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Abstract 

This paper describes research and development of 
techniques to support automatic generation of test cases 
for event-oriented, real-time embedded systems. A 
consistent suite of test scenarios can assure consistency at 
all levels of design activities. Although we have developed 
algorithms designed to generate test scenarios from state- 
based jiinctional requirements model, their applicability 
is severely limited without a means to automatically 
translate the model functions into a form that can be 
readily integrated with the algorithms. A method and tool 
that extract the model of requirements and synthesize an 
equivalent high-level functional representation are 
presented. The tool, called Requirements Model Code 
Synthesizer, has been applied to a number of design 
cases, one of which is described in this paper. 

1. Introduction 

Our work is motivated by the need to improve the 
practice of embedded systems design. Hardware/Software 
Codesign [2] has been a recently active area of research 
that has emerged due to the same need. Codesign takes a 
systems approach by supporting an integrated 
hardware/software design environment. Model-based 
Codesign uses executable and realization independent 
simulation models to allow for early alternative design 
analysis and tradeoff studies. Iterative refinement is used 
in taking a proposed design from its model to its physical 
realization. 

The Model-based Codesign process relies heavily on 
testing that is applied at all levels of the design activities. 
When a consistent suite of test cases are utilized, 
consistency across the design levels can be assured. To 
support the testing needs of Model-based Codesign, we 
have developed an automatic test scenario generation 
method. This method is based on a state-based model of 
the proposed system. The model is developed manually 
from the stated requirements for the system and is called 

the requirements model. An integral part of the test 
scenario generation method is the ability to automatically 
extract model functions and other model dependent 
information from the requirements model and concert i t  to 
a form suitable for use by the algorithms that perform 
scenario generation. The focus of this paper is to describe 
a method and tool that have been developed to provide 
this automation, and as a result, greatly improve the 
applicability of our test scenario generation method. 

First, we provide an overview of our approach to 
automatic test scenario generation. In Section 3 we give a 
brief description of the semantics of the Software Cost 
Reduction (SCK) formalism [3], which was chosen as the 
state-based modeling formalism used to support our 
scenario generation method. Section 4 presents the 
approach taken in developing the Requirements Model 
Code Synthesis (RMCS) tool. A case study of an elevator 
controller is presented in Section 5 to illustrate the details 
of the RMCS tool. Section 6 concludes with a summary 
and suggests areas for future work. 

2. Approach to test scenario generation 

Test scenarios are designed to support the Model- 
based Codesign process. They are used across all levels 
of the design to ensure consistency between the different 
design representations (e.g., from functional and 
behavioral models at the virtual level to prototypes and 
final designs at the physical level). The suite of test 
scenarios should exercise (cover) all requirements so that 
the application of the test suite to a model or a system 
provides means to validate the design with respect to the 
system requirements. 

Our approach to test scenario generation assumes that 
the system requirements will be stated in a natural 
language document. These requirements are then used to 
develop a state-based requirements model. The modeling 
formalism we presently employ is the SCR method 
developed at the Naval Research Laboratories. 
Requirements models are developed using the Software 
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Cost Reduction Toolset [4]. The requirements model 
defines the proper functionality of the proposed system 
and is assumed to accurately reflect the stated 
requirements. 

A set of scenario generation algorithms has been 
developed that provide a controlled simulation of the 
requirements model in order to produce a rooted scenario 
tree [ 5 ] .  The root of the tree is defined as the initialization 
state for the system. All paths from the root to pendent 
vertices define test scenarios. The algorithms are applied 
in a serial manner. The first algorithm produces a scenario 
tree that defines a set of scenarios, called the base 
scenarios, that exercise all requirements identified in the 
requirements model [6]. Because testing at the black box 
level is necessary to support testing within Model-based 
Codesign, the second algorithm determines which 
requirements can be verified at the black box level 
through application of the base scenarios. The third 
algorithm attempts to enhance the base scenarios for all 
requirements identified by the second algorithm as black 
box unverifiable. The fourth and final algorithm combines 
the enhancements and the base scenarios to produce a 
final suite of test scenarios. The details of the complete 
scenario generation process are given in [ 5 ] .  

Implementations of the scenario generation algorithms 
have been developed in the C programming language. 
These implementations are designed to compile and link 
with C code that is functionally equivalent to the 
requirements model. The algorithms control the 
requirements model functions through a standard 
interface. It is the job of the RMCS tool to provide the 
functionally equivalent model code, to generate all model 
dependent support code, and to provide the standard 
interface code. The RMCS tool is the key element that 
allows the scenario generation algorithms to be 
seamlessly applied to any requirements model developed 
in the SCR formalism. 

3. Overview of the SCR formalism 

In this section we present an overview of the SCR 
formalism [4] used in the requirements model. The SCR 
formalism is built upon the state-based mathematical 
model and provides two sets of expressions: condition 
expressions and event expressions. Condition expressions 
are treated in the same manner as C logical conditions. 
However, more logic is associated with event expressions 
and needs demonstration. 

In the SCR formalism, an event occurs when the value 
of the expression changes from one state to another. The 
event expression @T(A) denotes the event when the value 
of expression A changes from FALSE to TRUE. If A is the 

condition’s value in the old state and A ’ is its value in the 
new state then, 

@T(A) = A ’ AND NOT A. (1) 

Figure 1 illustrates this relationship graphically’. 

I to Time 

Figure 1. Definition of the SCR construct @T(A). 
When the value of expression A changes from 
FALSE to TRUE at to, we say that event A 
occurred at to. 

The equivalent C expression for the @T(A) statement is 

if( A ’  && !A ) { ... I .  ( 2 )  

Similarly, the event expression @F(A) denotes the 
event when the value of expression A changes from TRUE 
to FALSE. The expression is defined as 

@F(A) = A AND NOT A ’ (3) 

and its equivalent C expression is 

i f (  A && ! A ’ )  { ... 1. (4) 

Table 1 summarizes the SCR event constructs, their 
mathematical definitions, and their equivalent C 
expressions. 

We note in the last row of Table 1 that B is a condition 
expression that is a part of the conditional event 
expression. From these basic constructs and the 
AND/OR/NOT keywords, multiple events and conditions 
can be grouped to form more complex expressions. 
Nevertheless, the RMCS tool will still use the logic 
behind the fundamental constructs to decode these 
complex expressions. 

The three types of tables used in the SCR formalism 
are the mode-transition, the event, and the condition 

’ This figure has  been reproduced from the SCR Toolser: The User 
Guide, courtesy of the Naval Research Labs. 
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Table 1. SCR event constructs 

tables. In addition, there are four types of variables: 
modeclass, monitored, term, and controlled. Monitored 
and controlled variables are the inputs and the outputs of 
the system, respectively, while term variables are internal 
to the system. Modeclass variables capture the system 
history because the behavior of a system can very well 
depend upon what happened in the past. In using the SCR 
formalism, the modeler must assign a mode-transition 
table to each of the modeclass variables and either an 
event or a condition table to each of the term and 
controlled variables. 

4. Tool development approach 

The methodology applied in developing a suitable tool 
to synthesize equivalent functional model code from the 
SCR requirements model is based upon the principles of 
compiler design. (We feel that if industry is to adopt our 
approach, we must build upon existing tools to help 
improve efficiency. Consequently, we extensively used 
the UNIX tools lex and yacc and the Solaris Workshop 
development environment in our tool development 
process.) The inputs, the outputs, and the architecture of 
the Requirements Model Code Synthesis tool are shown 
in Figure 2. 

SCR 

Fila File 

Figure 2. The inputs, the outputs, and the 
architecture of the Requirements Model Code 
Synthesis (RMCS) tool. 

4.1 Tool inputs 

The RMCS tool requires three inputs: the SCR. 
requirements model, the input value, and the dependency 
files. The SCR requirements model file contains the 
model of the system for which test scenarios must be 
generated. The input value file contains the possible 
values of all input variables. These values define the 
inputs that the scenario generation algorithms are allowed 
to apply to the requirements model during state 
expansion. The dependency file enumerates all the model 
variables and indicates the dependencies present between 
variables in the model. The scenario generation 
algorithms use the dependency information during 
simulation of the requirements model. 

4.2 Tool architecture 

The design of the RMCS tool comprises three major 
components. As shown in Figure 2, the components are a 
lexical analyzer, a parser, and the support code. The main 
program calls the parser which parses the SCR 
requirements model-file by developing a parse tree and a 
symbol table that are used to generate the SCR equivalent 
C code. In order to parse the file, the parser requests the 
help of a lexical analyzer. The equivalent functional 
model code is generated by the support code after parsing 
has been accomplished. 

The lexical analyzer (lexer) is written with lex to 
analyze the text file containing the SCR requirements 
model. In a lexer, the user defines a series of patterns that 
must be identified. The lexer searches for these patterns in 
the model and breaks the contents that are matched into a 
series of tokens. The parser will process these tokens 
further. An error is reported and further processing is 
halted if the lexer detects tokens that do not conform to 
any of the defined patterns. 

The parser, developed using yacc, initiates a call to the 
lexer asking for tokens. It logically groups the supplied 
tokens in accordance with the syntax rules defined by the 
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user. In our case, the syntax of the SCR formalism was 
defined in the SCR Toolset: The User Guide.  The support 
code associated with each syntax rule is executed when 
that rule is matched. In our case, the primary purpose of 
the parser is to generate a parse tree and a symbol table. 
An error is reported if any of the syntax rules are violated 
and further processing is terminated. 

The parser and the main program utilize the supporting 
C code that was developed in the Solaris Workshop 
development environment. The parser uses the support 
code to perform the necessary actions required when a 
certain syntax rule has been identified. On the other hand, 
the main program uses the support code to process the 
parse tree generated by the parser and to generate the 
appropriate outputs. 

We developed the RMCS tool in the Solaris Workshop 
environment primarily because it provides excellent tool 
development features such as debugging and 
maintenance. Although lex and yacc do not provide good 
error recovery during lexical analysis and parsing, we 
employed their use for two reasons. First, a lexer written 
in lex and a parser written in yacc are much more 
compact than both written in C .  In addition, the tools 
provide the capability of automatically generating 
equivalent C source code that is ready for compilation 
with the support code and the main program. Second, we 
make the assumption that the model has passed all model 
checking tests provided by the SCR Toolset (e.g., syntax, 
variable, type, name uniqueness, disjointness, etc.). Thus, 
there is no need to repeat these tests in the RMCS tool. 

4.3 Tool outputs 

There are three outputs generated by the RMCS tool. 
Each table in the model is mapped onto an equivalent C 
function. These functions capture the same logic as that 
encoded in the model. But because these functions are 
model dependent, wrapper functions are synthesized for 
each function to help provide a generic interface that 
allows communication between the scenario generation 
algorithms and the model functions during test scenario 
synthesis. Finally, a generic interface to the scenario 
generation algorithms is generated which defines all data 
types and structures, determines state changes, handles 
data transfer, and provides input and output. 

5. Case study: An elevator controller 

We illustrate the application of the RMCS tool in test 
scenario generation with a case study. We defined the 
system requirements of an elevator controller in a text- 
based document from which we developed an SCR 
model. Partial tables excerpted from the actual model and 

the equivalent functional code assembled by the RMCS 
tool are given. Finally, we present a description of one of 
the generated test scenarios. 

5.1 SCR elevator model 

An elevator controller controls the operation of an 
elevator in a three-story building. The main floor has both 
up and down buttons while the ground and top floors have 
only up or down buttons, respectively. There are three 
inputs and three outputs in the SCR elevator requirements 
model as shown in Figure 3. 

R 
RIDEILREQUEST 

1 

Figure 3. The inputs and the outputs of the SCR 
elevator requirements model. 

The input and output variables are At-Floor, 
Floor-Request, Rider-Request and Go-Up, Go-Down, 
Open-Doors, respectively. The elevator uses At-Floor to 
keep track of the current floor position of the elevator. 
The variables Floor-Request and Rider-Request capture 
the floor selection made by the rider outside and inside 
the elevator, respectively. The outputs Go-Up and 
Go-Down control the elevator’s direction of movement 
while Open-Doors controls the opening and closing of 
the elevator doors. 

5.2 System Requirements 

The main requirements of the elevator controller can 
be summarized as follows: 

The elevator must respond within 0.5 seconds of 
when a service request (internal or external) is 
made. A valid response is asserting CO-Up or 
Go-Down to command elevator movement. For 
simplicity, a sensor to detect door obstructions has 
been omitted. 

If the elevator is servicing a request, a new request 
that can be serviced without changing the 
direction of motion must be completed prior to 
completing the present request. 
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Once a service request has been completed, the 
next pending request selected is the request at the 
closest floor in the same direction as last motion. 
If there are no such requests, then the request at 
the closest floor in the opposite direction of the 
last motion is serviced. 

When the elevator arrives at a floor to service a 
request the doors shall be opened by asserting 
Open-Doors within 0.5 seconds. 

A service request is completed when the elevator 
has arrived at the proper floor and the doors have 
remained open for 5 seconds. In the absence of 
any service requests, the elevator shall remain at 
the present floor. 

5.3 Examples of SCR tables and generated 
functional code 

There were two mode-transition, nine event, and one 
condition tables in our SCR elevator controller model. 
Table 2 shows a portion of the mode-transition table for 
the modelcass variable ControlMode. The first column 
indicates the old value of ControlMode. The last column 
indicates the new value of ControlMode should the event 
in the second column occur. For example, if ControlMode 
was in the Waiting mode and Floor-1-Request becomes 
true when Cur-Floor is 1.0, then ControlMode should 
transition into the Service mode. 

The equivalent model code generated by the RMCS 
tool for ControlMode is shown below. In keeping with the 
SCR formalism, prime notation is used to denote the new 
state of the variable. For the sake of clarity and brevity, 
some of the code has been slightly modified. 

i f (  ControlMode == Waiting ) 

Cur-Floor == 1.0) 
i f (  Floor-]-Request’ && !Floor-]-Request && 

ControlMode’ == Service: 

i f( ControlMode == Go-Down ) 

& & Floor-2-Down-Request) 
ControlMode’ == Service; 

if( At-Floor’ && !At-Floor && Cur-Floor == 2.5 

A portion of the event table for the term variable 
Cur-Floor is shown in Table 3.  The first column indicates 
that Cur-Floor is dependent upon the modeclass variable 
ControlMode. Hence, its value can change only when 
ConrrolMode is in one of the modes and the indicated 
event(s) occur. For example, if ControlMode is in the 
Go-Down mode and At-Floor becomes true when 
Cur-Floor equals 1.5, then the new value of Cur-F/oor is 
1.0. However, if ControlMode is in the Go-Up mode, 
Cur-Floor will never equal 1 .O because the NEVER event 
is associated with this assignment. Thus, it does not need 
to be captured in the generated model code. 

The model code corresponding to the event table for 
Cur-Floor is shown below. 

i f {  ControlMode == Go-Up ) 
i f( !At-Floor’ && At-Floor && Cur-Floor == 1.0 ) 

Cur-Floor’ = 1.5: 

i f (  ControlMode == Go-Down ) ( 
i f (  At-Floor’ && !At-Floor && Cur-Floor == 1.5 ) 

else i f (  !At-Floor’ && At-Floor && Cur-Floor == 
Cur-Floor’ = 1.0; 

2.0 ) 
Cur-Floor’ = 1.5; 

1 

A condition table is translated in a similar manner to 
an event table. The only difference is that, instead of 
events, the specified conditions must be true for state 
transitions to occur. In addition, the prime notation is not 
utilized here because condition tables indicate the 
variable’s value in any particular state. The condition 
table for the controlled variable Open-Doors is shown in 
Table 4. For example, if  ControlMode is in Waiting, 
Go-Up, or Go-Down mode, then the value of 
Open-Doors is FALSE. 

The functional code for the Open-Doors condition 
table is shown below. 

i f( ControlMode == Service 

Open-Doors = TRUE: 

Open-Doors = FALSE; 

if ( Open-Doors ) 

else i f (  !Open-Doors ) 

I 

Table 2. Partial mode-transition table for ControlMode 

t Waiting @T(Floor-l-Request) WHEN (Cur-Floor = 1.0) Service 
Go-Down ’@ T(At-Floor) WHEN (Cur-Floor = 2.5 AND Floor-2-Down-Request) Service 
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Table 3. Partial event table for Cur-Floor 

Table 4. Condition table for Open-Doors 

Service True False 
Waiting, Go-Up, Go-Down False True 

< I  * (  - ASSIGNMENTS True False 

MODES 

if ( ControlMode == Waiting II ControlMode == 
CO-Up II ControlMode == Go-Down ) { 

i f (  !Open-Doors ) 
Open-Doors = TRUE; 

else i f (  Open-Doors ) 
Open-Doors = FALSE; 

I 

5.4 Generated scenarios 

The equivalent, functional model code generated by 
the RMCS tool compiles and links with the model- 
independent scenario generation algorithms and its 
associated support libraries as shown in Figure 4. This 
produces a self-contained executable scenario generator 
for the given requirements model. 

Generation 
Algorithms 

(SGA) 

Wrapper 
Functions 

equivalent Compikr & Test Scenarios 
C code Linker 

Interfmce 

Independent 
support 
Libraries 

Figure 4. The outputs of the RMCS tool compile 
with the model-independent scenario generation 
algorithms and support libraries to generate test 
scenarios. 

The scenario generation algorithms generated seventy- 
three unique system states for the elevator model and 

produced twenty-two test scenarios. One of the test 
scenarios is shown in Figure 5. The format of the test 
scenarios is state input/oirrput. 

SCENARIO 19 I - - _ - _ - - _ - _ _ _ _ _ _  
FLOOR-1-INT-BUTTON-PRESS / ‘i3 OPEN-DOORS = TRUE 1 

48 FLOOR-3-DOWN-EXT-BUTTON_PRESS / 
62 TimeAdvance = 5.010 / 

OPEN-DOORS = FALSE GO-UP = TRUE 

Figure 5. A sample test scenario generated by 
the scenario generation algorithms. 

The specified initial state for the elevator controller is 
that the elevator is on the first floor with the doors closed 
and no pending requests. From this state, the first step in 
the scenario is for a passenger (this particular scenario 
also assumes that a passenger was in the elevator) to 
request to go to the first foor.  Since the elevator is 
currently at the first floor, the doors should bc opened. 
The second step shows that while the doors arc open, 
someone on the third floor requests to go down. The third 
step shows the advancement of time past the fixed open 
door delay which should result in the doors being closed 
and the elevator beginning its ascent to service the request 
on the third floor. This scenario stops at this point, rather 
than the logical conclusion of servicing the third floor 
request, because any requirements that could have been 
tested by continuing have already been covered by other 
scenarios. 

6. Conclusions and future work 

In this paper, we have presented the development of 
the RMCS tool to aid the test scenario generation 
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algorithms. By automating the translation of the high- 
level requirements model, our scenario generation 
algorithms can be applied to any requirements model 
developed in the SCR formalism. This eliminates the need 
to write test cases manually and expedites the design 
process. In addition, industry can benefit immensely from 
this structured framework of test generation for system 
validation, which will help reduce design cycles and 
costs. Our future work in this area of embedded systems 
design is geared towards combining the generated test 
scenarios with temporal (performance) requirements to 
generate UATLAS (Common Abbreviated Test 
Language for All Systems) [7] test programs that will be 
used in a virtual or real-time testing environment for 
system validation. 
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