
Performance Analysis of Embedded Systems in the Virtual Component
Co-Design Environment

P. Garg, A. Gupta, and J.W. Rozenblit
Department of Electrical and Computer Engineering

The University of Arizona
Tucson, AZ 85721-0104
aseemg@ece.arizona.edu

Abstract

Due to the increasing complexity of embedded systems
in terms of functionality and architectural resources
available to meet performance and cost criteria, there
is an added responsibility on the designer to make the
right choices. These choices can differ in terms of
different hardware/software partitions, different types
of architectural components, different communication
architectures etc. and each choice meets certain
performance metrics up to certain level. In this paper,
we are exploring the design space to analyze different
choices of design implementations by quantitative
estimation of performance during simulation. Multi-
Criteria Decision Making (MCDM) methods are used
to rank our choices. To demonstrate the validity of the
above exploration technique, a codesign tool from
Cadence – Virtual Component Codesign (VCC) is
used. It gives us the flexibility to create the
experimental frame setup and probes to measure the
performance metrics during simulations. The trade-
offs between performance metrics are performed by
MCDM. A safety critical example is chosen to
demonstrate our approach.

1. Introduction

Board-level systems (e.g. automotive engine
controllers for emissions) had used microprocessors
for at least a decade before hardware/software
codesign emerged as a discipline in the early 1990s.
Moving the locus of CPU based design from boards to
chips gave embedded microprocessors added cachet as
an intellectual problem. The cost of design mistakes is
also much higher in chips than on boards.
Hardware/Software codesign [1] tries to increase the
predictability of embedded system design by providing
analysis methods that tell designers, if a system meets
its performance, power and size goals, and synthesis
methods that let researchers rapidly evaluate many

potential design methodologies. Codesign aims at
meeting system-level objectives by exploiting the
synergism of hardware and software through their
concurrent design [2]. The goal of codesign is to find
an optimal HW/SW architecture that implements the
system specification and meets the constraints with
regard to real-time behavior, speed, area, memory,
power consumption, flexibility, etc. This is also
referred to as partitioning which is a classical
combinatorial optimization problem of assigning
functions to either hardware or software. In codesign,
the implementation decisions for hardware, software
and communication interfaces are closely related;
changes in any one will immediately affect the other
two.

Other codesign issues include [21]: 1) high-level
architectural design-space exploration, 2) analysis of
the trade-offs of implementing designs in hardware
and software, 3) high-level design planning and
estimation, 4) hardware/software partitioning at all
design levels, and 5) analysis, verification and test
issues. Among these issues, our research revolves
around the second issue, i.e., the analysis of the trade-
offs in implementing designs in hardware and software
and partly delving into high-level architectural design-
space exploration.

The variant of codesign developed at The
University of Arizona has been called Model-based
Codesign [11,12] where developers model a system
specification independently of implementation and use
simulation-based design to assess virtual prototypes,
before the system is built. This design process uses
stepwise refinement of simulatable models and offers
the opportunity to abstract system components at
multiple levels of representation. In this methodology,
a set of requirements and constraints is obtained for
the system to be modeled into an abstract model that is
a combination of its structural and associated
behavioral specifications. In Model-based codesign,
Figure 1, we use computer simulation to increase the
level of confidence that our model closely mirrors the
system functionality. A simulation test setup, called an

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

experimental frame [4,14], is associated with the
system’s model during simulation and specifies
conditions under which the model of the system is
observed. At the end of the simulation process, a
virtual system prototype is obtained with the design
partitioned into hardware, software and corresponding
interfaces specified using a process that we call model
mapping.

Given a particular system behavior, it is important
to find the best system architecture including the right
partition between hardware and software components,
the right hardware components and communication
protocols. Starting from the same system specification,
several architectures may be produced. The
exploration of all these architectures requires the
ability to rapidly determine the performance resulting
from a particular partitioning. We cannot afford to
synthesize and simulate, at the cycle level, every
single architecture to measure its performance as
architecture; synthesis and low-level co-simulation
may take a very long time. This explains the need for
a performance estimation approach that can
accomplish the complex task of architecture
exploration within a reasonable amount of time. Since
none of the architecture choices available is better than
all others in every respect, we need to perform trade-
offs.

Figure 1. Model based co-design flow

We use Cadence’s Cierto Virtual Component Co-
design (VCC) system-level development environment
to support our work. VCC [6] provides a close match
to the model based codesign methodology and enables
designers to rapidly mix and match software and
hardware virtual components (VCs) into architectural
prototypes, explore complex HW and SW trade-offs,
analyze product performance, and evaluate product
architectures early in the development cycle. It is
found to be particularly useful for the development of
embedded systems. In this paper, we begin with
discussion on relevant subjects like performance
evaluation, experimental frame, MCDM methods.
Then, we move on to performance estimation and
analysis using VCC followed by an example
demonstrating our results.

2. Performance evaluation by system level
estimation

The primary aspects of system evaluation are the
functional features of the system such as the mode of
operation, types of peripheral devices supported by the
system, the size of directly addressable memory,
languages supported by the system, data base
management facilities, and so forth. Performance is
only one point of view from which a system may be
evaluated. System evaluation then involves evaluation
of various trade-offs such as features vs. cost, or
performance vs. cost, or performance vs. ease of use.
This study concentrates on actual performance
evaluation and the trade-offs involved between
measures of performance. The process of evaluation
starts with selecting a proper set of parameters, called
performance metrics, upon which the evaluation will
be based. They can be specified only with respect to
the type and the purpose of the evaluated system, its
workload, and the purpose of evaluation.

In our approach, metrics are the attributes of a
partition that determine the partition’s “goodness”. We
are faced with two options for computing metrics.
First, by actually creating an implementation,
providing us accurate metric values in large amount of
time, and second, by creating a rough implementation
quickly. A rough implementation contains the major
real-time components of a design, but does not include
many details, such as precise routing or optimized
logic, that require much design time. The fidelity of
estimation, [10] is defined as the percentage of
correctly predicted comparisons between design
implementations. The more accurate the model is, the
higher the fidelity of the estimation, and the more

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

likely that correct design decisions will be made based
on comparing the estimates of two implementations.
For quick estimation, we chose the higher fidelity
option over accuracy of measurement.

3. Experimental frame

Zeigler [4] proposed the concept of an
experimental frame that characterizes the
circumstances under which a model or its real system
counterpart is subjected to experimentation. The
principle of separating the model from the
experimental frame is defined in part as “any data
gathering (statistics, performance measurement, etc) or
behavioral control (initialization, termination, etc.) that
is conceptually not carried out in the real system and
should not be placed in its model but rather formulated
as part of the experimental frame”, [4].

A test bench (generator) is being used to
generate the admissible input segments, which are
applied to the model under study and observing the
latter’s output over the same interval. The second part
of the frame is the data collection and reporting
function, using the concept of probes [5], which
calculate measures based on events occurring in model
objects and record and/or process the values of those
measures. Different types of probes are defined in a
library of probe classes that predefine specific
measures. We can either use one of those probes or
modify the classes to create custom probes.

Figure 2. Experimental frame block diagram

4. Multi-Criteria Decision Making
(MCDM)

The methods in MCDM focus on problems with
discrete decision spaces, i.e., with countable few
decision alternatives and basically use approaches
from discrete mathematics. These methods do not try
to compute an optimal solution; they determine

through various ranking procedures either a ranking of
the relevant actions (decision alternatives) that is
“optimal” with respect to several criteria, or they try to
find the “optimal” actions amongst the existing
solutions (decision alternatives). This is achieved on
the basis of the impact of the alternatives on the
overall utility of the decision maker(s). The three steps
[15] in utilizing any decision making technique
involving numerical analysis of alternatives are: 1)
determining the relevant criteria and alternatives, 2)
attaching numerical measures to the relative
importance of the criteria and to the impacts of the
alternatives on these criteria, and 3) processing the
numerical values to determine a ranking of each
alternative.

Given a set of m alternatives denoted as A1, A2, …,
Am and a set of n decision criteria denoted as C1,C2,, …,

Cn, it is assumed that the decision maker has
determined (the absolute or relative) performance
value aij (for i = 1,2,…,m and j = 1, 2, …, n) of each
alternative in terms of each criterion. That is, we have
determined the matrix A with aij values along with the
criteria weights wj .and we have to rank the alternatives
when all the decision criteria are considered
simultaneously. The criterion represents profit and
need to be maximized. MCDM methods used in this
work are described briefly.

4.1. The WSM method

The Weighted Sum Model method is the most
commonly used approach. If there are m alternatives
and n criteria then, the best alternative is the one that
satisfies (in maximization case) the following
expression, where A*WSM-score is the WSM score of the
best alternative:

 n
A*WSM-score = max Σ aijwj, for i = 1, 2, …, m. (1)
 i j=1

4.2. The WPM method

Weighted Product Model method is very similar
to WSM. Here each alternative is compared with the
others by multiplying a number of ratios, one for each
criterion. Each ratio is raised to the power equivalent
to the relative weight of the corresponding criterion.
To compare two alternatives AK and AL, the product
R(AK/AL) has to be calculated using (2). If the product
R(AK/AL) > 1, it implies that AK is better than AL (in
the maximization case). The best alternative is the one

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

that is better than or at least equal to all other
alternatives.

 n
 R(AK/AL) = Π (aKj /aLj)

wj (2)
 j = 1

4.3. The AHP Method

The analytic hierarchy process (AHP) [16,17]
decomposes a complex MCDM problem into a system
of hierarchies. The final step in the AHP deals with the
structure of an m x n matrix constructed by using the
relative importance of the alternatives in terms of each
criterion. The vector (ai1, ai2, ai3, …, ain) for each i is the
principal eigenvector of an n x n reciprocal matrix
which is determined by pair wise comparisons of the
impact of the m alternatives on the i-th criterion. The
entry aij, in the m x n matrix, represents the relative
value of alternative Ai when it is considered in terms
of criterion Cj.
 Σaij = 1 (3)

According to the AHP the best alternative (in the
maximization case) is:
 n
A*AHP-score = max Σ aijwj, for i = 1, 2, 3, …, m (4)
 i j = 1

4.4. The Revised AHP method

Belton and Gear [18] proposed that a ranking
inconsistency can occur when the AHP is used due to
the fact that the relative values for each criterion sum
up to one. Instead of having the relative values of
alternatives A1, A2, A3, …, Am sum up to one, they
proposed to divide each alternative value by the
maximum value of the relative values.

5. Performance estimation methodology

A behavioral model that contains the functional
description of an embedded system’s design can have
different architectures representing it, as shown in
Figure 3. The arrowhead Mi shows the mapping of the
behavior to Architecture Model i and can have clearly
measurable performance or cost metrics and their
relative importance in the form of weights. We now
need to select a suitable mapping using a solution
strategy shown in Figure 4. From the input stimuli
generated by test bench, we can measure values of n
metrics using n probes, for a model Mi. This data
forms the decision matrix for all the mappings.

Element Aij represents value of jth metric for ith
mapping. MCDM methods described in the last
section are then used to rank the different mappings.

Figure 3. Behavioral model

Figure 4. Design Flow

6. Performance analysis in VCC

Using the VCC environment, we can explore
independent dimensions of behavior and architecture
to reach optimal design performance within the given
constraints. The VCC design flow is shown in Figure
5.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

To illustrate the application of MCDM trade-offs
in VCC, we now present a small illustrative example.
Safety Injection System (SIS) [5] of a pressurized
water reactor (PWR) in a Nuclear Power Plant, which
mitigates damage to the core and coolant system on
the occurrence of a fault such as loss of coolant, is
chosen. The block diagram is shown in Figure 6 and
the details are presented in next section.

Figure 5. VCC design flow.

7. Example

The state variables include pressure in the
pressurizer Pressure, integer type WaterPress with
values of 0 (LOW) or 1 (PERMITTED). The values of
LOW and PERMITTED are set based on whether
Pressure is above or below the predefined threshold
LOW. Other variables are Block and Reset that record
the state of pushbuttons BLOCK and RESET
respectively, time reference TRef, when the system is
blocked and TrefCnt, an integer count of the number
of events that occur on the input TRef. The control
variables are SafetyInjection and Overridden.
SafetyInjection is enumerated with values of ‘ON’ and
‘OFF’ and adds water to the cooling system, when set
to ‘ON’, which increases Pressure and this in turn
updates WaterPress. Overridden is a boolean variable
that is set when the operator asserts Block and reset
when the operator asserts Reset. Overridden will

disable SafetyInjection even if the WaterPress
indicates that SafetyInjection should be set to ‘ON’.

Figure 6. Block Diagram of SIS

Requirements for SIS are given in Table 1. The
block diagram of the behavioral model as represented
in VCC is shown in Figure 7.

Table 1. Text based requirements for SIS from [4]

[R1] The system shall assert SafteyInjection when
WaterPress falls below LOW.

[R2] The system shall be considered blocked in
response to Block being asserted while Rest
is not asserted and WaterPress is below
LOW, and shall remain blocked until either
Rest is asserted or WaterPress crossed LOW
from a larger to a smaller value.

[R3] Once SafteyInjection is asserted, it shall
remain asserted until the system becomes
blocked or WaterPress becomes greater than
or equal to LOW.

[R4]
When the system is blocked and WaterPress
is below LOW, the system shall automatically
unblock itself after the third timing reference
event is sensed on input TRef.

Safety Injection Controller is the heart of
functional description and all the requirements of
Table 1, are being fulfilled by the Codesign FSM
defined inside having four states (OFF, TOO LOW,
BLOCK and ON) as shown in Figure 8. Control
Signal Driver generates all the control and monitoring
signals for the controller like ‘overridden’ signal based
on the status of the Block and Reset buttons and
outputs the integer count from the counter for the
controller to monitor and take decisions. It also takes
input from the controller about when to trigger or reset
the counter. Testbench generates artificial inputs for
the SIS model consisting of Control Signal Driver and
Safety Injection Controller blocks. Uniform Pulses
provides triggers at uniform intervals to facilitate the
transitions of the CFSM. SafetyInjection sink and

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

Integer sink complete the model specification by
terminating outputs in sinks instead of keeping them
open.

Figure 7. Behavioral Model in VCC

Figure 8. Safety Injection Controller FSM

Although, there can be 24 combinations (starting from
all hardware to all software implementation) to
partition the system, we included 7 different mappings
in this study, shown in Table 2. The performance
metrics are identified and probes built to capture the
corresponding data from the system model, which in
our case is the mapping diagram. The four metrics
considered are: execution time, utilization, latency and
response time represented by variables m1 to m4

respectively. Execution time of a behavior in the
design is the average time required by the behavior
from start to finish. Utilization is the fraction of time
that the CPU/Bus resource is busy. Latency is the
mean delay to send tokens from the source to the
destination over the bus. On an occurrence of a fault
or emergency, the time taken by system to change
from ON state to OFF state or vice versa is called the
response time.

Table 2. Different mappings

Map-
ping

Safety
Injection

Controller

Uniform
Pulses

Overridd-
en signal
Driver

Counter

M1 ASIC1 ASIC1 ASIC2 ASIC2

M2 ASIC1 Software ASIC2 ASIC2

M3 Software Software Software Software

M4 Software ASIC1 Software Software

M5 ASIC2 ASIC2 ASIC1 Software

M6 Software ASIC1 ASIC2 Software

M7 Software ASIC1 ASIC1 ASIC1

The performance simulator in VCC evaluates the
performance and will identify missed events, estimate
system-level performance and provide data on the
usage of processors, buses, and other shared devices.
We can remap behaviors to different architecture
models, then rerun the simulation to analyze the
effects on performance and compare different
mappings to find out the best partition.

8. Trade-off analysis using MCDM

Based on the application of the SIS, we found that
the following order of importance exists among the
criteria defined above:
Response Time>Execution Time>Latency> Utilization

So, in accordance to above, arbitrary weights were
assigned to the criteria such that for n metrics with
weight wi of the i-th metric.
 n

 Σ wi = 1 (5)
 i=1

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

Also, all metrics except Utilization (m2) need
minimization, so we replace m2 by inverse of
utilization to maintain uniformity while calculating the
aggregate of all criteria. Thus, the alternative with the
smallest aggregate value will be ranked the highest.
To avoid influence by order of metric, we remove
powers of 10 from our calculations. Table 3 shows the
decision matrix formed after data is collected and
above changes are made.

Table 3. Decision matrix

Exec-
ution
Time

Utiliz
ation

1/Utili
zation

Latency Response
Time

wi m1
(e-4)
0.27

m2 1/m2

0.16

m3
(e-7)
0.22

m4
(e-5)
0.35

M1 1.40 0.123 8.092 4.481 1.022
M2 1.46 0.083 12.042 3.829 1.200
M3 1.46 0.082 12.158 5.214 1.466
M4 1.45 0.123 8.092 4.734 1.150
M5 1.40 0.123 8.092 5.814 1.045
M6 1.44 0.123 8.092 6.008 0.997
M7 1.42 0.123 8.092 5.814 1.047

Table 4. shows the scores for WPM method,
where all possible combinations to compare the seven
mappings are considered. The methods are then
ranked on the basis of their scores. Using each of the
MCDM methods and above data, the seven mappings
are ranked as shown in Table 5.

Table 4. WPM results

 WPM
score

 WPM
score

R(M1/M2) 0.90820 R(M3/M4) 1.18919
R(M1/M3) 0.79000 R(M3/M5) 1.18625
R(M1/M4) 0.93947 R(M3/M6) 1.18799
R(M1/M5) 0.93714 R(M3/M7) 1.18074
R(M1/M6) 0.93851 R(M4/M5) 0.99753
R(M1/M7) 0.93279 R(M4/M6) 0.99898
R(M2/M3) 0.86986 R(M4/M7) 0.99289
R(M2/M4) 1.03443 R(M5/M6) 1.00146
R(M2/M5) 1.03187 R(M5/M7) 0.99535
R(M2/M6) 1.03338 R(M6/M7) 0.99390
R(M2/M7) 1.02707

Table 5. Summary of rankings

 WSM
score &
rank

AHP
score &
rank

Revised
AHP
score rank

WPM
rank

M1 3.01 1 0.1303 1 1.046 1 1
M2 3.58 6 0.1455 6 1.160 6 6
M3 4.00 7 0.1660 7 1.335 7 7
M4 3.13 2 0.1388 2 1.114 2 2
M5 3.31 3 0.1394 3 1.130 3 4
M6 3.35 5 0.1396 4 1.132 4 3
M7 3.32 4 0.1401 5 1.135 5 5

9. Results

We observe the following findings from the
rankings generated in the four MCDM methods:
(i) All the methods rank M1 at top and is the best

implementation choice based on the metrics
chosen, their relative importance and the given
mappings.

(ii) M2, M3 and M4 also have the same standing in
all the rankings.

(iii) Three methods show M5 as better than M6 and
M7. Three other methods show M6 as better than
M7. So, M5>M6>M7.

Thus, the final ranking is:
M1>M4>M5>M6>M7>M2>M3

10. Conclusion and future work

VCC is not exactly a partitioning tool, but it can
perform an important task of partition evaluation in the
process of partitioning. We demonstrated this by
evaluating seven different mappings of a system.
Partitioning inherently involves trade-off analysis,
since each possible partition is better than the others in
some respects and worse in other respects. We were
able to perform this critical design step using VCC as
a method to provide us with the measure of different
performance metrics for the partitions. Next, we use
MCDM methods to perform the trade-off analysis.
The results are compiled together for overall ranking
of the partitions.

The accomplishments of this work are: first is to
justify the importance of taking into account the effect
of metrics defining performance, i.e., than doing the
tradeoff between performance (based on only one of
the performance metrics) and cost. Second is the use

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

of an experimental frame setup with a transducer
replaced by a probe. We proposed to develop a probe
for every metric of interest to gather the corresponding
performance index from simulations. Third, an
increase in the number of metrics will complicate the
process of analyzing the trade-offs, thus, emphasis was
laid on a quantitative technique for tradeoff using
MCDM rather than visual or guessed estimations.

The methodology described above is scalable to
even more complex systems. If the complexity of the
system increases, the algorithm must be improved to
reduce the exploration space.

The future work involves the inclusion of cost and
power metrics as well. We can also identify dynamic
metrics or custom metrics of performance for specific
applications. This will help in refining the exploration
and better estimates of design quality can be made.
Another major scope of work is to automate the
partitioning process itself. Here the sample space was
generated manually and we could find the best
mapping. Generation of a complete sample space for a
complex system can be done using different
algorithms. We identify a strong rationale to imbibe
self-learning capability in the system by use of genetic
algorithms. This will accurately determine weights
and make the methodology more effective.

11. References

[1] Wayne Wolf, “A Decade of Hardware/Software
Codesign”, IEEE Computer, 38-43, April 2003.
[2] G. De Micheli, R.K. Gupta, “Hardware/Software Co-
Design”, Proceedings of the IEEE, vol 85, no. 3, March
1997.
[3] Luna, Joel, “Application of Hierarchical Modeling
Concepts to a Multi-Analysis Environment”, Proc. Of the
1991 Winter Simulation Conference.
[4] Zeigler, B.P., “MultiFacetted Modelling and Discrete
Event Simulation”, Academic Press, 1984.
[5] Courtios, P.J., Parnas, D.L., “Documentation for Safety
Critical Software”, Proceedings of the 15th International
Conference on Software Engineering (ICSE’93), pp. 315-
323, Baltimore, MD, 1993.
[6] Cunning, S. J. “Automating Test Generation For
Discrete Event Oriented Real-Time Embedded Systems.”
PhD Thesis for the Department of Electrical & Computer
Engineering, University of Arizona, 2000.
[7] Schirrmeister, F., Krolikoski S., “The System-level
HW/SW Co-design Challenge”,
http://www.cadence.com/whitepapers/vcc.html.
[8] Cadence, VCC Architecture Evaluation Guide, VCC
version 2.1, March 2001.
[9] Peter M. Chen, David A. Patterson, "Storage
Performance--Metrics and Benchmarks", Proceedings of the
IEEE, vol 81, no. 8, August 1993.

[10] Gajski, Daniel D., Vahid Frank, Sanjiv Narayan, Jie
Gong, (1994), “Specification and Design of Embedded
Systems”, P T R Pretence Hall, New Jersey, USA.
[11] Cunning, S.J., Ewing, T.C., Olson, J.T., Rozenblit,
J.W., Schulz, S., “Towards an Integrated, Model-Based
Codesign Environment”, Proceedings of the 1999 IEEE
Conference and Workshop on Engineering of Computer
Based Systems (ECBS’99), pp. 136-143, Nashville, TN,
March 1999.
[12] Schulz, S., Rozenblit, J.W., Mrva, M. and
Buchenrieder, K., “Model-Based Codesign”, IEEE
Computer, 31(8), 60-67, August 1998.
[13] Rozenblit, J.W. and Buchenrieder, K. (Eds.), Codesign:
Computer-Aided Software/Hardware Engineering, IEEE
Press, 1994.
[14] Rozenblit, J.W., “Experimental Frame Specification
Methodology for Hierarchical Simulation Modeling,”
International Journal of General Systems, 19(3), pp. 317-
336, 1991.
[15] Triantaphyllou, E., (2000), Multi-Criteria Decision
Making Methods: A Comparative Study, Kluwer Academic
Publishers.
[16] Winkels, H.-M., G. Wäscher (1981), “Outranking
approaches – an integrated survey and a bibliography”,
Working Parpers on Economathematics 8107, Ruhr-
Universität Bochum.
[17] Zeleny, M. (1982), Multiple criteria decision
making,McGraw-Hill, New York.
[18] Zeleny, M. (1973), Compromise Programming.
Cochrane, J.L., M. Zeleny (Eds.): Multiple criteria decision
making ,University of South Carolina Press, Columbia. pp.
262-301.
[19] Saaty, T.L., (1980), The Analytic Hierarchy Process,
McGraw-Hill, New York, NY, USA.
[20] Saaty, T. L. (1977), “A Scaling Method for priorities in
hierarchical structures”, Journal of Mathematical
Psychology 15, pp. 234-281.
[21] Givargis, Tony D., “System-level exploration for
Pareto-optimal configurations in parameterized system-on-
a-chip architectures”, PHD Dissertation, University Of
California, Riverside, 2001.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

	footer1:

