
Synthesis of High-Level Requirements Models for Automatic Test Generation

P. Gupta, S.J. Cunning, and J.W. Rozenblit
Department of Electrical and Computer Engineering

The University of Arizona
Tucson, Arizona 85721 -0104, U.S.A.

{pguptbcunning’$-} 0 ece.arizona. edu

Abstract

This paper describes research and development of
techniques to support automatic generation of test cases
for event-oriented, real-time embedded systems. A
consistent suite of test scenarios can assure consistency at
all levels of design activities. Although we have developed
algorithms designed to generate test scenarios from state-
based jiinctional requirements model, their applicability
is severely limited without a means to automatically
translate the model functions into a form that can be
readily integrated with the algorithms. A method and tool
that extract the model of requirements and synthesize an
equivalent high-level functional representation are
presented. The tool, called Requirements Model Code
Synthesizer, has been applied to a number of design
cases, one of which is described in this paper.

1. Introduction

Our work is motivated by the need to improve the
practice of embedded systems design. Hardware/Software
Codesign [2] has been a recently active area of research
that has emerged due to the same need. Codesign takes a
systems approach by supporting an integrated
hardware/software design environment. Model-based
Codesign uses executable and realization independent
simulation models to allow for early alternative design
analysis and tradeoff studies. Iterative refinement is used
in taking a proposed design from its model to its physical
realization.

The Model-based Codesign process relies heavily on
testing that is applied at all levels of the design activities.
When a consistent suite of test cases are utilized,
consistency across the design levels can be assured. To
support the testing needs of Model-based Codesign, we
have developed an automatic test scenario generation
method. This method is based on a state-based model of
the proposed system. The model is developed manually
from the stated requirements for the system and is called

the requirements model. An integral part of the test
scenario generation method is the ability to automatically
extract model functions and other model dependent
information from the requirements model and concert i t to
a form suitable for use by the algorithms that perform
scenario generation. The focus of this paper is to describe
a method and tool that have been developed to provide
this automation, and as a result, greatly improve the
applicability of our test scenario generation method.

First, we provide an overview of our approach to
automatic test scenario generation. In Section 3 we give a
brief description of the semantics of the Software Cost
Reduction (SCK) formalism [3], which was chosen as the
state-based modeling formalism used to support our
scenario generation method. Section 4 presents the
approach taken in developing the Requirements Model
Code Synthesis (RMCS) tool. A case study of an elevator
controller is presented in Section 5 to illustrate the details
of the RMCS tool. Section 6 concludes with a summary
and suggests areas for future work.

2. Approach to test scenario generation

Test scenarios are designed to support the Model-
based Codesign process. They are used across all levels
of the design to ensure consistency between the different
design representations (e.g., from functional and
behavioral models at the virtual level to prototypes and
final designs at the physical level). The suite of test
scenarios should exercise (cover) all requirements so that
the application of the test suite to a model or a system
provides means to validate the design with respect to the
system requirements.

Our approach to test scenario generation assumes that
the system requirements will be stated in a natural
language document. These requirements are then used to
develop a state-based requirements model. The modeling
formalism we presently employ is the SCR method
developed at the Naval Research Laboratories.
Requirements models are developed using the Software

76
0-7695-1086-8/01 $10.00 0 2001 IEEE

Cost Reduction Toolset [4]. The requirements model
defines the proper functionality of the proposed system
and is assumed to accurately reflect the stated
requirements.

A set of scenario generation algorithms has been
developed that provide a controlled simulation of the
requirements model in order to produce a rooted scenario
tree [5] . The root of the tree is defined as the initialization
state for the system. All paths from the root to pendent
vertices define test scenarios. The algorithms are applied
in a serial manner. The first algorithm produces a scenario
tree that defines a set of scenarios, called the base
scenarios, that exercise all requirements identified in the
requirements model [6]. Because testing at the black box
level is necessary to support testing within Model-based
Codesign, the second algorithm determines which
requirements can be verified at the black box level
through application of the base scenarios. The third
algorithm attempts to enhance the base scenarios for all
requirements identified by the second algorithm as black
box unverifiable. The fourth and final algorithm combines
the enhancements and the base scenarios to produce a
final suite of test scenarios. The details of the complete
scenario generation process are given in [5] .

Implementations of the scenario generation algorithms
have been developed in the C programming language.
These implementations are designed to compile and link
with C code that is functionally equivalent to the
requirements model. The algorithms control the
requirements model functions through a standard
interface. It is the job of the RMCS tool to provide the
functionally equivalent model code, to generate all model
dependent support code, and to provide the standard
interface code. The RMCS tool is the key element that
allows the scenario generation algorithms to be
seamlessly applied to any requirements model developed
in the SCR formalism.

3. Overview of the SCR formalism

In this section we present an overview of the SCR
formalism [4] used in the requirements model. The SCR
formalism is built upon the state-based mathematical
model and provides two sets of expressions: condition
expressions and event expressions. Condition expressions
are treated in the same manner as C logical conditions.
However, more logic is associated with event expressions
and needs demonstration.

In the SCR formalism, an event occurs when the value
of the expression changes from one state to another. The
event expression @T(A) denotes the event when the value
of expression A changes from FALSE to TRUE. If A is the

condition’s value in the old state and A ’ is its value in the
new state then,

@T(A) = A ’ AND NOT A. (1)

Figure 1 illustrates this relationship graphically’.

I to Time

Figure 1. Definition of the SCR construct @T(A).
When the value of expression A changes from
FALSE to TRUE at to, we say that event A
occurred at to.

The equivalent C expression for the @T(A) statement is

if(A ’ && !A) { ... I . (2)

Similarly, the event expression @F(A) denotes the
event when the value of expression A changes from TRUE
to FALSE. The expression is defined as

@F(A) = A AND NOT A ’ (3)

and its equivalent C expression is

i f (A && ! A ’) { ... 1. (4)

Table 1 summarizes the SCR event constructs, their
mathematical definitions, and their equivalent C
expressions.

We note in the last row of Table 1 that B is a condition
expression that is a part of the conditional event
expression. From these basic constructs and the
AND/OR/NOT keywords, multiple events and conditions
can be grouped to form more complex expressions.
Nevertheless, the RMCS tool will still use the logic
behind the fundamental constructs to decode these
complex expressions.

The three types of tables used in the SCR formalism
are the mode-transition, the event, and the condition

’ This figure has been reproduced from the SCR Toolser: The User
Guide, courtesy of the Naval Research Labs.

77

Table 1. SCR event constructs

tables. In addition, there are four types of variables:
modeclass, monitored, term, and controlled. Monitored
and controlled variables are the inputs and the outputs of
the system, respectively, while term variables are internal
to the system. Modeclass variables capture the system
history because the behavior of a system can very well
depend upon what happened in the past. In using the SCR
formalism, the modeler must assign a mode-transition
table to each of the modeclass variables and either an
event or a condition table to each of the term and
controlled variables.

4. Tool development approach

The methodology applied in developing a suitable tool
to synthesize equivalent functional model code from the
SCR requirements model is based upon the principles of
compiler design. (We feel that if industry is to adopt our
approach, we must build upon existing tools to help
improve efficiency. Consequently, we extensively used
the UNIX tools lex and yacc and the Solaris Workshop
development environment in our tool development
process.) The inputs, the outputs, and the architecture of
the Requirements Model Code Synthesis tool are shown
in Figure 2.

SCR

Fila File

Figure 2. The inputs, the outputs, and the
architecture of the Requirements Model Code
Synthesis (RMCS) tool.

4.1 Tool inputs

The RMCS tool requires three inputs: the SCR.
requirements model, the input value, and the dependency
files. The SCR requirements model file contains the
model of the system for which test scenarios must be
generated. The input value file contains the possible
values of all input variables. These values define the
inputs that the scenario generation algorithms are allowed
to apply to the requirements model during state
expansion. The dependency file enumerates all the model
variables and indicates the dependencies present between
variables in the model. The scenario generation
algorithms use the dependency information during
simulation of the requirements model.

4.2 Tool architecture

The design of the RMCS tool comprises three major
components. As shown in Figure 2, the components are a
lexical analyzer, a parser, and the support code. The main
program calls the parser which parses the SCR
requirements model-file by developing a parse tree and a
symbol table that are used to generate the SCR equivalent
C code. In order to parse the file, the parser requests the
help of a lexical analyzer. The equivalent functional
model code is generated by the support code after parsing
has been accomplished.

The lexical analyzer (lexer) is written with lex to
analyze the text file containing the SCR requirements
model. In a lexer, the user defines a series of patterns that
must be identified. The lexer searches for these patterns in
the model and breaks the contents that are matched into a
series of tokens. The parser will process these tokens
further. An error is reported and further processing is
halted if the lexer detects tokens that do not conform to
any of the defined patterns.

The parser, developed using yacc, initiates a call to the
lexer asking for tokens. It logically groups the supplied
tokens in accordance with the syntax rules defined by the

78

user. In our case, the syntax of the SCR formalism was
defined in the SCR Toolset: The User Guide. The support
code associated with each syntax rule is executed when
that rule is matched. In our case, the primary purpose of
the parser is to generate a parse tree and a symbol table.
An error is reported if any of the syntax rules are violated
and further processing is terminated.

The parser and the main program utilize the supporting
C code that was developed in the Solaris Workshop
development environment. The parser uses the support
code to perform the necessary actions required when a
certain syntax rule has been identified. On the other hand,
the main program uses the support code to process the
parse tree generated by the parser and to generate the
appropriate outputs.

We developed the RMCS tool in the Solaris Workshop
environment primarily because it provides excellent tool
development features such as debugging and
maintenance. Although lex and yacc do not provide good
error recovery during lexical analysis and parsing, we
employed their use for two reasons. First, a lexer written
in lex and a parser written in yacc are much more
compact than both written in C . In addition, the tools
provide the capability of automatically generating
equivalent C source code that is ready for compilation
with the support code and the main program. Second, we
make the assumption that the model has passed all model
checking tests provided by the SCR Toolset (e.g., syntax,
variable, type, name uniqueness, disjointness, etc.). Thus,
there is no need to repeat these tests in the RMCS tool.

4.3 Tool outputs

There are three outputs generated by the RMCS tool.
Each table in the model is mapped onto an equivalent C
function. These functions capture the same logic as that
encoded in the model. But because these functions are
model dependent, wrapper functions are synthesized for
each function to help provide a generic interface that
allows communication between the scenario generation
algorithms and the model functions during test scenario
synthesis. Finally, a generic interface to the scenario
generation algorithms is generated which defines all data
types and structures, determines state changes, handles
data transfer, and provides input and output.

5. Case study: An elevator controller

We illustrate the application of the RMCS tool in test
scenario generation with a case study. We defined the
system requirements of an elevator controller in a text-
based document from which we developed an SCR
model. Partial tables excerpted from the actual model and

the equivalent functional code assembled by the RMCS
tool are given. Finally, we present a description of one of
the generated test scenarios.

5.1 SCR elevator model

An elevator controller controls the operation of an
elevator in a three-story building. The main floor has both
up and down buttons while the ground and top floors have
only up or down buttons, respectively. There are three
inputs and three outputs in the SCR elevator requirements
model as shown in Figure 3.

R
RIDEILREQUEST

1

Figure 3. The inputs and the outputs of the SCR
elevator requirements model.

The input and output variables are At-Floor,
Floor-Request, Rider-Request and Go-Up, Go-Down,
Open-Doors, respectively. The elevator uses At-Floor to
keep track of the current floor position of the elevator.
The variables Floor-Request and Rider-Request capture
the floor selection made by the rider outside and inside
the elevator, respectively. The outputs Go-Up and
Go-Down control the elevator’s direction of movement
while Open-Doors controls the opening and closing of
the elevator doors.

5.2 System Requirements

The main requirements of the elevator controller can
be summarized as follows:

The elevator must respond within 0.5 seconds of
when a service request (internal or external) is
made. A valid response is asserting CO-Up or
Go-Down to command elevator movement. For
simplicity, a sensor to detect door obstructions has
been omitted.

If the elevator is servicing a request, a new request
that can be serviced without changing the
direction of motion must be completed prior to
completing the present request.

79

Once a service request has been completed, the
next pending request selected is the request at the
closest floor in the same direction as last motion.
If there are no such requests, then the request at
the closest floor in the opposite direction of the
last motion is serviced.

When the elevator arrives at a floor to service a
request the doors shall be opened by asserting
Open-Doors within 0.5 seconds.

A service request is completed when the elevator
has arrived at the proper floor and the doors have
remained open for 5 seconds. In the absence of
any service requests, the elevator shall remain at
the present floor.

5.3 Examples of SCR tables and generated
functional code

There were two mode-transition, nine event, and one
condition tables in our SCR elevator controller model.
Table 2 shows a portion of the mode-transition table for
the modelcass variable ControlMode. The first column
indicates the old value of ControlMode. The last column
indicates the new value of ControlMode should the event
in the second column occur. For example, if ControlMode
was in the Waiting mode and Floor-1-Request becomes
true when Cur-Floor is 1.0, then ControlMode should
transition into the Service mode.

The equivalent model code generated by the RMCS
tool for ControlMode is shown below. In keeping with the
SCR formalism, prime notation is used to denote the new
state of the variable. For the sake of clarity and brevity,
some of the code has been slightly modified.

i f (ControlMode == Waiting)

Cur-Floor == 1.0)
i f (Floor-]-Request’ && !Floor-]-Request &&

ControlMode’ == Service:

i f(ControlMode == Go-Down)

& & Floor-2-Down-Request)
ControlMode’ == Service;

if(At-Floor’ && !At-Floor && Cur-Floor == 2.5

A portion of the event table for the term variable
Cur-Floor is shown in Table 3. The first column indicates
that Cur-Floor is dependent upon the modeclass variable
ControlMode. Hence, its value can change only when
ConrrolMode is in one of the modes and the indicated
event(s) occur. For example, if ControlMode is in the
Go-Down mode and At-Floor becomes true when
Cur-Floor equals 1.5, then the new value of Cur-F/oor is
1.0. However, if ControlMode is in the Go-Up mode,
Cur-Floor will never equal 1 .O because the NEVER event
is associated with this assignment. Thus, it does not need
to be captured in the generated model code.

The model code corresponding to the event table for
Cur-Floor is shown below.

i f { ControlMode == Go-Up)
i f(!At-Floor’ && At-Floor && Cur-Floor == 1.0)

Cur-Floor’ = 1.5:

i f (ControlMode == Go-Down) (
i f (At-Floor’ && !At-Floor && Cur-Floor == 1.5)

else i f (!At-Floor’ && At-Floor && Cur-Floor ==
Cur-Floor’ = 1.0;

2.0)
Cur-Floor’ = 1.5;

1

A condition table is translated in a similar manner to
an event table. The only difference is that, instead of
events, the specified conditions must be true for state
transitions to occur. In addition, the prime notation is not
utilized here because condition tables indicate the
variable’s value in any particular state. The condition
table for the controlled variable Open-Doors is shown in
Table 4. For example, if ControlMode is in Waiting,
Go-Up, or Go-Down mode, then the value of
Open-Doors is FALSE.

The functional code for the Open-Doors condition
table is shown below.

i f(ControlMode == Service

Open-Doors = TRUE:

Open-Doors = FALSE;

if (Open-Doors)

else i f (!Open-Doors)

I

Table 2. Partial mode-transition table for ControlMode

t Waiting @T(Floor-l-Request) WHEN (Cur-Floor = 1.0) Service
Go-Down ’@ T(At-Floor) WHEN (Cur-Floor = 2.5 AND Floor-2-Down-Request) Service

80

Table 3. Partial event table for Cur-Floor

Table 4. Condition table for Open-Doors

Service True False
Waiting, Go-Up, Go-Down False True

< I * (- ASSIGNMENTS True False

MODES

if (ControlMode == Waiting II ControlMode ==
CO-Up II ControlMode == Go-Down) {

i f (!Open-Doors)
Open-Doors = TRUE;

else i f (Open-Doors)
Open-Doors = FALSE;

I

5.4 Generated scenarios

The equivalent, functional model code generated by
the RMCS tool compiles and links with the model-
independent scenario generation algorithms and its
associated support libraries as shown in Figure 4. This
produces a self-contained executable scenario generator
for the given requirements model.

Generation
Algorithms

(SGA)

Wrapper
Functions

equivalent Compikr & Test Scenarios
C code Linker

Interfmce

Independent
support
Libraries

Figure 4. The outputs of the RMCS tool compile
with the model-independent scenario generation
algorithms and support libraries to generate test
scenarios.

The scenario generation algorithms generated seventy-
three unique system states for the elevator model and

produced twenty-two test scenarios. One of the test
scenarios is shown in Figure 5. The format of the test
scenarios is state input/oirrput.

SCENARIO 19 I - - _ - _ - - _ - _ _ _ _ _ _
FLOOR-1-INT-BUTTON-PRESS / ‘i3 OPEN-DOORS = TRUE 1

48 FLOOR-3-DOWN-EXT-BUTTON_PRESS /
62 TimeAdvance = 5.010 /

OPEN-DOORS = FALSE GO-UP = TRUE

Figure 5. A sample test scenario generated by
the scenario generation algorithms.

The specified initial state for the elevator controller is
that the elevator is on the first floor with the doors closed
and no pending requests. From this state, the first step in
the scenario is for a passenger (this particular scenario
also assumes that a passenger was in the elevator) to
request to go to the first foor. Since the elevator is
currently at the first floor, the doors should bc opened.
The second step shows that while the doors arc open,
someone on the third floor requests to go down. The third
step shows the advancement of time past the fixed open
door delay which should result in the doors being closed
and the elevator beginning its ascent to service the request
on the third floor. This scenario stops at this point, rather
than the logical conclusion of servicing the third floor
request, because any requirements that could have been
tested by continuing have already been covered by other
scenarios.

6. Conclusions and future work

In this paper, we have presented the development of
the RMCS tool to aid the test scenario generation

81

algorithms. By automating the translation of the high-
level requirements model, our scenario generation
algorithms can be applied to any requirements model
developed in the SCR formalism. This eliminates the need
to write test cases manually and expedites the design
process. In addition, industry can benefit immensely from
this structured framework of test generation for system
validation, which will help reduce design cycles and
costs. Our future work in this area of embedded systems
design is geared towards combining the generated test
scenarios with temporal (performance) requirements to
generate UATLAS (Common Abbreviated Test
Language for All Systems) [7] test programs that will be
used in a virtual or real-time testing environment for
system validation.

7. References

[I] Schulz, S., Rozenblit, J.W., Mrva, M. and
Buchenrieder, K., “Model-Based Codesign,” IEEE
Coriiputer, 3 1 (S) , 60-67, August 1998.

[2] Rozenblit, J.W. and Buchenrieder, K. (Eds.),
Codesign: Computer-Aided Sofhvare / Hardware
Engineering, IEEE Press, 1994.

[3] Heitmeyer, C.L., Jeffords, R.D., and Labaw, B.G.,
“Automated Consistency Checking of Requirements
Specifications,” ACM Transactions on Engineering arid
Merhodology, vol. 5(3), pp. 231-261, July 1996.

[4] Heitmeyer C.L., Kirby, J., and Labaw B.G., “Tools
for Formal Specification, Verification, and Validation of
Requirements,” Proceedings of the 12Ih Annual
Conference on Computer Assurance (COMPASS’97), pp.
35-47, Gaithersburg, MD, June 1997.

[5] Cunning, S.J. “Automating Test Generation for
Discrete Event Oriented Real-Time Embedded Systems.”
Ph.D. Dissertation for the Department of Electrical 8~
Computer Engineering, The University of Arizona, Fall
2000.

(61 Cunning, S.J., and Rozenblit, J.W., “Automatic Test
Case Generation from Requirements Specifications for
Real-time Embedded Systems,” Proceedings of the 1999
International Conference on Systems, Man, and
Cybernetics (SMC’99), pp. 784-789, Tokyo, Japan,
September 1999.

[7] Standard Test Language for All Sjstenis --

Comnion/Abbreviated Test Language fo r All Systems,
IEEE Press, 1E:EE Std. 7 16- 1995.

82

