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Abstract 

Due to the increasing complexity of embedded systems 
in terms of functionality and architectural resources 
available to meet performance and cost criteria, there 
is an added responsibility on the designer to make the 
right choices.  These choices can differ in terms of 
different hardware/software partitions, different types 
of architectural components, different communication 
architectures etc. and each choice meets certain 
performance metrics up to certain level.  In this paper, 
we are exploring the design space to analyze different 
choices of design implementations by quantitative 
estimation of performance during simulation.  Multi-
Criteria Decision Making (MCDM) methods are used 
to rank our choices.  To demonstrate the validity of the 
above exploration technique, a codesign tool from 
Cadence – Virtual Component Codesign (VCC) is 
used.  It gives us the flexibility to create the 
experimental frame setup and probes to measure the 
performance metrics during simulations.  The trade-
offs between performance metrics are performed by 
MCDM.  A safety critical example is chosen to 
demonstrate our approach. 

1. Introduction 

Board-level systems (e.g. automotive engine 
controllers for emissions) had used microprocessors 
for at least a decade before hardware/software 
codesign emerged as a discipline in the early 1990s.  
Moving the locus of CPU based design from boards to 
chips gave embedded microprocessors added cachet as 
an intellectual problem.  The cost of design mistakes is 
also much higher in chips than on boards.  
Hardware/Software codesign [1] tries to increase the 
predictability of embedded system design by providing 
analysis methods that tell designers, if a system meets 
its performance, power and size goals, and synthesis 
methods that let researchers rapidly evaluate many 

potential design methodologies. Codesign aims at 
meeting system-level objectives by exploiting the 
synergism of hardware and software through their 
concurrent design [2]. The goal of codesign is to find 
an optimal HW/SW architecture that implements the 
system specification and meets the constraints with 
regard to real-time behavior, speed, area, memory, 
power consumption, flexibility, etc.  This is also 
referred to as partitioning which is a classical 
combinatorial optimization problem of assigning 
functions to either hardware or software.  In codesign, 
the implementation decisions for hardware, software 
and communication interfaces are closely related; 
changes in any one will immediately affect the other 
two. 

Other codesign issues include [21]: 1) high-level 
architectural design-space exploration, 2) analysis of 
the trade-offs of implementing designs in hardware 
and software, 3) high-level design planning and 
estimation, 4) hardware/software partitioning at all 
design levels, and 5) analysis, verification and test 
issues. Among these issues, our research revolves 
around the second issue, i.e., the analysis of the trade-
offs in implementing designs in hardware and software 
and partly delving into high-level architectural design-
space exploration. 

The variant of codesign developed at The 
University of Arizona has been called Model-based 
Codesign [11,12] where developers model a system 
specification independently of implementation and use 
simulation-based design to assess virtual prototypes, 
before the system is built. This design process uses 
stepwise refinement of simulatable models and offers 
the opportunity to abstract system components at 
multiple levels of representation. In this methodology, 
a set of requirements and constraints is obtained for 
the system to be modeled into an abstract model that is 
a combination of its structural and associated 
behavioral specifications. In Model-based codesign, 
Figure 1, we use computer simulation to increase the 
level of confidence that our model closely mirrors the 
system functionality. A simulation test setup, called an 
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experimental frame [4,14], is associated with the 
system’s model during simulation and specifies 
conditions under which the model of the system is 
observed. At the end of the simulation process, a 
virtual system prototype is obtained with the design 
partitioned into hardware, software and corresponding 
interfaces specified using a process that we call model 
mapping.

Given a particular system behavior, it is important 
to find the best system architecture including the right 
partition between hardware and software components, 
the right hardware components and communication 
protocols. Starting from the same system specification, 
several architectures may be produced. The 
exploration of all these architectures requires the 
ability to rapidly determine the performance resulting 
from a particular partitioning.  We cannot afford to 
synthesize and simulate, at the cycle level, every 
single architecture to measure its performance as 
architecture; synthesis and low-level co-simulation 
may take a very long time.  This explains the need for 
a performance estimation approach that can 
accomplish the complex task of architecture 
exploration within a reasonable amount of time. Since 
none of the architecture choices available is better than 
all others in every respect, we need to perform trade-
offs. 

Figure 1. Model based co-design flow 

We use Cadence’s Cierto Virtual Component Co-
design (VCC) system-level development environment 
to support our work. VCC [6] provides a close match 
to the model based codesign methodology and enables 
designers to rapidly mix and match software and 
hardware virtual components (VCs) into architectural 
prototypes, explore complex HW and SW trade-offs, 
analyze product performance, and evaluate product 
architectures early in the development cycle.  It is 
found to be particularly useful for the development of 
embedded systems. In this paper, we begin with 
discussion on relevant subjects like performance 
evaluation, experimental frame, MCDM methods.  
Then, we move on to performance estimation and 
analysis using VCC followed by an example 
demonstrating our results.  

2. Performance evaluation by system level 
estimation   

The primary aspects of system evaluation are the 
functional features of the system such as the mode of 
operation, types of peripheral devices supported by the 
system, the size of directly addressable memory, 
languages supported by the system, data base 
management facilities, and so forth. Performance is 
only one point of view from which a system may be 
evaluated.  System evaluation then involves evaluation 
of various trade-offs such as features vs. cost, or 
performance vs. cost, or performance vs. ease of use. 
This study concentrates on actual performance 
evaluation and the trade-offs involved between 
measures of performance.  The process of evaluation 
starts with selecting a proper set of parameters, called 
performance metrics, upon which the evaluation will 
be based. They can be specified only with respect to 
the type and the purpose of the evaluated system, its 
workload, and the purpose of evaluation.  

In our approach, metrics are the attributes of a 
partition that determine the partition’s “goodness”. We 
are faced with two options for computing metrics. 
First, by actually creating an implementation, 
providing us accurate metric values in large amount of 
time, and second, by creating a rough implementation 
quickly. A rough implementation contains the major 
real-time components of a design, but does not include 
many details, such as precise routing or optimized 
logic, that require much design time. The fidelity of 
estimation, [10] is defined as the percentage of 
correctly predicted comparisons between design 
implementations. The more accurate the model is, the 
higher the fidelity of the estimation, and the more 
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likely that correct design decisions will be made based 
on comparing the estimates of two implementations.  
For quick estimation, we chose the higher fidelity 
option over accuracy of measurement.

3. Experimental frame   

Zeigler [4] proposed the concept of an 
experimental frame that characterizes the 
circumstances under which a model or its real system 
counterpart is subjected to experimentation. The 
principle of separating the model from the 
experimental frame is defined in part as “any data 
gathering (statistics, performance measurement, etc) or 
behavioral control (initialization, termination, etc.) that 
is conceptually not carried out in the real system and 
should not be placed in its model but rather formulated 
as part of the experimental frame”, [4].   

A test bench (generator) is being used to 
generate the admissible input segments, which are 
applied to the model under study and observing the 
latter’s output over the same interval.  The second part 
of the frame is the data collection and reporting 
function, using the concept of probes [5], which 
calculate measures based on events occurring in model 
objects and record and/or process the values of those 
measures. Different types of probes are defined in a 
library of probe classes that predefine specific 
measures. We can either use one of those probes or 
modify the classes to create custom probes.  

Figure 2. Experimental frame block diagram 

4. Multi-Criteria Decision Making 
(MCDM)   

The methods in MCDM focus on problems with 
discrete decision spaces, i.e., with countable few 
decision alternatives and basically use approaches 
from discrete mathematics. These methods do not try 
to compute an optimal solution; they determine 

through various ranking procedures either a ranking of 
the relevant actions (decision alternatives) that is 
“optimal” with respect to several criteria, or they try to 
find the “optimal” actions amongst the existing 
solutions (decision alternatives). This is achieved on 
the basis of the impact of the alternatives on the 
overall utility of the decision maker(s). The three steps 
[15] in utilizing any decision making technique 
involving numerical analysis of alternatives are: 1) 
determining the relevant criteria and alternatives, 2) 
attaching numerical measures to the relative 
importance of the criteria and to the impacts of the 
alternatives on these criteria, and 3) processing the 
numerical values to determine a ranking of each 
alternative. 

Given a set of m alternatives denoted as A1,  A2, …,  
Am and a set of n decision criteria denoted as C1,C2,, …, 

Cn, it is assumed that the decision maker has 
determined (the absolute or relative) performance 
value aij  (for i = 1,2,…,m and j = 1, 2, …, n) of each 
alternative in terms of each criterion. That is, we have 
determined the matrix A with aij values along with the 
criteria weights wj .and we have to rank the alternatives 
when all the decision criteria are considered 
simultaneously. The criterion represents profit and 
need to be maximized. MCDM methods used in this 
work are described briefly. 

4.1.  The WSM method 

The Weighted Sum Model method is the most 
commonly used approach. If there are m alternatives 
and n criteria then, the best alternative is the one that 
satisfies (in maximization case) the following 
expression, where A*WSM-score is the WSM score of the 
best alternative:           

                       n
A*WSM-score = max Σ aijwj, for i = 1, 2, …, m.            (1)
         i       j=1 

4.2.  The WPM method 

Weighted Product Model method is very similar 
to WSM. Here each alternative is compared with the 
others by multiplying a number of ratios, one for each 
criterion. Each ratio is raised to the power equivalent 
to the relative weight of the corresponding criterion. 
To compare two alternatives AK and AL, the product 
R(AK/AL) has to be calculated using (2). If the product 
R(AK/AL) > 1, it implies that AK is better than AL (in 
the maximization case). The best alternative is the one 
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that is better than or at least equal to all other 
alternatives. 

                        n
          R(AK/AL) = Π (aKj /aLj)

wj                                  (2) 
                       j = 1 

4.3. The AHP Method 

The analytic hierarchy process (AHP) [16,17] 
decomposes a complex MCDM problem into a system 
of hierarchies. The final step in the AHP deals with the 
structure of an m x n matrix constructed by using the 
relative importance of the alternatives in terms of each 
criterion. The vector (ai1, ai2, ai3, …, ain ) for each i is the 
principal eigenvector of an n x n reciprocal matrix 
which is determined by pair wise comparisons of the 
impact of the m alternatives on the i-th criterion. The 
entry aij, in the m x n matrix, represents the relative 
value of alternative Ai when it is considered in terms 
of criterion Cj. 
                                 Σaij = 1                          (3)

According to the AHP the best alternative (in the 
maximization case) is: 
                 n
A*AHP-score = max  Σ aijwj,  for i = 1, 2, 3, …, m        (4) 
           i        j = 1 

4.4.  The Revised AHP method 

Belton and Gear [18] proposed that a ranking 
inconsistency can occur when the AHP is used due to 
the fact that the relative values for each criterion sum 
up to one. Instead of having the relative values of 
alternatives A1, A2, A3, …, Am sum up to one, they 
proposed to divide each alternative value by the 
maximum value of the relative values. 

5. Performance estimation methodology  

A behavioral model that contains the functional 
description of an embedded system’s design can have 
different architectures representing it, as shown in 
Figure 3. The arrowhead Mi shows the mapping of the 
behavior to Architecture Model i and can have clearly 
measurable performance or cost metrics and their 
relative importance in the form of weights. We now 
need to select a suitable mapping using a solution 
strategy shown in Figure 4.  From the input stimuli 
generated by test bench, we can measure values of n
metrics using n probes, for a model Mi. This data 
forms the decision matrix for all the mappings. 

Element Aij represents value of jth metric for ith 
mapping. MCDM methods described in the last 
section are then used to rank the different mappings. 

Figure 3. Behavioral model  

Figure 4. Design Flow  

6. Performance analysis in VCC 

Using the VCC environment, we can explore 
independent dimensions of behavior and architecture 
to reach optimal design performance within the given 
constraints. The VCC design flow is shown in Figure 
5. 
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To illustrate the application of MCDM trade-offs 
in VCC, we now present a small illustrative example. 
Safety Injection System (SIS) [5] of a pressurized 
water reactor (PWR) in a Nuclear Power Plant, which 
mitigates damage to the core and coolant system on 
the occurrence of a fault such as loss of coolant, is 
chosen.  The block diagram is shown in Figure 6 and 
the details are presented in next section. 

Figure 5. VCC design flow. 

7. Example  

The state variables include pressure in the 
pressurizer Pressure, integer type WaterPress with 
values of 0 (LOW) or 1 (PERMITTED). The values of 
LOW and PERMITTED are set based on whether 
Pressure is above or below the predefined threshold 
LOW.  Other variables are Block and Reset that record 
the state of pushbuttons BLOCK and RESET 
respectively, time reference TRef, when the system is 
blocked and TrefCnt, an integer count of the number 
of events that occur on the input TRef. The control 
variables are SafetyInjection and Overridden.
SafetyInjection is enumerated with values of ‘ON’ and 
‘OFF’ and adds water to the cooling system, when set 
to ‘ON’, which increases Pressure and this in turn 
updates WaterPress. Overridden is a boolean variable 
that is set when the operator asserts Block and reset 
when the operator asserts Reset. Overridden will 

disable SafetyInjection even if the WaterPress 
indicates that SafetyInjection should be set to ‘ON’.   

Figure 6. Block Diagram of SIS 

Requirements for SIS are given in Table 1. The 
block diagram of the behavioral model as represented 
in VCC is shown in Figure 7. 

Table 1. Text based requirements for SIS from [4] 

[R1] The system shall assert SafteyInjection when 
WaterPress falls below LOW. 

[R2] The system shall be considered blocked in 
response to Block being asserted while Rest 
is not asserted and WaterPress is below 
LOW, and shall remain blocked until either 
Rest is asserted or WaterPress crossed LOW 
from a larger to a smaller value. 

[R3] Once SafteyInjection is asserted, it shall 
remain asserted until the system becomes 
blocked or WaterPress becomes greater than 
or equal to LOW.  

[R4] 
When the system is blocked and WaterPress 
is below LOW, the system shall automatically 
unblock itself after the third timing reference 
event is sensed on input TRef. 

Safety Injection Controller is the heart of 
functional description and all the requirements of 
Table 1, are being fulfilled by the Codesign FSM 
defined inside having four states (OFF, TOO LOW, 
BLOCK and ON) as shown in Figure 8. Control 
Signal Driver generates all the control and monitoring 
signals for the controller like ‘overridden’ signal based 
on the status of the Block and Reset buttons and 
outputs the integer count from the counter for the 
controller to monitor and take decisions. It also takes 
input from the controller about when to trigger or reset 
the counter. Testbench generates artificial inputs for 
the SIS model consisting of Control Signal Driver and 
Safety Injection Controller blocks. Uniform Pulses
provides triggers at uniform intervals to facilitate the 
transitions of the CFSM.  SafetyInjection sink and 
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Integer sink complete the model specification by 
terminating outputs in sinks instead of keeping them 
open. 

Figure 7. Behavioral Model in VCC 

Figure 8. Safety Injection Controller FSM 

Although, there can be 24 combinations (starting from 
all hardware to all software implementation) to 
partition the system, we included 7 different mappings 
in this study, shown in Table 2.  The performance 
metrics are identified and probes built to capture the 
corresponding data from the system model, which in 
our case is the mapping diagram. The four metrics 
considered are: execution time, utilization, latency and 
response time represented by variables m1 to m4 

respectively.  Execution time of a behavior in the 
design is the average time required by the behavior 
from start to finish.  Utilization is the fraction of time 
that the CPU/Bus resource is busy.  Latency is the 
mean delay to send tokens from the source to the 
destination over the bus.  On an occurrence of a fault 
or emergency, the time taken by system to change 
from ON state to OFF state or vice versa is called the 
response time. 

Table 2. Different mappings  

Map-
ping 

Safety 
Injection 

Controller 

Uniform 
Pulses 

Overridd-
en signal 
Driver 

Counter 

M1    ASIC1 ASIC1 ASIC2 ASIC2 

M2 ASIC1 Software ASIC2 ASIC2 

M3 Software Software Software Software 

M4 Software ASIC1 Software Software 

M5 ASIC2 ASIC2 ASIC1 Software 

M6 Software ASIC1 ASIC2 Software 

M7 Software ASIC1 ASIC1 ASIC1 

The performance simulator in VCC evaluates the 
performance and will identify missed events, estimate 
system-level performance and provide data on the 
usage of processors, buses, and other shared devices.  
We can remap behaviors to different architecture 
models, then rerun the simulation to analyze the 
effects on performance and compare different 
mappings to find out the best partition. 

8. Trade-off analysis using MCDM 

Based on the application of the SIS, we found that 
the following order of importance exists among the 
criteria defined above: 
Response Time>Execution Time>Latency> Utilization 

So, in accordance to above, arbitrary weights were 
assigned to the criteria such that for n metrics with 
weight wi of the i-th metric. 
                           n 

                          Σ wi = 1                                         (5)                     
                          i=1 
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Also, all metrics except Utilization (m2) need 
minimization, so we replace m2 by inverse of 
utilization to maintain uniformity while calculating the 
aggregate of all criteria. Thus, the alternative with the 
smallest aggregate value will be ranked the highest.  
To avoid influence by order of metric, we remove 
powers of 10 from our calculations. Table 3 shows the 
decision matrix formed after data is collected and 
above changes are made.  

Table 3. Decision matrix  

Exec-
ution 
Time 

Utiliz
ation 

1/Utili
zation 

Latency Response 
Time 

wi m1 
(e-4) 
0.27 

m2 1/m2 

0.16 

m3 
(e-7) 
0.22 

m4 
(e-5) 
0.35 

M1 1.40 0.123 8.092 4.481 1.022 
M2 1.46 0.083 12.042 3.829 1.200 
M3 1.46 0.082 12.158 5.214 1.466 
M4 1.45 0.123 8.092 4.734 1.150 
M5 1.40 0.123 8.092 5.814 1.045 
M6 1.44 0.123 8.092 6.008 0.997 
M7 1.42 0.123 8.092 5.814 1.047 

Table 4. shows the scores for WPM method, 
where all possible combinations to compare the seven 
mappings are considered.  The methods are then 
ranked on the basis of their scores. Using each of the 
MCDM methods and above data, the seven mappings 
are ranked as shown in Table 5.  

Table 4. WPM results  

 WPM 
score 

 WPM 
score 

R(M1/M2) 0.90820 R(M3/M4) 1.18919 
R(M1/M3) 0.79000 R(M3/M5) 1.18625 
R(M1/M4) 0.93947 R(M3/M6) 1.18799 
R(M1/M5) 0.93714 R(M3/M7) 1.18074 
R(M1/M6) 0.93851 R(M4/M5) 0.99753 
R(M1/M7) 0.93279 R(M4/M6) 0.99898 
R(M2/M3) 0.86986 R(M4/M7) 0.99289 
R(M2/M4) 1.03443 R(M5/M6) 1.00146 
R(M2/M5) 1.03187 R(M5/M7) 0.99535 
R(M2/M6) 1.03338 R(M6/M7) 0.99390 
R(M2/M7) 1.02707   

Table 5. Summary of rankings

 WSM   
score & 
rank 

AHP 
score &  
rank 

Revised 
AHP 
score rank 

WPM 
rank 

M1 3.01 1 0.1303 1 1.046 1 1 
M2 3.58 6 0.1455 6 1.160 6 6 
M3 4.00 7 0.1660 7 1.335 7 7 
M4 3.13 2 0.1388 2 1.114 2 2 
M5 3.31 3 0.1394 3 1.130 3 4 
M6 3.35 5 0.1396 4 1.132 4 3 
M7 3.32 4 0.1401 5 1.135 5 5 

9. Results   

We observe the following findings from the 
rankings generated in the four MCDM methods:  
(i) All the methods rank M1 at top and is the best 

implementation choice based on the metrics 
chosen, their relative importance and the given 
mappings. 

(ii) M2, M3 and M4 also have the same standing in 
all the rankings. 

(iii) Three methods show M5 as better than M6 and 
M7. Three other methods show M6 as better than 
M7. So, M5>M6>M7. 

Thus, the final ranking is: 
M1>M4>M5>M6>M7>M2>M3 

10. Conclusion and future work  

VCC is not exactly a partitioning tool, but it can 
perform an important task of partition evaluation in the 
process of partitioning. We demonstrated this by 
evaluating seven different mappings of a system. 
Partitioning inherently involves trade-off analysis, 
since each possible partition is better than the others in 
some respects and worse in other respects. We were 
able to perform this critical design step using VCC as 
a method to provide us with the measure of different 
performance metrics for the partitions. Next, we use 
MCDM methods to perform the trade-off analysis.  
The results are compiled together for overall ranking 
of the partitions. 

The accomplishments of this work are: first is to 
justify the importance of taking into account the effect 
of metrics defining performance, i.e., than doing the 
tradeoff between performance (based on only one of 
the performance metrics) and cost. Second is the use 
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of an experimental frame setup with a transducer 
replaced by a probe. We proposed to develop a probe 
for every metric of interest to gather the corresponding 
performance index from simulations. Third, an 
increase in the number of metrics will complicate the 
process of analyzing the trade-offs, thus, emphasis was 
laid on a quantitative technique for tradeoff using 
MCDM rather than visual or guessed estimations. 

The methodology described above is scalable to 
even more complex systems. If the complexity of the 
system increases, the algorithm must be improved to 
reduce the exploration space.  

The future work involves the inclusion of cost and 
power metrics as well. We can also identify dynamic 
metrics or custom metrics of performance for specific 
applications. This will help in refining the exploration 
and better estimates of design quality can be made. 
Another major scope of work is to automate the 
partitioning process itself. Here the sample space was 
generated manually and we could find the best 
mapping.  Generation of a complete sample space for a 
complex system can be done using different 
algorithms.  We identify a strong rationale to imbibe 
self-learning capability in the system by use of genetic 
algorithms.  This will accurately determine weights 
and make the methodology more effective.  
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