-matter experts who are not trained as programmers.
Typically, non-programmers do not have the skills nor training
to define an algorithm to solve a problem, yet most can
identify when a program is operating correctly. Subject matter
experts can develop useful software as long as they can create
appropriate tests, training, or are able to verify correctness.
Moreover, there is a whole class of problems which are
challenging to define or are somehow subjective. ANNs have
provided one technique for solving such problems. QNs,
we claim, provide a much better approach for solving and
investigating these problems.

VII. FUTURE WORK

Many of the concepts used in defining querons are not
unique. Querons are similar to artificial neurons, use features
of KPNs and use EP, all of which have been researched. Yet,
much research into the proper application and tailoring of these
features for QNs remains.

We need to develop a thorough understanding of the com-
plexity of QNs. This will be crucial for developing heuristics
for estimating the minimum size of a solution. These heuristics
will be especially useful while developing new solutions by
EP. By carefully choosing the starting size we hope to avoid
unnecessary effort and evolutionary dead ends. It is also
desirable to develop a more rigorous proof demonstrating that
QNs represent a generalization of ANNs, and a proof that QNs
are Turing computable.

Development of the QED is in the early stages. We will
soon present an initial implementation for testing purposes, but
much research into the implementation remains. The Nursery,
by its pluggable architecture, allows investigation of state-
of-the-art machine learning algorithms. The Runtime requires
investigation into scalability and in how best to allocate
resources. The Editor will require research into how best to
manage and present the complexity to the investigator.

VIII. CONCLUDING REMARKS

We have presented a computation architecture providing a
higher-level perspective which we feel is novel, highly paral-

87

lelizable, scalable and powerful. While many of the concepts
are well known, we believe we have combined these technolo-
gies in an unprecedented way. Much work remains, but we feel
QNs will make it possible to develop more complex parallel
systems and improve research into biologically-inspired and
high-performance computation.

REFERENCES

[1] M. Cooke, “Silicon transistor hits 500ghz performance,” III-Vs Review,
vol. 19, no. 5, pp. 30–31, 2006.

[2] S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room temperature
transistor based on a single carbon nanotube,” Nature, vol. 393, pp. 49
– 52, May 1998.

[3] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-ghz
mesh interconnected for a teraflops processor,” IEEE Micro, vol. 27,
pp. 51–61, Sept.-Oct. 2007.

[4] J. Gustafson, “Reevaluating Amdahl’s law,” Communications of the
ACM, vol. 31, May 1988.

[5] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, July 2008.

[6] W. D. Hillis, The Connection Machine. PhD thesis, MIT, 1985.
[7] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Öberg,

K. Tiensyrjä, and A. Hemani, “A network on chip architecture and design
methodology,” in VLSI, 2002. Proceedings. IEEE Computer Society
Annual Symposium on, pp. 105–112, 2002.

[8] G. Kahn, “The semantics of a simple language for parallel processing,”
Information Processing, 1974.

[9] W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances in dataflow
programming languages,” ACM Computing Surveys, vol. 36, pp. 1–34,
March 2004.

[10] H. T. Seigelmann and E. D. Sontag, “Turing computability with neural
nets,” Applied Mathematics Letters, vol. 4, no. 6, pp. 77 – 80, 1991.

[11] J. Reisinger, K. O. Stanley, and R. Miikkulainen, “Evolving reusable
neural modules,” in Genetic and Eolutionary Computation - GECCO
2004, vol. 3103, pp. 69–81, Springer Berlin / Heidelberg, 2004.

[12] E. W. Dijkstra, “On the role of scientific thought,” in Selected Writings
on Computing: A Personal Perspective, pp. 60 – 66, Springer-Verlag,
1982.

[13] B. P. Zeigler, Multifacetted modelling and discrete event simulation. San
Diego, CA, USA: Academic Press Professional, Inc., 1984.

[14] N. A. Lynch and E. W. Stark, “A proof of the kahn principle for
input/output automata,” Information and Computation, vol. 82, no. 1,
pp. 81–92, 1989.

[15] T. M. Parks, Bounded Scheduling of Process Networks. PhD thesis,
University of California at Berkeley, 1995.

[16] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, pp. 1423–1447, Sep 1999.

[17] R. L. Crepeau, “Genetic evolution of machine language software,” in
Proceedings of the Workshop on Genetic Programming: From Theory
to Real-World Applications (J. P. Rosca, ed.), pp. 121–134, July 1995.

88

