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We study the problem of tracking moving targets using distributed Wire-
less Sensor Networks (WSNs) in which sensors are deployed randomly.
Prediction-based techniques are a commonly used strategies to reduce the
power usage of energy sensitive wireless sensor networks where sensor
nodes are battery-powered. However, due to the uncertainty and unpre-
dictability of real-world targets’ motion, the power efficiency of tracking
and the accuracy of prediction are reduced. The tracking algorithm must
adapt to the real-time changes in velocity and direction of a moving tar-
get. In this paper, we proposed a novel energy efficient tracking algorithm
called Predict-and-Mesh (PaM) which is suitable for energy sensitive dis-
tributed wireless tracking systems. Making use of the PaM algorithm,
it is possible to adaptively adjust the sensing frequency for pervasively
monitoring various kinds of targets with random movement patterns. In
addition, a prediction failure recovery mechanism called “mesh” is pro-
posed to relocate the targets under tracking. Simulation results show
that the PaM algorithm is robust against diverse motion changes and has
excellent performance.

Keywords: Wireless Sensor Network, Tracking System, Adaptive Tracking,
Predict, Mesh, Energy Saving

1 INTRODUCTION

AWireless Sensor Network (WSN) is an interconnected system of a large set of
physically small, low cost, low power sensors that provide ubiquitous sensing
and computing capabilities. The sensors have the ability to sense an envi-
ronment in various modalities (e.g., temperature, sound, light, seismic and
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distance), process information, and disseminate data wirelessly. Therefore,
the WSN can potentially reduce or eliminate the need for human involvement
in information gathering in broad civilian or military applications such as
national security, health care, environment protection, energy preservation,
food safety, and so on [26].

The design of a WSN is highly application-dependent, i.e., for different
applications there are different design and technical issues that need to be
addressed. In this paper, we focus our attention on an important application of
wireless sensor networks, tracking moving targets [2]. Our goal is to design an
efficient tracking approach based on distributed randomly networked sensors
in a large scale region. Possible scenarios can be border control, battle field
surveillance, traffic flow measurement, animal monitoring, etc.

In developing such a tracking system, tracking algorithm design is a com-
plicated problem since there are several constraints that need to be taken into
account. Some are inherent in the nature of wireless sensors, e.g., the sensors
may have a limited and irreplaceable power supply, limited sensing ability,
limited communication bandwidth or limited computational power. All of
these limitations impose constraints on the efficacy of tracking [24]. There-
fore, traditional tracking mechanisms are not sufficient for theWSN. For some
tracking applications, power efficiency is of great concern, so the tracking
algorithm must be designed to expend as little energy as is possible. More-
over, since surveillance and tracking systems are often deployed in critical or
hostile environments where functional failures are vital, design priority should
be given to both the quality and the reliability of tracking [32]. Arora and et.
al. performed a nearly year long experiment on WSN tracking and identified
several important issues including network reliability, system scale, and node
failures [1].

Given a large surveillance area, the tracking algorithm must be able to
accommodate a large number of entities to cover the entire area. Generally,
the deployed WSN is distributed. In other words, a fixed superior/subordinate
relationship is not effective in such a network. Although a centralized archi-
tecture is theoretically optimal and also conceptually simple [20], it is not
suitable to a large scale environment because of the limited communication
bandwidth and power supplies of wireless sensors.

For certain applications (e.g., military applications), it may be desirable
for the sensors to be dropped from an aircraft or by other means into the hos-
tile environment without any further adjustment. Such random deployment
strategies may lead to severe coverage problems given the sensors’ communi-
cation and detection constraints [8, 37]. Thus, the designed algorithm should
be adaptable to “blind” areas, i.e., regions that are partially or fully missed
by any sensor. In addition, while the position of a sensor is usually fixed after
deployment, the network topology may frequently change due to functional
failure, physical damage, lack of power or introduction of new sensors to the
network. In other words, the WSN for tracking targets may be ad hoc.
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Typically, the tracking scheme is fixed when considering the problem of
tracking targets in the distributed WSNs. However, in many tracking appli-
cations, the motion characteristics of the targets being tracking may vary due
to uncertainty and unpredictability in the target motion model [3]. Moveover,
different types of targets may have different kinds of motion characteristics.
For example, a tank has a much larger maximum velocity than a human soldier.
On the other hand, a moving human soldier can perform turns much quicker
than a tank. Such variations pose a significant problem when designing a
tracking system.

Though several tracking approaches have been proposed in previous litera-
tures (cf. Section 2), few has been designed specifically for adaptability. Thus,
they lack the flexibility needed to adapt to the real time changes in direction
and velocity of moving targets under tracking. In particular, several exist-
ing approaches are based on predictive tracking algorithms [2, 33], in which
the accuracy of prediction depends on the frequency of sensing [11, 31]. In
this paper, we proposed an energy efficient tracking algorithm called Predict-
and-Mesh (PaM) which is suitable for energy sensitive distributed wireless
tracking systems. The PaM algorithm adjusts the sensing frequency for per-
vasively monitoring various kinds of targets with random movement patterns.
A prediction failure recovery mechanism is also proposed to relocate the tar-
gets under tracking. Compared to some existing work [33, 7, 27], this method
requires less computational resources. Therefore, it will not impact the nor-
mal activity of a wireless sensor node. We show that the PaM algorithm is
robust against diverse motion changes and provides excellent performance.

The organization of the paper is as follows. Section 2 briefly surveys
related work on energy efficient tracking in wireless sensor networks. Sec-
tion 3 presents underlying assumptions and defines preliminary models. In
Section 4, we describe the details of the PaM algorithm including prediction
models and the “mesh” prediction failure recovery mechanism. In Section
5, we evaluate the performance of our algorithm by comparing PaM against
others. We showed the benefits of the proposed approach through simulations.
Section 6 concludes the paper and outlines directions for future work.

2 RELATED WORK

A variety of problems in target tracking using wireless sensor networks have
been studied. Among these works, [8, 23] and [37] present sensor deployment
schemes to ensure adequate coverage of moving targets, while [22] provides
a definition of the coverage problem from several points of view and formally
defines the best and worst-case coverage in a sensor network. In the area of col-
laborative sensing, [35] and [19] present tree-based collaboration in tracking.
In [36] and [21], an information-driven sensor collaboration mechanism and
a dual-space approach to tracking targets which enable selective activation
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of sensors are presented, respectively. Some power conservation protocols
such as SPAN [6], LEACH [14] and SPEED [13] and data communication
approaches (e.g., [5, 14, 17]) which concentrate on efficient data prorogation
are proposed for wireless sensor networks.

In the area of energy efficient tracking, a number of energy conserva-
tion approaches have been proposed. A collaborative signal processing (CSP)
framework could be used to classify and track different targets [4]. In addition
to data communication protocols and signal processing techniques, tradeoffs
between the quality and energy efficiency of target tracking are studied in
[23] and [10]. In this paper, we propose and study energy efficient track-
ing approaches in distributed wireless sensor networks, so that the issue of
network routing between sensors and servers is not concerned. Our research
concentrates on effective and reliable activation schemes to reduce power
consumptions in tracking.

Intuitively, turning off unnecessary sensors effectively enhances the life-
time of the entire system since energy consumption increases significantly
during the periods of activity [37, 11]. In [26, 31, 34] and [28], predic-
tion based tracking algorithms are presented, which accommodate a sensor
hibernation mechanism to conserve power and extend the tracking system’s
lifetime. Given the past reading history and spatial and temporal relation-
ships of readings from neighbor sensors, the future reading for a sensor can
be predicted [9, 32, 30, 18]. In order to facilitate this predictive mechanism,
most of today’s sensor nodes operate under two modes, namely, active and
sleep. These two working modes can be achieved by turning on/off some basic
functional units such as Micro-Controller Unit (MCU), radio communication
components and sensing related components separately as needed.

However, due to the unpredictable behavior of targets, e.g., random moving
speeds and directions, the quality of tracking can be dramatically lowered. In
[29], several different prediction based algorithms for tracking mobile targets
have been studied. It is proved that tracking efficacy is different when using
different prediction strategies. In addition, a detailed quantitative analytical
model is proposed in [11]. In that model, the dependency of the accuracy of
prediction on tracking interval representing the time length between two con-
secutive sensing points is represented by a quadratic function. Subsequently,
the optimal solution that is subject to the minimum power consumption can
be obtained. However, when tracking different kinds of targets (e.g., human
and vehicle) with different moving patterns (e.g., acceleration and velocity),
the optimal solution will be different. As shown in Fig. 1 and Fig. 2, the opti-
mal sampling frequencies for tracking a human and a vehicle in those cases
are about 0.5 second and 7.5 seconds respectively. Moreover, in a distributed
environment, it is hard to adjust the sensing frequency when tracking different
types of targets. Thus, a more efficient approach is required when tracking
diverse targets within the same tracking region.



AHSWN_174 page 59

ADAPTIVE TRACKING 59

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Tracking interval (s)

M
is

si
ng

 r
at

e

(a) The relation between the tracking
interval and the accuracy of tracking. As
the tracking interval increases, the miss-
ing rate increases, i.e., the quality of
tracking decreases.
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(b) The relation between the tracking
interval and power consumption.A high
tracking interval results in better qual-
ity of tracking, but it consumes more
power.

FIGURE 1
Simulation results for tracking a vehicle using the linear prediction tracking algorithm in [11].
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(a) The relation between the tracking
interval and the accuracy of tracking.
As the tracking interval increases, the
missing rate increases, i.e., the quality
of tracking decreases.
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(b) The relation between the tracking
interval and power consumption. A high
tracking interval results in better quality
of tracking, but it consumes more power.

FIGURE 2
Simulation results for tracking a human using the linear prediction tracking algorithm in [11].

3 PRELIMINARY MODELS

In this section, we describe the underlying assumptions and preliminary
models which help us better explain our approach in later sections.

3.1 The Power Usage Model
Givenn sensors at timet, there are two possible states for each sensor, active
and sleep, respectively [16]. For a typical WSN node, the system consumes
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19.5 mA of current at peak load and only 10µA in the sleep mode [15]. Thus,
a sensor node’s power consumption is modeled as a structure

M = (State, P, δ,λ, e) (1)

whereState is the state of the sensor node,P is the power of the sensor node,
δ : State→State is system state transition function,λ : State→P represents
the power function, ande denotes the elapsed time. The interpretation of these
elements is shown in the following.

The sensor node system is always in some state,State, lastinge time.
The power levelP during this time period is determined by the function
λ : State→P. If any internal or external event happens, the system will change
its state based on the state transition functionδ : State→State. Therefore, the
power level will also be changed based onλ. The power consumption within
a time periodT is shown in the following formula.

E =
∫ T

0
Ptdt =

∫ T

0
λ(Statet)dt (2)

WhereE is the total power consumption of the sensor node,Pt is the power
on timet, which is determined by the power functionλ(Statet).

For each sensor, power consumption will vary under various states. Typi-
cally, there are four power usage modes for each active sensor, namely,idle,
sensing, transmitting and receiving. Otherwise, the sensor node will be in
thepower down mode as sleeping.“Power down” indicates a working mode
shutting off everything but the necessary circuits for waking up. Thus, any
event in the sensing field may result in state transition for a sensor node as

δ : State→State = {Stateι, Stateσ , Stateτ , Stateρ , State�} (3)

whereδ denotes the state transition function,Stateν represents a sensor in
stateν, which can beι, σ , τ , ρ, and�. Hereι represents the sensor in the idle
mode,s represents the sensor in the sensing mode,δ indicates that the sensor
is in the power down mode,τ andρ denote the sensor in the transmitting
mode and the receiving mode, respectively. The sensor power consumption
modes are summarized in Table. 1.

Idle Sensing Receiving Transmitting Power down

Active Y Y Y Y N

Sleep N N N N Y

TABLE 1
Power usage modes.
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Moreover, the power function is shown in equation 4.

λ : State→P = {Pι, Pσ , Pτ , Pρ , P�} (4)

whereλ denotes the state transition function,Pν denotes the power of a sensor
under different working statesStateν . As above,ν can beι, σ , τ , ρ, and�.

According to equations 2 and 4, power consumption at any given periodT
for a sensor is given by

E = Pi · ti + Pe · te + Br · Pr · tr + Bt · Pt · tt + Pd · td (5)

T = ti + te + tr + tt + td (6)

whereE is the power consumption of the sensor,T is the given period,ti is the
idle period of the sensor,te denotes the time required for the sensor to optimally
estimate the position of an target,td is the power down period of the sensor,tt
is the time required for the sensor to send out a unit packet (transmission bit
rate),tr is the time required for the sensor to receive a unit packet,Br andBt

represent the size of packets that are received and transmitted by the sensor,
respectively. In reality, sensor detection is imprecise, therefore appropriate
signal processing approaches such as Kalman filter are often employed to
estimate the position, velocity and acceleration of a target [3, 30]. Once a
sensor node is activated, it will be in the idle status and the radio components
will only be used when data communications are needed. Given a WSN with
m identical sensors, the power consumptionE can be represented by

E =




t1i t1e Br · t1r Bt · t1t t1d

t2t t2e Br · t2r Bt · t2t t2d
...

...
...

...
...

tmi tme Br · tmr Bt · tmt tmd


 ×




Pi

Pr

Pe

Pt

Pd


 (7)

whereE is a vector of which each entry represents the power consumption of
each sensor in the network.

Thus, assuming an target under tracking has been in the sensing field for
a time intervalT , the overall power consumed by the WSN for tracking this
target can be formulated as

Eo =
m∑

i=1

Ei (8)

whereEo is the overall power consumption,Ei, i = 1, 2, . . . ,n, denotes entries
in the vectorE. Note thatPi, Pr , Pe, Pt andPd in equation 7 highly depend
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on the hardware platform of the sensor nodes. For instance, given a specific
hardware platform, e.g., Berkeley MICA motes [15], one second of the sleep
mode can save enough power for sending more than 70 packets, or performing
70K operations [21]. Therefore, power consumption can be conserved by
applying an efficient tracking algorithm in which most of sensors will be in
the sleep status.

3.2 The Sensing and Communication Model
We assume that the sensors used to detect targets have a 360o degree sensing
scoper. Examples of this kind of sensor founded in are acoustic, seismic, and
electromagnetic sensor arrays. In general, these sensors are physically small
and equipped with limited power supplies, thusr is constrained to be small.
Within the detectable distancer, an active sensor nodeSi is able to estimate its
distanceD and orientationθ (θ is within [0, 360o]) to an target [21]. In order to
simplify the problem, we assume that the distance and orientation information
can be accurately estimated inte seconds. This can be implemented by a sensor
array such as accurately mounting several cheap sonar sensors onto one frame.
The size of the sensor can be relatively small (sonar sensor array) or big (radar
station) upon to different requirements. Thus, the relative position vectorR
of target to sensor can be calculated using the following function

R =
(

x
y

)
=

(
D · cosθ
D · sinθ

)
. (9)

As the target moves out of the sensing scope ofSi, another sensor nodeSj

needs to be activated to catch the target. In order to conserve power usage,
Si will be switched to the sleep state after it gets an acknowledgement from
sensorSj. Thus, the tracking task is carried out by sequentially activating
and shutting the sensors located along the track of the moving target. Note
that the sensing system is distributed, thus there are information exchanges
among sensors to enable them to collaborate in tracking the target. Typically,
each sensor has a wireless communication scopeR which is relatively larger
than r. Thus, the sensor nodeSi can directly communicate with any other
sensor nodeSj within the circle area with radius R, centered bySi. In order
to accurately activate a sensorSj in a specific position, the sensing nodeSi

has to know its own position and the position ofSj. Since the position of each
sensor nodeSi is not predetermined in a randomly deployed sensor network,
a network localization method is needed. We assume that the sensing system
consists of a supernode subset in which all of the sensor nodes are equipped
with a precise position system which have knowledge of their own locations
[12, 16]. Therefore, theoretically each sensor node in the sensor network is
able to obtain a location list of all other sensors within its communication
rangeR.
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4 PAM TRACKING

4.1 The Background
As we discussed in Section 2, several prediction based tracking algorithms
have been proposed in the previous literature. Some are designed for a central-
ized network architecture. Thus, they are not suitable for large scale tracking
applications, which are much more complicated. Sensors may be dropped
randomly with a uniform distribution to cover a large scale region to be mon-
itored. Example of such a surveillance zone can be a sensing field is 100
meters by 100 meters and a total of 1000 sensors are uniformly placed. The
sensors need to collaborate to track targets. The idea of the proposed predic-
tion based tracking algorithms is that the lifetime of such a sensing system
can be extended by using a set of prediction based activation mechanisms,
i.e., control activities of the sensors (active/sleep) for tracking purposes. The
word “predict” denotes that the system is able to predict the next location of
the target by using the time series trajectory of its path (Fig. 3). The predicted
position can be calculated by

P2 = P1 + �vt (10)

whereP1 is the history target coordinate (x1, y1), P2 is the predicted position,
t is the sensing time interval, and�v is the estimated target velocity. Where�v
can be given by

�v = V ×
(

cosα
sinα

)
(11)

0h

),( 00 yx

r
11h

1h

TRmin

),( 11 yx

TRmax

2h

FIGURE 3
The generic prediction model. For instance, when the target is at the position (x1, y1), the speed
and orientation of the moving targets can be calculated based on history information (x1, y1) and
(x0, y0). Thus, the next position can be predicted based on this model.
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where the directionα (α is within [0, 360o]) can be given by

(
cosα
sinα

)
=




x1 − x0√
(x1 − x0)2 + (y1 − y0)2

y1 − y0√
(x1 − x0)2 + (y1 − y0)2


 , (12)

and the speedV can be obtained by

V =
√

(x1 − x0)2 + (y1 − y0)2

t . (13)

Where (x0, y0) and (x1, y1) provide historical position information,t represents
the sensing period, i.e., the tracking interval which denotes the time length
between two consecutive sensing points. In [29], some heuristic approaches
that can be used to estimate the speed and orientation of the moving target are
proposed.

Given the predicted location, appropriate sensors in that region will be
activated to sense the target. Using this mechanism, initially, most of the
sensor nodes will be in sleep status in order to conserve energy until activity
is triggered by mobile targets. Once a target is detected, the active nodes,
which are not only sensing centers but also coordinators (SCs), will activate
another set of appropriate sensors as the next SCs. Subsequently, the previous
SCs will then change to the sleep status (non-sensing and power down). It
is clear that the fewer nodes that are active, the less power is consumed.
Intuitively, the node selection criteria can be defined by the shortest distance
between the predicted position and the position of the sensors.

4.2 The PaM Prediction Model
Our tracking prediction mechanism is different from previous works. Assume
that there areN wireless sensors (e.g., acoustic sensors), which are initially
in the sleep mode in the sensing field. Some special sentinel sensors always
in active status are also deployed at the boundary of the field. A mobile
target traverses through this sensing field with a speed rateV . The target is
first detected by an active sensorSi. Then, after�t seconds, the target may
move out of the detection ranger of Si. Since the target moves randomly,
it is necessary to estimate the possibility of this scenario to avoid losing the
target. Because the sensor has limited power, the goal of the estimation is to
activate as few sensors as possible to save power. Another energy factor in the
power consumption used in data communication. It is desirable to eliminate
unnecessary communication between sensors as much as possible. Obviously,
a good prediction mechanism should also maintain high quality and resolution
of tracking as required in various applications.



AHSWN_174 page 65

ADAPTIVE TRACKING 65

However, the prediction scheme design is complex due to the unpredictable
behaviors of the target. Based on the sensing and communicating model, the
prediction model may vary given a target with a different speed rateV and
accelerationa. The speedV is recursively measured by active sensor nodes.
For example, a targetMi traveling at speedVi is detected by a sensorSj at
time t at position (x1, y1) with the distanceD(Mi, Sj) (D(Mi, Sj) ≤ r ) and the
orientationθ ((Mi, Sj)) to Sj. As shown in Fig. 4, intuitively, the fastest way for
the target leaving the sensing area is bearing off along the radius direction,
which means the velocity directionα is same as the target orientationθ . It
will take at leastto seconds forMi to move out of the sensing ranger of Sj.
In order to ease the computation in sensors, we denoteto as anescape period
given by

to = (r − D(Mi, Sj))/Vi (14)

It is clear that the target can be detected again by sensorSi within time to if
Vi is not increased. Otherwise,Vi has to be updated asV ′

i as the target moves
out of range ofSj and the sensorSk has to be activated to detect this target.
TheV ′

i can be estimated by

V ′
i = Vi +

∫ to

0
αi(t)dt (15)

whereαi denotes the possible acceleration of a specific target which uniformly
falls in [0,αmax]. Thus,V ′

i falls in a speed interval [Vi, Vi + αmax × to]. Notice

r - D

r

D

),( 11 yx

),( 22 yx

FIGURE 4
The diagram of the escape period. Assume a targetMi travelling at a speedVi is detected by
a sensorSi at time t at position (x2, y2) with the distanceD(Mi, Si) (D(Mi, Si) ≤ r ) and the
orientationθ (Mi, Si) to Si. Intuitively, it will take at leastto seconds forMi to move out of the
sensing ranger of Si.
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that (Vi + αmax × to) ≤ Vmax, whereVmax denotes the maximum speed of the
target.

The maximum speedVmax and maximum accelerationαmax are highly
related to specific application requirements. For instance, if the WSN is
deployed to do border control, then the typical targets will be human beings
or vehicles. Therefore, we can setVmax = 40m/s andαmax = 10m/s2.

Assume that at timet + to the sensorSj detects the target at position (x2, y2)
so that there are two pieces of position information with respect to targetMi

in the knowledge base ofSi. The speedVi can be accurately calculated by

�Vi = �P2 − �P1
to

. (16)

Where �Vi is the speed vector with speed rateVi. �Pn is the position vector of
(xn, yn). Note that the sensorSj will keep updatingVi until the target moves
out of its sensing range.

Making use of equations (14) and (16), the sensing system is capable of
refreshing the knowledge of the target under tracking to preserve the quality
of tracking as well as conserving the power usage. However, in reality,to in
(14) may increase to infinity or decrease to zero. Thus, appropriate upper and
lower bounds have to be placed onto.

The worst situation is that the target leaves along the radius direction with
maximum acceleration. Intuitively, the upper bound can be given by

tu =
−Vi +

√
V2

i + 2αmax(r − D)

αmax
. (17)

The upper boundtu determines the largest time interval for sensing. It indicates
that the target under tracking is not able to move out of the communication
range ofSj within time tu. It seems thattu = 0 whenr = D in the equation
(17). This means the target is very close to the sensing edge. A continually
sensing is not possible for a real sensor, so that a lower bound is introduced.
The lower boundtl can be defined based on the time cycle for a sensor to
finish the process of measuring. Thereforetl is usually hardware dependent.
Thus,to can be expressed as

to =




tu to ≥ tu
tl to ≤ tl
(r − D(Mi, Sj))/Vi others

. (18)

In reality, ther − D(Mi, Sj) might be quite small when the target is near
the sensing limit of the sensor, so that thetl is relative large. Under such
a scenario, the possibility of losing the target will be high. To enhance the
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quality of tracking,Si should be able to activate another sensor node with a
smaller distance to the target. This evaluation function can be expressed by

Si =
{

Si if D(Mj, Si) ≤ D(Mj, Sk)

Sk if D(Mj, Si) > D(Mj, Sk)
. (19)

Based on the sensor hardware platform and the need of the application, the
heuristic function represented by (18) and (19) can be employed.

4.3 The Mesh
If the selected sensor can not detect the target, we call it prediction failure.
As discussed in Section I, prediction failure cannot be ignored due to blind
areas in the sensing field, the functional failure of sensors, or the unpredictable
behaviors of the target. We have developed a mesh approach to help the system
recover efficiently from prediction failure, as shown in Fig. 5. Assume that
the target is not detected, according to our best knowledge of the nature of
the moving target, given the speedVi at time t, it is not possible for the target
to move out of the regionC called themesh region, which is the large circle
area in Fig. 5, within time periodto. Notice thatC is a closed area with radius
µ which is given by

µ = D + Lmax (20)

whereD is the spatial distance between sensorSi and the target under tracking;
andLmax is given by

Lmax = Vmax × to (21)

u

r

FIGURE 5
The mesh process. The black dots represent the virtual sensor nodes and the SC node activates
the closest nodes to these virtual nodes to reallocate the target.
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Therefore, ifSi activates several sensors so that the entire area ofC is almost
fully covered, the target will be detected. This is called themesh process. In
order to save power during this process, we introduce a concept ofvirtual
sensor nodes which are indicated by the black dots in Fig.5. Each of these
virtual sensor nodes has the same sensing scoper as the real sensor node
Si. Thus, we can conclude that the mesh areaC can be almost fully covered
if there are real active nodes which overlap with these virtual sensor nodes.
However, since the real sensor nodes are randomly deployed, it is possible that
there will be no physical sensor at the position of the virtual node. Therefore,
it is intuitively reasonable to activate the sensors which are closest to the
virtual nodes. While some areas may not be covered, the efficacy of the mesh
process can be enhanced by activating more virtual nodes until the target gets
detected.

Obviously, the mesh method requires much more power consumption than
the prediction method. Therefore, it is used as a backup to the prediction
method when the WSN loses the target.

5 SIMULATION

In this section, we present the results of several simulations to evaluate the
performance of the PaM algorithm. These simulations have been done using
Matlab. Specific emphasis is placed on the following aspects of the algorithm:

• Power consumption per time unit. We denotePs as the criteria to evaluate
the power efficacy of the PaM algorithm for each sensor.Ps is given by

Ps = Eo
ts − te

(22)

whereEo can be obtained from Eq.(8),ts is the start time,te is the end
time.

• Quality of tracking. The quality of tracking is represented by the missing
rate which is the ratio of the number of failures of locating an target based
on prediction. Obviously, the smaller the missing rate is, the better the
quality of tracking is. If we have to use the “mesh” method to recover a
lost target, we consider it as a miss of the prediction method.

• Adaptability of the PaM algorithm. We evaluate the adaptability of the
PaM algorithm for diverse targets with various random motion patterns.

5.1 The Simulation Setup
In our simulations, the sensing field was 1000 meters by 1000 meters. For
all simulation results presented in this section, distances were measured in
units of meters. Special sentinel sensors were placed at the edge of the field to
activate the nearest regular sensors. The energy cost of sentinel sensors were
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not counted. A total of 2500 regular sensors were uniformly and randomly
placed in the sensing field. Each sensor had a detection radius of 30 meters and
a communication radius of 90 meters [15]. The power levels of each working
state of the sensors are defined in Table. 2 and the sensors were assumed to
be operating at 3.0 volts [15]. Human beings and vehicles were the two kinds
of targets studied in our simulations. And it was assumed that they moved
randomly in this two-dimensional sensing field. The moving speedV varied
between 0 andVmax with an accelerationα varying between 0 andαmax. The
acceleration direction change varied between 0 and 360o. The values of these
parameters are shown in Table 3.

5.2 Simulation Procedures
Two targets (a human and a vehicle) sequentially entered the sensing field from
the position (100,0) with initial moving directionθ = 0. When an target enters
the sensing area, some sensors at the edge of the sensing field work as guard
sensors (in active status) to get the first information of the target (position and
velocity). With this information, the simulator is initialized. The remaining
sensors inside the boundary region were kept in the sleep mode. Fig.6 and
Fig.7 are the snapshots of the simulations for tracking a vehicle and a human
being, respectively. These figures show the layout of the sensing field. The
dot points represent the sensors and the line represents the moving track of
the target. The motion dynamics can be found in Table 3.

5.3 Simulation Results
Power Consumption and Tracking Quality
In order to evaluate the power consumption performance of the PaM algo-
rithm, we ran two simulations, tracking a human and a vehicle, respectively.

Idle Sensing Receiving Sending PowerDown

Active 600µA 4 mA 7 mA 9 mA 0

Sleep 0 0 0 0 10µA

TABLE 2
Energy consumption parameters of the sensor nodes

Object 1: Human beings Object 2: Vehicle

Vmax (m/s) 2.0 40.0
αmax (m/s2) 6.0 10.0

TABLE 3
Moving parameters of the tracked targets
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FIGURE 6
Snapshots of the simulation for tracking a vehicle.
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FIGURE 7
Snapshots of the simulation for tracking a person.

In the first simulation, we assumed that all sensors were in the idle status
until an event triggered them for sensing. Then the total energy consumed
per time unit was calculated based on Eq. (7). In the second simulation, we
implemented the PaM algorithm. All sensors were initially in the power down
status until they received the activation message. The comparison results are
shown in Table 4.
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Human Vehicle

Power consumption in simulation 1 (mW) 621.7040 6125.8000

Missing rate in simulation 1 0.0000 0.0000

Power consumption in simulation 2 (mW) 11.1403 27.0637

Missing rate in simulation 2 0.0370 0.0244

TABLE 4
Power Usage and QoS Evaluation

Observe that while the PaM algorithm may result in a temporary loss of
the target, the overall quality of tracking is still high. As we mentioned before,
this target losing will be recovered by the “mesh” method. Moreover, making
use of the PaM algorithm dramatically reduces power usage. Thus, we can
conclude that the PaM algorithm can preserve the quality of tracking and
enhance the lifetime of the sensing system as well.

Adaptability
In [29], several prediction based tracking algorithms were proposed. However,
the prediction time interval was fixed subject to the moving speed of the target.
Thus, the quality of tracking and power consumption will vary in diverse
scenarios of tracking different kinds of targets. To illustrate the excellent
performance of the PaM algorithm, we ran another two simulations to evaluate
its adaptability. The simulations were run for tracking a human and a vehicle
using the algorithm proposed in [29] with a parameter�t which denotes the
prediction time interval. In both simulations, the power consumption and
the missing rate were recorded. Here the missing rate is used to express the
accuracy of the prediction. If the prediction fails, some recovery mechanisms
will be performed to retrieve target. the The larger the missing rate, the worse
the quality of tracking.

The results are shown in Table 6 and Table 5. Fig.8 and Fig.9 illustrate
the performance evaluation of tracking a human. When tracking a human,
power consumption using the PaM algorithm almost equals the optimal solu-
tion of using the nonadaptive prediction tracking algorithm whilethe PaM
algorithm provides better tracking quality. Thus, the overall performance of
the PaM algorithm is much better than the non-adaptive prediction algorithm
with respect to power consumption and the quality of tracking. Experiments
with respect to velocity (e.g. vehicles) should have been evaluated. Fig.10
and Fig.11 illustrate the performance evaluation of tracking a vehicle. When
tracking a vehicle, the power efficacy performance of the PaM algorithm is
better than the nonadaptive tracking algorithm as the prediction interval in the
non-adaptive approach is set to a value between 0.1 second and 1.4 second.
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Tracking interval Missing rate Power consumption
(second) (mW)

1.0000 0.0000 18.2400

2.0000 0.0000 14.1200

4.2000 0.0291 12.2118

6.4000 0.0537 11.3340

8.4000 0.0720 11.0999

10.8000 0.4377 11.5620

12.8000 0.3667 10.9919

14.8000 0.5044 10.9763

16.8000 0.7117 11.2660

19.4000 0.8691 11.1477

22.2500 0.9778 10.8872

24.6000 1.0000 11.1807

Adaptive 0.0244 11.1403

TABLE 5
The Performance Evaluation of Tracking A Human

Tracking interval Missing rate Power consumption
(second) (mW)

0.1183 0.0028 92.4000

0.2650 0.0181 51.5640

0.3750 0.0699 35.4953

0.4850 0.1255 31.2325

0.5950 0.2211 30.3723

0.7050 0.5315 28.5106

0.8333 0.6182 32.7797

0.9433 0.8168 30.7463

1.0533 0.8556 32.5254

1.1633 1.0000 31.6527

1.2733 0.9861 32.4714

1.3833 1.0000 30.9975

Adaptive 0.0370 27.0637

TABLE 6
The Performance Evaluation of Tracking A Vehicle
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FIGURE 8
The missing rate of tracking a human being.

 

0

2

4

6

8

10

12

14

16

18

20

1 2 3
4.

2
5.

4
6.

4
7.

4
8.

4
9.

4
10

.8
11

.8
12

.8
13

.8
14

.8
15

.8
16

.8
18

.4
19

.4 21
22

.2
23

.4
24

.6

Po
w

er
 C

on
su

m
pt

io
n 

(m
W

)

Tracking Interval (s)

Linear

Adaptive

FIGURE 9
The power consumption of tracking a human being.

The PaM algorithm has much better quality of tracking as well. In particu-
lar in the case of humans, the savings are approximately 8.7%. Savings are
increased to 37.8% in the case of vehicles. The reason is the conventional
methods lost the high speed targets more offen due to the un-adaptive natural.
The simulation results shows that the PaM algorithm is suitable for tracking
diverse kinds of targets with diverse moving patterns.
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FIGURE 10
The missing rate of tracking a vehicle.
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The power consumption of tracking a vehicle.

6 CONCLUSIONS

In this paper the PaM algorithm is proposed as a practical approach for large
scale surveillance applications. The PaM algorithm uses a novel prediction
model and a mesh process to monitor the movement of the targets. As an
application layer algorithm, this method is more suitable to a wireless sensor
node than existing works [33, 25] due to the adaptation, fast convergence
and light weight. It has proven successful in several ways. First, it provides
more space for implementation since it is built based on an randomly deployed
distributed network architecture, thereby ensuring flexibility. Second, making
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use of the PaM algorithm, the quality of tracking is preserved and the life
time of the sensing system is dramatically enhanced as well. Third, the PaM
algorithm proved to be adaptive for tracking diverse kinds of targets with
various random movement patterns.

Our future work will focus on building motion models of various targets.
The PaM algorithm can be made more efficient if it is provided with a precise
motion model for the specific target. In other words, the accuracy of predic-
tion can be further improved. Another direction to look at is to incorporate
the identification approach, which is used to classify multiple targets in the
sensing field into the PaM algorithm. Thus, multiple levels of fidelity can be
provided according to the needs of applications.
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