
Alert Fusion for A Computer Host Based Intrusion Detection System

Chuan Feng, Jianfeng Peng, Haiyan Qiao, Jerzy W. Rozenblit
Electrical and Computer Engineering Department

The University of Arizona
Tucson, Arizona 85721

Email: {fengc, jeff, haiyanq, jr}@ece.arizona.edu

Abstract

Intrusions impose tremendous threats to today’s com-
puter hosts. Intrusions using security breaches to achieve
unauthorized access or misuse of critical information can
have catastrophic consequences. To protect computer hosts
from the increasing threat of intrusion, various kinds of
Intrusion Detection Systems (IDSs) have been developed.
The main disadvantages of current IDSs are a high false
detection rate and the lack of post-intrusion decision sup-
port capability. To minimize these drawbacks, we propose
an event-driven intrusion detection architecture which inte-
grates Subject-Verb-Object (SVO) multi-point monitors and
an impact analysis engine. Alert fusion and verification
models are implemented to provide more reasonable intru-
sion information from incomplete, inconsistent or imprecise
alerts acquired by SVO monitors. DEVS formalism is used
to describe the model based design approach. Finally we
use the DEVS-JAVA simulation tool to show the feasibility
of the proposed system.

1 Introduction

The scale and intensity of information attacks have risen
over the years. These attacks usually cause severe loss to
individuals and businesses, and threaten the security of a
nation. Routine authentication and access control mecha-
nisms have proven inadequate in preventing attacks. Infor-
mation security infrastructure has relled more on Intrusion
Detection Systems (IDSs) [1]. Generally, an IDS detects
unwanted manipulations to a system, such as network at-
tacks against vulnerable services, data driven attacks on ap-
plications, host based attacks such as privilege escalation,
unauthorized access to sensitive files, and malwares.

Many techniques have been applied within IDSs to de-
tect intrusions, such as expert systems, state transitions,
probabilistic approaches, process profiling, etc. These var-
ious IDSs can be categorized into two classes: signature-

based and anomaly-based detections [2]. Signature-based
IDSs compare current events with known attacks and look
for similarities. The major limitation of the signature based
detection method is that it cannot detect novel attacks.
Anomaly based IDSs do not share this limitation since they
model normal behaviors and attempt to identify abnormal
activities of computer performance metrics. Fore this rea-
son, anomaly detection exceeds signature based detection.
However, anomaly detection systems are seldom imple-
mented due to their high false alert rate. Our intention is
to build a host based intrusion detection system that can de-
tect novel attacks with a low false alert rate.

All IDSs are based on the belief that an intruder’s be-
havior has measurable differences from that of a legitimate
user. Therefore how to manipulate the incoming event is a
big issue. Traditionally, IDSs treat an incoming event as a
single signal, which increase both false positive and nega-
tive alert rates. Our solution is to apply Subject-Verb-Object
multi-point monitors, which can detect deviations from nor-
mal behavior and trigger different alerts.

The issue of the SVO model is that when an IDS runs,
it will generate a tremendous number of events in real time.
Hence, it is inefficient and impractical for the system ad-
ministrator to react promptly. To minimize the cognitive
overload on administrators, yet present them with the infor-
mation they require, an alert fusion model is implemented
to collate the alerts from different sensors which provide
inconsistent information [6] [8] [11] [13] .

The proposed fusion model employs multi-level process-
ing architecture, which identifies categories of techniques
and algorithms for performing the specific functions [3] [4].
In addition to the source data and model interface, four pro-
cessing levels are involved: source preprocessing, alert data
normalization, spacial alert fusion, and temporal alert fu-
sion. A knowledge base is applied to improve the perfor-
mance of the fusion processes. Each processing level has
knowledge of the nature of the problem.

This paper is organized as following: section 2 describes
the SVO model and system architecture of the proposed

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

IDS. Section 4 presents the multi-level alert fusion model.
In section 3, we discuss the DEVS model design and simu-
lation using DEVS-JAVA in detail.

2 Event-Driven Intrusion Detection System

2.1 SVO Model

Subject-Verb-Object (SVO) is a linguistic typology con-
cept we use to describe the intrusion event. The Subject
refers to the origin of the action; the Verb indicates the sub-
ject’s action; and the Object denotes somebody or some-
thing involved in the subject’s performance. Any event hap-
pening inside a computer has its subject, which most often
is a running process. Here we explicitly differentiate the
subject from the owner, who is the actual user that runs the
process. Similarly, the verbs and objects can be identified.
Putting the subject, verb and object into a triple allows us
perform fine grain analysis of the events.

In order to reduce the triple events combination, a critical
event set is defined so that events out of this set either pose
no threat or are trivial threats that can be ignored. In the
current stage of our research, we focus on the critical set
that contains important files we want to protect.

2.2 System Architecture

With the SVO model and critical event set, the IDS ar-
chitecture is shown in Fig 1. In the figure, there is an SVO
anomaly detection engine, which consists of separate Sub-
ject, Verb and Object detection models; an alert fusion en-
gine; and a decision support model. They address problems
such as how to detect an abnormal event, what to do with
an alert and how to assist the system administrator when a
threat is identified.

System
MetaData

Subject
Monitor

Object
Monitor

Verb
Monitor

Alarm Fusion

Subject Alarm
Verb Alarm

Subject x Verb x Object
Decision
Support

Normal Normal
Event
Input

OutputNormal

ReferenceReference

Reference

Object Alarm

Output w/
Alarm

Fused Alarm

Figure 1. IDS system

3 Alert Fusion Model

The goal of the alert fusion model is to get more con-
sistent intrusion information based on the alert data coming

from the anomaly detection engine. The multi-level pro-
cessing model of the fusion model is shown in Fig. 2.

Data Fusion Engine

Data
Source

Pre-
processing

Alarm
normalization

Spacial
fusion

Interface

Knowledge Base

Temperal
fusion

Figure 2. Alert fusion model

The Data Source at the left end of Fig. 2 indicates alerts
from different anomaly monitors. The right end of the fig-
ure shows the system interface to the fusion system. Four
processing levels are presented in the figure. The first one
is Source Preprocessing, which synchronizes the informa-
tion flow from different sensors and reduces data overhead
for further levels. The second processing level is Alert Nor-
malization, which transforms different alerts into a consis-
tent set of scale. The third level is Spacial Alert Fusion,
which fuses alerts from different anomaly detection moni-
tors. The fourth level is Temporal Alert Fusion, which com-
bines alerts within a time sequence and gives more useful
intrusion information. The four levels are described below
in greater detail.

3.1 Source Preprocessing level

Source Preprocessing, the first step of alert fusion, ad-
dresses reducing the overhead alert information and dis-
tributing data to appropriate processes.

Following the SVO model, an event, such as “process A
read file B” will be divided into separate parts for analysis.
Because each anomaly detection monitor has its own
operational delay, the detected information (Alert/Normal)
is sent into the fusion model asynchronously. Before any
further operations, the preprocessing level synchronizes
the information flow. To discern events, a unique EventID
is assigned to each event before it is brought into various
monitors. Our synchronization engine uses the EventID
to combine alerts from different sources. The algorithm is
presented as following:

if EventID is in the queue
then add the detecting info into the slot.

if a slot is full
then output data to next processing level.
else continue.

else create a new slot.

Table 1 indicates one instance of the synchronization
queue. In this scenario, event 2001 will soon be sent for
further manipulation, so event 2002 will move into the first
slot. If a new event comes in, it will be put after event 2003.

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

Table 1. Synchronization queue
Slot EventID subject Verb Object

1 2001 abnormal normal abnormal
2 2002 normal normal waiting...
3 2003 waiting... normal waiting...

After synchronization, a knowledge based filter is im-
plemented to reduce overhead information for the next pro-
cessing level. The algorithm is shown below:

if e ∈ C
then output e to next level
else discard e

Where e is the event, and C expresses the critical event set.
For instance, a critical event set can be defined in the form:
“∗, write, c:\Windows*”, which indicates that any pro-
cess that tries to write files in the folder “c:\Windows”
will be considered as a critical event. The basic idea of the
filter is to discard any event that is not in the critical event
set so that it can minimize the load of next processing level.

3.2 Alert normalization level

The second processing level is alert normalization,
which transforms different kinds of alert into one consistent
set of scale. The STRIDE/DREAD threat model [7], devel-
oped by Michael Howard and David LeBlanc in Microsoft,
is applied to achieve this.

STRIDE stands for:

• Spoofing

• Tampering

• Repudiation

• Information disclosure

• Denial of service

• Elevation of privilege

And DREAD is an acronym for:

• Damage potential

• Reproducibility

• Exploitability

• Affected Users

• Discoverability

The first step of threat modeling is to create a model
of applications, then categorize threats to each attack tar-
get node with STRIDE. After that, we can apply a DREAD
category to evaluate the intrusion information.

In order to apply the STRIDE/DREAD model, a Cate-
gories Threat Level Function (CL Function) is implemented
as shown in Fig. 3, where the input of the CL function is the
alert and the output is the normalized score of the threat. Pa-
rameters of the function include the STRIDE/DREAD co-
efficients. Here we utilize a matrix with dimension m × n
as the threat modeling coefficients. Normally, m is equal to
6 and n is equal to 5, according to the STRIDE/DREAD.
Therefore up to 30 coefficients are involved. These coeffi-
cients can be set up in advance manually. A machine learn-
ing method such as the Backpropagation (BP) algorithm can
be used to improve the CL function in the future.

D

I

R

T

S

E

iSD
iSR

iSE
iSA

iS
D

iE
E

iE
A

iED

.

.

.

.

.

.

iE
R

iE
D

D

R

E

A

D

M
categories

N threat
levels

Input: (M, N) -
Parameter matrix

Output: f
-Normalized score

Function: C_L_Check()

Input:
Alarm

Figure 3. CL Function

3.3 Spacial Alert Fusion level

After the operations of the former processing levels, a
threat chart can be obtained. An example is shown in Ta-
ble 2, where each row indicates threat scores of different
features within one event. We called it spacial informa-
tion of the alert. In this processing level, the “spacial in-
formation” as we call it, will be fused into one unique
threat information using a two-stage fusing algorithm. The
first stage consolidates DREAD scores of different features
within SVO models. For example, a common computer pro-
cess, which is an instance of subject, has three features: user
of the process, process identification, and process common-
ality. User of the process also has three features, which are
user location (local or remote), user privilege, and user iden-
tification. The DREAD score of the process can be reached
using Equation 1.

Px =
6∑

1

Fx (1)

Where Px means one score within five DREAD categories
of the process(subject), and Fx means the corresponding
score of one feature. There are six features in our example,
so the score of the process is the sum of the six features.

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

Table 2. Threat chart
Event subject Verb Object

1 Feature 1 Operation Feature 1
Feature 2 Feature 2
... ...
Feature n Feature n

2 Feature 1 Operation Feature 1
Feature 2 Feature 2
... ...
Feature n Feature n

...

The second step is to combine the DREAD scores from
the SVO monitors into one score of the event. Here a pre-set
security index is utilized. For example, a ftp client is more
dangerous than Windows NotePAD because it may transfer
confidential files. Thus each process is assigned a danger
level, which indicates the potential hazard. In the same way,
files have their own importance level. So the final DREAD
score will be calculated as in Equation 2.

Ex = Sx ∗ Is + Ox ∗ Io + Iv (2)

where Ex is the final score within DREAD categories of the
event, Sx is the corresponding score of the Subject, Ox is
the DREAD score of the Object, Is is the security index of
Subject, Io is the security index of the Object, and Iv is the
security index of the Verb.

3.4 Temporal Alert Fusion level

Temporal Alert Fusion, the final processing level, is still
under development. The basic idea of this processing level
is fusing the alerts in a time sequence so that more intrusion
information can be acquired. A scenario tree will be built to
describe different intrusions. Figure 4 shows a scenario tree
[5] [12]. In the figure, the nodes are called scenario nodes,

Figure 4. Scenario Tree

which indicate system states. Any path through the nodes is
a sequence of intrusions. This processing level only sends
output information when the states have changed. Using

this tree, redundant alerts can be minimized. For instance,
an intruder keeps trying to send a confidential document
with high importance level to outside networks. Because

Illegal Reading in
same folderNormal Illegal Reading

Attempt to get
files within the

folder

Figure 5. Scenario Path

of Temporal Alert Fusion, the next model of the IDS will
receive one alert about this intrusion rather than thousands
of duplicated warnings, as shown in Fig 5.

4 DEVS Model Framework

Discrete Event System Specification (DEVS) [14] is ap-
plied in this paper to describe the system above. DEVS is
a state centered formalism approach which can model sys-
tems using an explicit timing specification. According to
DEVS system definition, a basic model consists of the fol-
lowing information:

• The set of input ports that receive external events.

• The set of output ports that sent events.

• The set of state variables and parameters.

• The time advanced function which controls the timing
of internal transitions.

• The internal transition function which specifies the
state transition at the time given by time advanced
function.

• The external transition function which specifies how
the states changed when an input is received.

• The confluent transition function which decides the
transition when conflict happens between internal and
external transition functions.

• The output function which gives output before an in-
ternal transition.

Events determine values appearing on ports. When ex-
ternal events are received, the model must determine how
to respond to them. Meanwhile, the model may change the
state automatically. In the following, the DEVS model of
our system is discussed in detail.

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

4.1 System Design

The DEVS system shown in Fig. 6 is designed according
to the IDS system shown in Fig. 1. Borland JBuilder 2005
and DEVS-JAVA 3.0 were used for development. The mon-
itor at the left side is applied to simulate the computer sys-
tem sensor, which provides the host event to the IDS. Sub-
ject checking and object checking are represented as two
coupling models of DEVS, which consist of atomic mod-
els. Verb checking has been integrated into the alert fusion
model for simplicity. Alert fusion and verification models
are placed at the right side as atomic models.

The Fig. 7 shows the details of the subject (process) and
object (file) checking models. Different feature checking
models are represented by DEVS atomic models. The basic
model is an abstract model called CheckProcess, which is
the parent class of all the feature checkers.

On the beginning, information sent from the lower pro-
cessing levels will be analyzed by the knowledge based en-
gine. If no data are available, the current fusion cycle is
ignored, and nothing is generated. Otherwise, a formalism
structure M is used to represent the system:

M =< X,S, Y, δext, δint, λ, ta > (3)

where X is the set of input data sources:

X = {(p, ev)|p ∈ InPorts, ev ∈ Event},
Where InPorts is the set of input ports and Event is the
related system event acquired from the system monitor.

Y is the set of outputs:

Y = {(p, ev)|p ∈ OutPorts, ev ∈ Event},
Where OutPorts is the set of output ports.

Event = {SystemInfo} × R+
0 , which is the prod-

uct of system information and DREAD score. So ev =
{(I,DREAD)|I ∈ {SystemInfo},DREAD ∈ R+

0 }.
S is the set of states:

S = {passive, normal, abnormal} × R+
0 ,

δext(phase, σ, e,X) is the external transition function.
It will be triggered when some input is available:

if phase = passive and Check() = normal
then δext = (normal, Tcheck, ev)
else if phase = passive and Check()! = normal

then δext = (abnormal, Tprocess +Tcheck, e′v)

Where Tprocess is the processing time of
STRIDE/DREAD evaluation; Tcheck is the feature check-
ing time; σ is the time advance, which indicates that after
σ time, the state of the system will transit automatically;
e′v = (ev.SystemInfo, ev.DREAD + DREAD).

δint(phase, σ, S) is the internal transition function,
which runs when the time elapsed is equal to σ:

δint = (passive,∞).

λ(phase, σ, ev) is the output function, which runs just
before the internal transition function δint,

λ = ev.

Time advanced function ta is defined as:

ta(phase, σ, (u, v)) = σ.

The only difference between the various feature check-
ers is the function Check() within the external transition
function δext.

4.2 Fusion Model Design

A multi-level alert fusion model is more complex than
the checking models. To minimize programming, the first
two processing levels, i.e., the Source Preprocessing and
Alert Normalization, are put into atomic feature checkers.
The function Check() in the external transition function
not only provides various feature checking mechanisms, but
also does a critical event set check and calculates the related
STRIDE/DREAD score. In this paper, the critical set and
STRIDE/DREAD matrix are predefined.

Within the alert fusion DEVS model, Spacial Alert Fu-
sion is achieved by equations 1 and 2. Verb checking is also
embedded into this model, so that different operations from
one process will relate to different security indexes of the
subject. The exact index value is set up in advance manu-
ally within our simulation.

Various system states and transition links are also de-
fined for temporal alert fusion. Thus the fusion model can
eliminate duplicate alerts efficiently.

DEVS model of fusion model is indicated in the follow-
ing:

F =< X,S, Y, δext, δint, λ, ta > (4)

The input set X and output set Y are the same as the ones
in feature checking models. In the alert fusion model, there
are two input ports, Inports = {”Subject”, ”Object”};
and two output ports, Outports = {”normal”, ”alert”}.

S is the set of states:

S = {passive, subject, object, normal, alert} × R+
0 ,

δext(phase, σ, e,X) is the external transition function,
which runs when some input is available:

if phase = passive and X = (”Subject”, ev)
then δext = (subject, Tprocess, ev)

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

Figure 6. DEVS framework of the IDS

Figure 7. Detail of the coupling models

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

if phase = passive and X = (”Object”, ev)
then δext = (object, Tprocess, ev)
if phase = subject and X = (”Object”, ev)
then if Fuse() = false

then δext = (normal, Tprocess, ev)
else δext = (alert, Tprocess, e

′
v)

if phase = object and X = (”Sbject”, ev)
then if Fuse() = false

then δext = (normal, Tprocess, ev)
else δext = (alert, Tprocess, e

′
v)

Tprocess is the processing time of calculation; σ is the
time advance; e′v is the fused DREAD score after spacial
and temporal alert fusion process. The fusion function
Fuse() can achieve the calculation.

λ(phase, σ, ev) is the output function.

if phase = normal
then λ = (”normal”, ev)
if phase = alert
then λ = (”alert”, ev)

Time advanced function ta is shown as below:

ta(phase, σ, (u, v)) = σ

4.3 Simulation

A DEVS-JAVA simulation is described in this section.
At first, imitation attack data are utilized to demonstrate the
feasibility of the proposed methods. The scenario is shown
as below.

First 100 system events are generated. Within the events,
3 intrusions are added. Event number 15 is an intrusion
where a legal user tries to access a file which he has no
privilege to open. Events number 35 to 45 indicate a sce-
nario where a remote access user tries to access a serious
important file that he has no right to access. Event 65 shows
an unauthorized user trying to access a file.

The simulation result indicates that 13 alerts have been
intercepted, the total number we inserted. The system
output is printed as following:

Alert! Event ID: 15
Object ID Check
User Location Check
File Attribute Check

Alert! Event ID: 35
User Privilege Check
File Attribute Check
Process Remote Connect Check

Alert! Event ID: 65
User Location Check

User Privilege Check
Process ID Check

The result shows the duplicated alerts from event 35 to
event 45 have been eliminated due to the temporal alert fu-
sion. The alerts from different features have been integrated
together due to spacial alert fusion. Therefore, only three
alerts were displayed to the administrator while no useful
information was discarded.

5 Conclusion

In this paper, an alert fusion model of the Subject-Verb-
Object model based computer host intrusion detection sys-
tem has been proposed. A multi-level alert fusion model
is used to minimize the duplicate alert information from
spacial and temporal aspects without losing information.
DEVS formalism implementation and DEVS-JAVA simu-
lation is applied to validate the model. Simulation results
indicate that the alert fusion system works well.

In the current research, the feature checking threshold
and STRIDE/DREAD matrix are predefined. In future re-
search, a machine learning mechanism can be applied to
help the system adapt complex intrusions.

References

[1] B. Mukherjee, L. Heberlein and K. Levitt, “Network
Intrusion Detection,” IEEE Network, 1994.

[2] K. Ilgun, “USTAT: A real-time intrusion detection
system for UNIX,” Proceedings of the 1993 IEEE
Symposium on Security and Privacy, 1993.

[3] D. L. Hall and J. Llinas, “An Introduction to Multi-
sensor Data Fusion,” Procedings of the IEEE, Vol. 85,
No. 1, pp. 6-23, 1997.

[4] S. Eyles and R. Westgarth, “The Specification of a
Submarine Data Fusion System,”IEEE Colloquium on
Principles and Applications of Data Fusion, pp. 1-8,
Fed 4 1991.

[5] S. Mathew, C. Shah and S. Upadhyaya, “An Alert
Fusion Framework for Situation Awareness of Co-
ordinated Multistage Attacks,” Processing of the
Third IEEE International Workshop on Information
Assurance, 2005.

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

[6] A. Chan, W. Ng and et al., “Comparision of Dif-
ferent Fusion Approaches For Network Intrusion
Detection Using Ensemble of RBFNN,” Proceeding
of the Fourth International Conference on Machines
Learning and Cybernetics, pp. 3846-3851, 2005.

[7] M. Howard and D. LeBlanc, “Writing Secure Code,”
Microsoft Press, 2nd edition (December 4, 2002)

[8] N. Ye, J. Giordano and et al., “Information Techniques
for Network Intrusion Detection,” IEEE Information
Technology Conference, 1998, pp 117-120, 1998.

[9] A. Siraj, R.B. Vaughn and S.M. Bridges, “Intrusion
Sensor Data Fusion in an Intelligent Intrusion Detec-
tion System Architecture,” Proceddings of the 37th
Hawaii International Conference on System Sciences,
pp 1-10, 2004.

[10] M. Shankar, N. Rao and S. Batsell, “Fusion Intrusion
Data For Detection and Containment,” IEEE Military
Communications Conference, 2003, pp 741-746,
2003.

[11] Y. Wang, H, Yang and et al., “Distributed Intrusion
Detection System Based on Data Fusion Method,”
Proceedings of the 5th world Congres on Intelligent
Control and Automation, pp 4331-4334, 2004.

[12] A. Siraj and R.B. Vaughn, “Multi-Level Alert Cluster-
ing for Intrusion Detection Sensor Data,” 2005 Annual
Meeting of the North American Fuzzy Information
Processing Society, pp. 748-753, 2005.

[13] N. Ye and M. Xu, “Information Fusion for Intrusion
Detection,” Proceedings of the Third International
Conference on Information Fusion, pp 17-20, 2000.

[14] B.P. Zeigler and H.S. Sarjoughian, “Introduction to
DEVS Modeling and Simulation with JAVA: Devel-
oping Component-Based Simulation Models,” Draft
Version 3, 2005

Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07)
0-7695-2772-8/07 $20.00 © 2007

