
A Hybrid View in a Laparoscopic Surgery Training System

Chuan Feng, Jerzy W. Rozenblit, PhD
Electrical and Computer Engineering Department

The University of Arizona
Tucson, Arizona 85721

Email: {fengc, jr}@ece.arizona.edu

Allan J. Hamilton, MD
Arizona Simulation Technology

and Education Center
The University of Arizona

Tucson, Arizona 85721
Email: allan@surgery.arizona.edu

Abstract

In this paper, a hybrid view application is proposed —
a subsystem of a computerized laparoscopic surgery train-
ing system. To minimize the potential hazards of laparo-
scopic surgery, an assistive training system is being devel-
oped. A digital camera and magnetic position sensors are
used to detect laparoscopic instruments in the system. The
hybrid view is a component of this system which overlays
the positions of organs and objects with the path history of
the instruments. This method could help confirm erroneous
movements made by surgeons and provide more useful in-
formation than separate sensors. This may minimize the
cognitive overload on the surgeons. Initial experimental re-
sults are presented to show the feasibility of the proposed
method.

1 Introduction

Laparoscopic surgery is performed with an endoscope
and several long, thin instruments through small incisions.
Due to its minimally invasive nature, laparoscopic surgery
offers advantages such as shorter recovery time and reduced
pain compared with traditional methods. However, inexpe-
rienced surgeons often lack a correct perception of an in-
strument’s position due to a restricted vision field, hand-eye
coordination problems, limited work space and the lack of
tactile sensation. Those issues make laparoscopic surgery a
difficult skill for medical students and residents to master.

There has been some research on the effectiveness of dif-
ferent kinds of training and guidance. Traditional surgical
training methods such as using animals and cadavers have
limitations because animals do not have the same anatomy
as a human being and cadavers can not provide correct
physiological responses. Surgery simulation is increasingly
perceived as a valuable addition to traditional medical train-
ing. According to [3], laparoscopic training translates into

approximately 30-35% more efficiency as measured by op-
erative time and decreased complication rates compared to
a control group not receiving simulation training.

One representative simulation tool-set is called the Pelvi-
trainer [4]. It is a box that simulates the abdomen, with aper-
tures for the insertion of instruments and camera. Trainees
use real instruments to practice basic skills by manipulating
objects or interacting with artificial tissue and anatomical
models, using a video display for visualization. The main
limitation of this approach is the absence of objective per-
formance assessment, a feature available in some Virtual
Reality (VR) systems, which use computer to simulate the
whole training procedure. Hamilton [5] reports that speed
was the only end-point measured within the pelvi-trainer
while the virtual reality (VR) simulator reports error for
each task performance [6]. Limitation of the VR simula-
tions include inadequate realism of the virtual environment,
inaccurate haptic feedback and the exorbitantly high cost of
these systems.

Our vision for the proposed Virtual Assistant Surgical
Training (VAST) system [1] is to bridge the gap between
pelvi-trainers and VR systems, combining the advantages of
both approaches to design a system that is simple and effec-
tive. We propose a knowledge-based sensor system to pro-
vide training prior to surgery and assistance during surgery.
Our design features the embedding of micro-sensors into
the instruments employed for simulation training. The de-
tection and recording of instrument movement permits our
system not only to measure a trainee’s progress in acquir-
ing psychomotor skills and compare these data to norma-
tive databases, but also to evaluate instrument effectiveness
in reducing error. From a training perspective, the sensor-
based system tracks and returns information on various per-
formance metrics such as position and velocity of instru-
ments, total path length of motion, erratic movements, time
taken, number of attempts, dexterity, etc.

Fig. 1 contrasts the Knowledge-based VAST System
with the traditional approach. In the VAST system, the sur-
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geon acts upon the patient or simulator through instruments
and receives visual and force feedback from the supervisor
both in the operating room and training settings. The super-
visor represents the sensing interface and the knowledge-
based computer system. It consists of a sensor fusion engine
at the front-end and a knowledge based inference system at
the back-end. In this paper, we discuss the issues related to
the sensors.
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Figure 1. VAST system

A prototype system is being developed which is capa-
ble of high fidelity motion tracking of surgical instruments
and basic performance assessment analysis. To our knowl-
edge, this is the first approach that uses different kinds of
sensors to assist in accurate tracking of instruments’ posi-
tions and movements. The system fuses data from sensors
and provides information to surgeons. To enable the data to
be correctly understood, the various sensor outputs must be
fused to provide a single representation.

Two kinds of sensors are implemented within the train-
ing system, a CCD camera and magnetic kinematics sen-
sors. The Hybrid View, shown in the Fig. 2, which overlays
the positions of organs and objects with the path history of
the instruments, is one of the components of the VAST sys-
tem. Immediate visual feedback obtained from the hybrid
view helps surgeons check and evaluate the entire training
process to minimize potential hazards, identify problem ar-
eas and find solutions.

For successful surgery, the laparoscopic camera should
be moved from time to time to adjust the view of the sur-
gical site. How to maintain data integrity during camera
movement is the key issue of the hybrid view. Some re-
searchers track the instruments’ position using image anal-
ysis [2]. However, reliability is questionable because im-
age analysis is highly related to the lighting conditions and
attitude of the instruments. This can also make the track-
ing results discontinuous. For example, if the instrument is
blocked by tissue or blood, vision tracking is unavailable.
On the other hand, magnetic sensors can provide contin-

uously accurate 3D position information on the instrument
but lack the mapping relationship between the 3D space and
2D image. In order to solve the issue without more special-
ized hardware, a multi-level processing method was used.

In the remainder of the paper, we discuss our proposed
approach in more detail. In section 2, the hybrid view gen-
eration system is presented in detail. In Section 3, several
experiments are described must prove the feasibility of the
proposed method. Section 4 is the conclusion.

2 System Design

2.1 System Architecture

In our application, shown in Fig. 3, a system with three
processing levels generates the hybrid view.

The sources of information which include different kinds
of sensors and knowledge database, are indicated on the left
side of Fig. 3. A CCD camera and microBIRD R© 6-DOF
magnetic kinematics sensor are used in our application [7].
The CCD camera is connected to an endoscope which pro-
vides live image of the operating site. The kinematics sens-
ing system includes a magnetic field transmitter, two posi-
tion sensors (1.3mm in diameter) which can be mounted on
the tip of the laparoscopic instruments and a PCI interface
data processing card. The transmitter remains fixed to pro-

Figure 2. Hybrid View Sketch Map
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vide a Cartesian frame of reference for position tracking.
The right side of the figure shows the system interface.

The interface consists of a subsystem interface and a hu-
man computer interface (HCI). The subsystem interface ex-
changes information with the VAST system and the HCI
allows a human operator to input commands and get in-
formation from the generator. A hybrid view will be out-
put through the HCI so that it can be watched by surgeons.
The hybrid data will also be sent to the inference module
of VAST through the subsystem interface. Therefore, fur-
ther evaluation and feedback can be made. In a training
setting, the trainee is required to repeat the motion within
the safety bounds until a motion rule check passes. This en-
forced learning process should help the trainee master the
necessary skills.

Three processing levels are shown in the system architec-
ture. The first level is Source Preprocessing, which synchro-
nizes the information flow from different sensors and dis-
tributes data to appropriate processes. The second process-
ing level is Coordinate Normalization, which transforms
sensor data into a consistent set of coordinates and estimates
the position and kinematics of the instruments. In the third
processing level, Data Overlay, data are fused together so
the hybrid view can be generated. Detailed design informa-
tion is provided below.

2.2 Level 1: Source Preprocessing

Source Preprocessing is the first level of the hierarchical
processing model, which guarantees the synchronization of
different data sources. Because the overall objective is gen-
erating the correct instrument track over the operating site,
the camera drives this process. When a new frame is cap-
tured by the camera, the Source Preprocessing level forces
the microBIRD sensor to obtain the corresponding 3D co-
ordinates of the instruments and to distribute the data to the
next processing levels.

Image filters are applied for noise elimination. A median
filter is used to minimize the noise because it reduces the
effect of unrepresentative pixels with almost no degradation
to the underlying image.

Color segmentation method is used to finish the image
preprocessing. Before color segmentation, a color cluster
training process [11] is necessary. First, a color that does
not appear within typical laparoscopic images is chosen to
mark the instrument. Then an image of the color-marked in-
strument will be taken under real working light conditions.
The mark on the instrument can then be outlined manually
to provide a color cluster of the mark within the RGB color
space.

During the working period, all pixels within the image
are distinguished by color segmentation. Each pixel whose
RGB value falls within the pre-training color cluster will be

treated as one element of instrument area set I . Therefore,
the color image can be converted into a binary data matrix
which distinguishes the exact pixels of instruments. Each
pixel in the image is mapped to the correspondent position
of the data matrix.

2.3 Level 2: Coordinate Normalization

If there are no abnormal signals from the Source Prepro-
cessing level, level 2 — Coordinate Normalization will do
further processing. This level transforms sensor data into a
consistent set of coordinates and estimates the position and
kinematics of the instruments.

Before an operation, a rule module is applied to infer
the information sent through the previous processing level.
Sample rules are shown here:

• if microBIRD sensor data are incorrect
then refinement to kinematics sensor data is disabled.

• if image data are incorrect
then refinement to camera data is disabled.

• if both kinds of sensor data are incorrect
then cancel the current working cycle.

The purpose of the module is to synchronize the functional
modules according to the source data. Only the validated
sensor data can be used for further processing.

2.3.1 Coordinate transformation of the kinematics
sensors

The intent of the data fusion system is to generate a consis-
tent Hybrid View, so transforming the sensory data into the
image coordinates is an necessary procedure. Camera cali-
bration is the first step when trying to map 3D information
to a 2D image taken by a camera.

In order to provide real time computing ability, a sim-
ple linear mapping algorithm called Direct Linear Transfor-
mation (DLT) is implemented, which uses a linear camera
model to extract pixel coordinates from the 3D data. The
DLT mapping function can be expressed as equation 1:

u =
L1Xw + L2Yw + L3Zw + L4

L9Xw + L10Yw + L11Zw + 1

v =
L5Xw + L6Yw + L7Zw + L8

L9Xw + L10Yw + L11Zw + 1
(1)

Where L1 . . . L11 are the parameters of transformation,
which are the combination of the camera is intrinsic and
extrinsic parameters. (Xw, Yw, Zw) is the 3D space coordi-
nate, and the (u, v) is 2D image pixel. This equation can be
solved by the least-square algorithm [8].

The drawback of DLT is that the calibration method can-
not adapt to camera movements during the operation. To
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solve this issue, we need to modify the camera parameters
in real time.

Because intrinsic parameters will not change when the
camera moves, our approach was to modify the extrinsic
parameters only. A virtual camera algorithm is applied as
follows:

Assume the camera is fixed in a specific position, after
the calibration. An isomorphic mapping function can be
built as follows: 2:

λ




u
v
1


 = f(Xc) = f(




xc

yc

zc

1


) (2)

Where u, v are the pixel coordinates in image plane
and xc, yc, zc are the 3d point coordinates in world sys-
tem, which is called Sc. Xc is the expended vector
(xc, yc, zc, 1)T .

When the camera moves, the world system Sc will not
move, so there exists a transform matrix M , which indicates
the position and orientation of the camera movement. The
mapping function is:

X ′
c = M · Xc (3)

The original mapping function in 2 can be used. However,
the point Xc has been transformed into a new coordinate
X ′

c within the new world system. So the point X ′
c will be

mapped to a new pixel P ′ = (u′, v′) as below:

λ




u′

v′

1


 = f(X ′

c) = f(M · Xc) (4)

From equation 4, we can confirm that the camera cali-
bration parameters L need not be modified any more. We
only need to continuously refresh the transformation matrix
M so that it can express the transform relationship. In the
next processing level, a detailed solution for refreshing the
transformation matrix is described, which relates to image
analysis.

2.3.2 Coordinate transformation of the camera data

The image data matrix sent from the Source Preprocessing
level is a 2D binary data set that indicates the result of color
segmentation. The position of the instrument must be ac-
quired from the image data. The center of mass is used to
indicate the instrument’s position. Within the binary image,
the center of mass can be calculated according to equation
5:

P =
1
M

∑
miri (5)

Where M is the sum of the particle pixels; ri is the position
of the ith pixel, which is the distance from the pixel to the
origin of the image; mi is the value of the ith pixel; P is
the center of mass.

2.4 Level 3: Data Overlay

The purpose of the Data Overlay level is to generate the
hybrid view from different data sources.

As we previously mentioned, the transformation matrix
M is used to indicate the shift and rotation of the camera.
M is set to a unit matrix when the system is initialized since
there is no camera movement. When the camera is moved
according to surgical need, the matrix must be refreshed in
real time.

If the 3D coordinates and the corresponding 2D pixels
are known, the only unknown of the equations e:transform9
is the M , which consists of 6 moving parameters of the
camera: (x, y, z, θpitch, θyaw, θroll). These points, with
known 3D to 2D mapping relationship are called reference
points. Thus, when the camera moves, the first three refer-
ence points can be used to generate equations of M . The
Newton method is used to solve the nonlinear equations. It
is easily implemented in the system without any significant
computational power consumption.

According to the feature of DLT, the matrix obtained
from the above algorithm can only fit a small area close
to the current position of the instruments. Therefore, the
matrix needs to be modified continuously even when the
camera is fixed. In order to efficiently modify the transfor-
mation matrix, the error E is defined as below:

E := (∆u,∆v) = (u − u′, v − v′) (6)

Where (u, v) is the pixel position got from image analysis
and (u′, v′) is the pixel got from 3D to 2D mapping. E is
the vector indicating the difference between 2 separate data
sources. The modification rule is indicated in formula 7.

if
∑ |E| > TE

then refresh
else continue

(7)

Where TE is the threshold of accumulated error, and sumE
is the integration of errors, which can eliminate random
noise and calculation inaccuracy.

After obtaining the transformation matrix of the 3D to
2D mapping, the hybrid view is generated. At the begin-
ning, information sent from the lower processing level is
analyzed by the knowledge based engine. If no data are
available, the current fusion cycle will be ignored and noth-
ing will be generated. If only one data source is verified, the
tracks will be generated according to the one source. Oth-
erwise, the camera data is used to draw the hybrid view; at
the same time, data from both sources are used to refresh the
3D to 2D transformation matrix. The flow chart is shown in
Fig. 4.
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3 Experiment

To evaluate the proposed method, several experiments
have been conducted. We will describe the camera calibra-
tion, image analysis and the 3D-2D transformation results
separately in this section.

3.1 Camera calibration

Camera calibration is the first step of the hybrid view
fusion process. In our application, DLT is used to obtain the
camera parameters. To acquire the camera parameter vector
L, a calibration testing board is applied. The calibration
board contains a rectangular coordinate network of 1 × 1
inch in size with one inch margins. Thus the 3D coordinates
in the world space and the corresponding 2D pixels can be
determined easily.

The experiment process is described below:

• Fix the camera and calibration board in the space.

• Capture a picture of the calibration board by the cam-
era.

• Determine n(n > 6) pixels, as shown in Fig 5.

• Determine the related 3D points coordinates.

• Calculate the calibration parameters L.

Table. 1 shows the calibration error. The accuracy is high
enough and sufficient for the hybrid view application.

3.2 Image analysis

The image analysis experiment is shown in Fig. 6:
The left picture is the image captured from the camera.

Our aim is to determine the position of the color mark area.

Start

Source data 
input

Is Image data OK?

Use 3D to 2D 
mapping data

Is 3D to 2D 
data OK?Use Image Data

Draw hybrid 
view

Finish

Refresh
transformation

matrix

NoYes

No
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Figure 4. Hybrid view generation flow chart

Figure 5. Camera Calibration Board

Table 1. Camera calibration results
3D coordinate 2D 3D-2D map error
(mm) (pixel) (pixel) (pixel)

(7.18,-10.16,7.18) (495,430) (496.4,431.2) 1.8411
(5.39,-20.32,5.39) (447,162) (446.7,161.7) 0.4036
(3.59,-10.16,3.59) (419,441) (417.9,441.2) 1.1608
(0.00,-20.32,0.00) (306,117) (305.3,118.5) 1.6611
(-1.80,-10.16,-1.80) (251,464) (251.0,462.4) 1.6467
(-3.59,-20.32,-3.59) (168,77) (170.1,77.2) 2.0993
(-5.39,-10.16,-5.39) (84,479) (84.0,483.5) 4.5198

Figure 6. Image Analysis
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The middle picture shows the binary image after color seg-
mentation (the red color mark has been segmented well).
The right picture is the result of mass point calculation. The
green cross indicates the mass point of the color mark.

3.3 3D to 2D transformation

3D-2D transformation is the most complex part within
the system. It is also the most important part. The calibra-
tion board is used to show the feasibility of the algorithm
described above. The experiment is set up as follows:

• Capture a picture at position 1.

• Calculate camera parameters L according to the refer-
ence points.

• Move camera to position 2 and capture a new picture.

• Calculate a transfer matrix using 3 reference points.

• Calculate pixels from 3D space according to camera
parameters and transferring matrix.

The diagram in Fig. 7 shows the experiment process.
Two pictures captured by the same camera in two differ-
ent positions are shown. The geometric relations between
the camera and calibration board are shown at the bottom
of the picture. The camera takes the first picture at posi-
tion 1, then moves to position 2. During the experiment,
the calibration board is fixed, so the 3D coordinates of the
reference points will not change. Three reference points are
chosen in the second picture to calculate the transformation
matrix. After the calculation, a virtual path in the left pic-
ture is mapped to the right picture. Although they are the
same points in 3D space, due to the movement of the cam-
era, the hybrid paths are different. This is the reason we
use the hybrid view, which correctly describes the 3D to 2D
mapping relationships.

CCD
CameraCalibration Board Calibration Board

Picture captured Picture captured

Figure 7. 3d to 2D mapping experiment

After mapping the 3D space coordinates onto the 2D im-
age pixels, some errors can be found, as shown in Fig. 8.

The reasons for the errors are twofold: one is the calibration
method itself, the other is the transfer matrix. We use a lin-
ear transformation method to describe the mapping function
which discards the nonlinear distortion of the lens, thus er-
rors are unavoidable. The transformation matrix is acquired
by the Newton method, which is a nonlinear optimization
method, not an exact solution. According to the error dia-
gram in Fig. 9, the points near the reference points are more
accurate than the points more distant. Therefore, we need
to refresh the 3D-2D transformation matrix frequently.

In the VAST system, the microBIRD sensor is used to
in place of the calibration board for acquiring the 3D space
coordinates. All the other operations are the same as the
experiments described above.

Figure 8. Pixels obtained from transformation

Figure 9. Error Diagram of transformation

4 Conclusion

In this paper, a novel method of the realizing a hybrid
view within a virtual, assistive surgical training system has
been presented. The hybrid view, which is a subsystem of
a computerized laparoscopic surgery training system, helps
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confirm the erroneous movements without more expensive
sensors while reducing the complexity of the system. In the
proposed method, we use a multi-level processing model
to describe the architecture of the system. Intensity infor-
mation of the image analysis, 3D space Euclidean transfor-
mation, and digital camera calibration methods have been
presented. Experimental results demonstrate the feasibil-
ity of the proposed methods. Further advances need to be
made to provide three dimensional vision through a stereo
endoscope and haptic information from the tip of the instru-
ments. Currently, we are testing the system with medical
students and residents.
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