
Discrete Event System Specification (DEVS) and StateMate StateCharts
Equivalence for Embedded Systems Modeling

S. Schulz, T.C. Ewing, and J.W. Rozenblit
Department of Electrical and Computer Engineering

The University of Arizona
{sschulz|tce|jr}@ece.arizona.edu

Abstract
Recently, modeling has received a lot of attention in the
design of embedded computing systems. StateCharts is
one of the modeling specifications which has been
successfully implemented in a commercially available
tool suite. We argue that the DEVS formalism is more
expressive than StateCharts and can also be applied to
the design of such systems. In this paper we want to
show that we can in fact build equivalent StateChart
models directly from DEVS models and execute them in
the available development environments. The presented
mapping of the two system modeling formalisms
promises to combine the benefits of formally well-
defined models and a sound tool implementation.

1. Introduction
Various executable system modeling specifications

have been published which support the development of
embedded systems, e.g. DEVS [12], StateCharts [4],
CFSMs [1], SpecCharts [3]. Most of these
specifications are derived from formalisms which were
developed in academia. Some of the specifications were
implemented successfully in computing system design
tools which are used today in industry for complex
system design. In our research on model-based
codesign [10] we specify models using DEVS which
has so far been only implemented in academic trial
versions. Among the commercially available tools is
StateMate [6,7] which is based on the StateCharts
formalism. After performing research with both
specifications we decided to compare the two
underlying formalisms. Since both formalisms were
created for system modeling and are based on event
processing we expected to be able to map from one to
the other at some level of specification.

Bernard P. Zeigler introduced the classic Discrete
Event System Specification (DEVS) in 1976 [11]. It
originated from the field of systems theory where it is

used to model and simulate physical systems.
Fundamental to its underlying formalism is the notion
of a discrete event. Contrary to discrete simulation
where models are updated in specified time intervals
the state changes of model only occur instantaneously
at the time of scheduled discrete events in a continuous
time frame. DEVS is an executable specification which
is based on time extended, finite state automata. The
formalism also supports hierarchical, modular model
construction. Today it is applied and researched
worldwide in academia [9,10,11,12].

David Harel first published the StateCharts
specification in 1984 [5]. StateCharts were designed to
create specifications for reactive systems behavior
using a visual representation. Reactive systems include
most control oriented, high performance computing
systems. StateCharts started out as a concept from
theoretical computer science. They are based on finite
automata, which were adapted for visual representation.
The visual formalism and the semantics of this
executable specification can also be formally described
using set theoretic notation. For system modeling
purposes StateCharts semantics were extended with
Activity Charts [4,6]. The first commercially available
tool based on these ideas StateMate [7] was released by
i-Logix, which emerged from Harel's company Ad Cad.
StateCharts are used to specify system behavior in the
Unified Modeling Language (UML).

In this paper we first want to introduce system
modeling as it applies to embedded systems, then show
the theoretical foundation of the two formalisms, and
present an informal mapping between the two. We use
an example of a home heating system controller to
illustrate the mapping of DEVS model into a
StateCharts equivalent representation.

2. Modeling for the Design of Embedded
Systems

Currently we are developing a design methodology
for the design of embedded computing systems [2,10].
Our model-based approach offers rapid system

development, early design assessment, implementation
independent design as well as a mapping for system
models into a corresponding application
implementation.

We create system models from the initial
requirements specification. Complex systems are
iteratively refined from the abstract system model onto
a virtual application prototype. In a stepwise process
we start from a single component which is gradually
decomposed into multiple interacting components. The
refinement is facilitated by introducing the structural
and behavioral requirements of the specific application.
When the prototype has sufficient detail for a mapping,
an efficient hardware/software description is generated
for a mixed, integrated design implementation.

In stepwise model refinement, modularity is an
important concept. It fosters reuse of components in
different designs or design alternatives. More
importantly though we want to be able to decompose
designs into smaller components in order to reduce the
overall complexity. In specifications that strongly
support modularity we can develop and test modules in
isolation. A hierarchical representation allows us to
condense the information of these modules. Composed
models consist of multiple components which allow the
assessment of particular components as part of the
entire design.

Embedded systems can be subject to challenging
performance constraints. It is important to be able to
express timing parameters in our modeling formalism.
By simulating our system design models over time we
can acquire performance measurements and validate
their compliance with specified real-time constraints.
During simulation, each of the model components
generates behavioral trajectories encoded in their model
instructions. We analyze simulation results to assess
and validate the correct behavior of components or our
design in its entirety.

3. A Comparison of DEVS versus
StateCharts
Both DEVS and StateCharts support hierarchical,
modular specification of system models and base their
model execution on event processing. Nevertheless, the
underlying formalisms differ in how they support these
properties. We argue here that DEVS is a better defined
formalism and operates at a higher level of
specification. Structural aspects of a system can be
expressed by coupling constraints between components
which are implemented in point-to-point
communication. Composed models can be represented
in a network of coupled components as opposed to
StateCharts, which are based on the multi-component
specification and broadcast communication. Therefore
DEVS supports all the benefits of modular model

construction described in the previous section.
Limitations concerning the representation of structural
aspects of StateCharts for computer-based systems have
been documented in [8].

Due to its solid system theoretic foundation DEVS
is not limited to represent computing systems but can
be used to describe general physical systems by
including, e.g. mechanical components that the design
is interacting with. Contrary to StateCharts we are also
able to formally specify explicit timing in the
specification of our models. In the design of embedded
systems it is crucial to be able to validate real-time
performance requirements.

The lack of a complete formal definition of
StateCharts semantics (see [5]) is compensated for by
solid implementations of development tools. In general,
the StateCharts formalism tends to be better specified
by its implementation and informal papers [4,6] rather
that its set theoretic definition. StateCharts are officially
part of the UML specification which makes it the de
facto standard for system modelers worldwide.

We now show the equivalence of the two
formalisms at the level of model components. In
essence, we want to show here that it is possible to map
any DEVS atomic model to StateCharts, and vice versa.
Although structural information can not be formally
specified in StateCharts it can be represented in its
StateMate implementation using Activity Charts and a
proper naming of StateChart events. A structured
approach to the mapping from DEVS to StateCharts
can therefore preserve this additional design
information. Before we provide an informal mapping at
the component level we continue with a brief
description of the two formalisms.

3.1 DEVS Models

3.1.1 Atomic models
A DEVS atomic model is defined as follows:

M DEVS = < XDEVS, SDEVS, YDEVS, δDEVS, λDEVS,
 taDEVS >

where:
XDEVS is set of the input values
SDEVS is a set of states
YDEVS is a set of output values
δDEVS is the state transition function;

δDEVS: QDEVS × { XDEVS ∪{ ∅}} → SDEVS

with QDEVS = { (s, e) | s ∈ SDEVS,
 0 ≤ e ≤ taDEVS(s) }

λDEVS is the output function;
λDEVS: QDEVS → YDEVS

taDEVS is the time advance function;
taDEVS: SDEVS → ℜ0

+

(∅ represents the empty set)

While an external transition is triggered by arriving
inputs, an internal transition is associated with every
state s of the atomic model component. The time
advance function returns the time to the next scheduled
internal. We define e to be the elapsed time in a state s
from the time of the last transition of the component to
the current point in time. The transition and the output
function use this information to map the current state of
the model component to the next state or the
appropriate outputs, respectively.

3.1.2 Coupled Models
We can define a DEVS composed model as a

network coupled model components N = {XN, YN, D,
{M d}, {I d∪{ N}}, {Zd∪{ N}}} . D is a set of component
references where d ∈ D refers to a DEVS atomic model
component specification M d. Next we specify the set of
influencing components for M d to be I d∪{ N} ⊆ D ∪ {N}
where N is the specification of the network of system
components itself. The coupling of the components is
achieved by introducing the set of output mapping
functions Zd∪{ N} : ×I d ∪ {N}

Yout → Xin. Here, Yout consists

of a subset of the set of output values of all influencers
and the set of inputs to the network XN. Xin corresponds
to the set of input values of the model component M d or
a set of output values of the network YN.

3.1.3 DEVS Semantics
The semantics of a model component are mostly

specified by the time advance function of formal atomic
model component description. We first briefly
summarize the most essential details involved in the
state transition of a single atomic model component and
then outline model execution for composed models.

External events can cause an instantaneous
transition from the current state s of a model
component to its next state s' as a function of the
external input values and elapsed time in that state e.
Internal transitions are scheduled by the component
itself according to its time advance function taDEVS(s).
When the elapsed time e reaches taDEVS(s) the output
function λDEVS of the corresponding model component
computes the output values based on the current state s.
Immediately afterwards its current state s gets replaced
by its next state s' and e is reset to zero.

Since composed models consist of coupled atomic
models the same semantics apply. In DEVS, a
simulator handles the scheduling and interaction of
components. After the initialization of the components
to their initial state the simulator initializes the
simulation time tSim to t0. Then it polls each of the j
model components for their remaining time in their
current state sj to next internal transition taDEVSj(sj) - ej.

These scheduled events are sorted in an increasing
order and the simulation clock is advanced by the
minimum time of all listed time advances σ =
min(taDEVSj(sj) - ej), i.e. tSim' = tSim + σ. The elapsed time

of all other model components ej is updated to ej + σ.
If there are multiple components scheduled at time

tSim' a tie breaker called the select function will resolve
the conflict and put the respective model components
into an execution order. Each of these components will
then first call its output function as described above.
Then its output translation function will convert
generated outputs into inputs for influenced
components, and each of the influenced components is
called to transition on these inputs. These components
may change their state, reset their elapsed time, and
update their time advance function. Finally the
scheduled component will go through its own internal
transition as described in the previous paragraph. This
sequence of steps is repeated for all of the tied
components that are scheduled to transition at time tSim'.
After all these components finish executing the updated
scheduling list is reordered and the selection process
repeats.

3.2 StateCharts

3.2.1 StateCharts and Basic Activities
StateCharts define the behavior of a system by a

collection of states and state transitions. Both aspects
can be represented visually, hierarchically, and
concurrently. Transitions can be triggered by a set of
events or conditions and cause a set of actions. Changes
in variables or conditions produce also events. Events
that occur within a StateChart are broadcast throughout
the entire StateChart.

Formally the graphical representation of a
StateChart can be described as follows:

M StateChart = { E, S, A, L, T, V, C }

where:
E is a set of events
S is a set of states1

A is a set of actions
L is a set of labels; L = E × A
T is a set of transitions;

T = { SSource, l, STarget } with l ∈ L ,
 T ⊂ 2S × L × 2S, SSource ⊂ S, and
 STarget ⊂ S

V is a set of variables
C is a set of conditions

1The original paper also introduces a history state. Its addition
increases the sets S and STarget. We omitted this detail for simplicity
and refer the reader for more information to [5,6].

The sets E, A, V, and C are inductively defined.
Actions can be used to assign values to conditions or
variables, and to generate events. The transition t ∈ T
can connect a set of states via a label l to a set of next
states. The number of possible system states (i.e. the
size of the power set of S) is effectively reduced by
using the hierarchical and orthogonal representation of
states within a StateChart.

The system configuration of a StateChart can be
formally defined for a time step at a time t as follows:

SCt = {XStateChart, ΠStateChart, ΘStateChart, ξStateChart}

where:
XStateChart is the maximal state configuration at the

last transition time ti
ΠStateChart is a set of external events that occurred in

the time step [ti, t)
ΘStateChart is a set of conditions true at time t-

ξStateChart is a function returning the value of a
variable at time t-; ξ(variable) = value

For all definitions ti marks the beginning of the current
time step and obviously ti ≤ t. The maximal state
configuration XStateChart refers to the maximal set of
composed orthogonal states which themselves only
consist of basic states, i.e. states that have no
descendents. The state configuration of a StateChart
therefore represents the state of the model component.
At the end of the time step the set ΘStateChart and the
mapping ξStateChart are updated according to the actions
taken during the time step. Input and output interfaces
are defined in an activity.

3.2.2 Activity Charts
Activity Charts are hierarchical data-flow diagrams

which consist of activities. They were introduced in the
StateMate [6,7] implementation to model structural
aspects of a system whose behavior is modeled with
StateCharts. Composed models consist of multiple
activities in an Activity Chart. Activities are arranged in
form of a non-coupled multi-component system: Model
components, which are represented by activities, still
base their transition and output functions on a set of
influencing components but network inputs and outputs
as well as global variables affect each and every
component in the entire system model.

A StateChart can be associated with any activity at
any level of the component hierarchy. They either
specify interfaces and information flow of descendant
activities, or model higher level behavioral aspects of
the system. Data structures, external events and
behavior of an activity can be visible to all of its
descendants.

Finally we can also define explicit control and data
flow channels between activities. This feature makes

the interaction of activities in different branches of the
hierarchy tree possible. In the source and target activity
events, conditions, or variables need to be associated
with these channels.

3.2.3 Semantics of StateCharts
We observed that a formal StateCharts model

description has hardly any concept of time. But this fact
should not deceive the reader: Time delays can be
specified in special time functions. The StateMate
simulator supports modeling in two time models:
asynchronous and synchronous time. The first one
essentially allows scheduling of events in a continuous
time frame while the second one uses discrete time
steps. We will restrict ourselves to the use of the
asynchronous time model in this paper. First, we will
start analyzing the semantics at the model component
level, i.e. a single basic activity.

For a StateCharts model component time advance is
indirectly specified in a time step or time interval. A
time step in the asynchronous time model is actually
decomposed into a finite sequence of instantaneous
µsteps. The actual duration of a time step can be
differently defined for each StateChart based on a basic
time unit and independent of its ranking in the activity
hierarchy.

Each µstep corresponds to a single transition t (or
multiple single transitions if the StateChart has
orthogonal states) caused in a chain of events. Events
only exist for a single µstep after which they vanish.
The instantaneous chain reaction is triggered by the
arrival of external event and terminates after all internal
events generated by actions are absorbed, i.e. it enters a
stable configuration. Internal events as well as external
events get broadcast each µstep within the entire
StateChart.

To complete the semantics of a StateChart state
transition we still need to formally describe a system
reaction:

SRt = < ϒStateChart, Π
g
StateChart >

where:
ϒStateChart is a set of transitions taken

simultaneously in the time interval [ti,
t); ϒStateChart ⊂ T

Πg
 StateChart is a set of events generated by

ϒStateChart

Here, SRt refers to the system reaction which follows a
system configuration SCt. The system reaction at time t
is the result of a chain reaction of µsteps that lead to a
stable state configuration. ϒStateChart and Πg

 StateChart are
a history of taken transitions and scheduled internal
events in that time step. The latter set is composed of
atomic events which can include regular (named)

events and events generated by changes in variables
and conditions. ϒStateChart and Πg

 StateChart are generated
from the execution of micro system configurations
(µSC) where µSC0 = SCt. A µSC is defined similar to a
system configuration and was covered informally in the
previous discussion of the µstep. For a detailed formal
definition we refer the reader to [5].

By default StateChart transitions are executed in
zero time. These instantaneous transitions can be
delayed explicitly by associating special time functions
as actions with them. The schedule(e, n) function
schedules the event e to be effective n time steps into
the future while the timeout(e, n) function works
similar to a watchdog timer.

In composed models a component is only executed
if its activity is activated. Here we encounter two
modes of operation for model execution. In a hardware
style model execution all activities are active at any
point in time. In a software style model execution only
the highest level activity is active while all others are
deactivated by default. Deactivated activities can be
explicitly activated by the StateChart of their higher
level activity.

During model execution the duration of the time
step is determined by the next earliest scheduled event
of all activated StateCharts. The global simulation
clock is then advanced by time difference. Events
scheduled for that time get added to the set of external
events and all activated StateCharts take their first
µstep. Since all external and global events are broadcast
multiple activated StateCharts are in essence executed
like orthogonal states in single StateChart.

After each µstep in the time step is executed a set of
generated events are broadcast in all activated
StateCharts. This includes globally declared events and
events associated with communication channels.
StateChart components only react to an event if it
triggers any of their next transitions. Changed variables
and conditions get updated accordingly. µsteps get
executed repetitively as described until the entire
composed model reaches a stable state. Finally the
other scheduled events get their waiting time adjusted
and the model execution repeats.

4. Home Heating System Example
To demonstrate a mapping from DEVS to

StateCharts, we will use the Home Heating System
Controller which was first presented in [8]. The
requirements for the system are as follows:

1. The Controller monitors Room Temperature within
1 second of Switch Position = HEAT.

2. If Room Temperature < (Desired Temperature (Hd)
– 2), then Motor Command = ON after 1 second.

3. If Motor Speed > Predefined Motor Speed (Sd),
then turn on furnace (Oil Valve = OPEN and
Ignite).

4. If Water Temperature > Predefined Water
Temperature (Tw), then Circulation = ON.

5. If the Fuel or Combustion Sensor detects errors
(Combustion_Error, Fuel_Low), then turn off
furnace (Oil Valve = CLOSE, wait 5 seconds,
Circulation = OFF and Motor Command = OFF).

6. If Room Temperature > (Hd + 2), then turn off
furnace (Oil Valve = CLOSE, wait 5 seconds,
Circulation = OFF and Motor Command = OFF).

Additional Constraints are:
• The minimum time between Motor Command =

OFF and Motor Command = On is 300 seconds.
• The Furnace cannot be on continuously for more

than maxontime seconds.

The corresponding composed DEVS model which
models the Controller unit in its environment is shown
in Figure 1.

Controller
Hd, Tw,Sd

Motor

Inputs Outputs

Furnace
Water
Pump

Main
Switch

User
Interface

Room Heat
Model

Environment

Figure 1. Block Diagram of Heat Controller in its
Environment

The atomic DEVS Controller component interacts
with the rest of the environment by receiving the
Desired Temperature from the user interface, Fuel
Level and Combustion Sensor from the furnace, Room
Temperature from the room heat, Motor Speed from the
motor, Water Temperature from the water pump, and
Switch Position from the main switch model as inputs.
Control outputs of the component are the Motor
Command to the motor, Oil Valve and Ignite to the
furnace, and Circulation to the water pump model.

4.1 The DEVS Atomic Model
We can show the behavior of a DEVS atomic model

with a DEVS diagram. Here states are represented by
bubbles, external state transitions by solid arrows, and
internal state transitions by dashed arrows. The initial
state of a DEVS atomic component is shown with an
arrow that has no source. The time advance for each

Controller

Off
ta=°

L1

Furnace On
ta=maxontime

- MWT

Motor
Control

ta=0

Motor_Command :=ON

Motor
Monitor
ta = °

Motor_Speed > Sd

Furnace
Control

ta=0 Oil_Valve := OPEN
Ignite

Pump Monitor
ta=maxontime

Exceptions
ta=0

Circulation:=ON

Pump
Control

ta=0

Water_Temperature > Tw

(MWT := e_t)

Combustion_Error
Fuel_Low

Oil_Valve := CLOSE

Furnace
Off

ta=1

Pump Off
ta=5

L3

Furnace
Idle
ta=°

L4

Motor
Restart
ta = 300

L2

L5

L1 Switch_Position = HEAT; (Hd := Desired_Temperature)
L2 Switch_Position = OFF
L3 Circulation := OFF; Motor_Command := OFF
L4 Room_Temperature < (Hd – 2)
L5 Room_Temperature > (Hd + 2) OR Switch_Position = OFF

Figure 2. Behavior of DEVS Atomic Controller Component

state is shown in the corresponding state bubble. Labels
on solid arrows show conditions on input variables and
the elapsed time e_t needed to take this transition.
Output variables and assigned values are shown as
labels on internal transitions. Assignments of important
system variables can be shown on any transition in
parenthesis. Variables are printed in bold and events in
regular italic script. The DEVS diagram of the
Controller component is illustrated in Figure 2.

4.2 An Informal Bi-Directional DEVS,
StateCharts Mapping

In this section we present an informal mapping
which allows a mapping in both directions. We
illustrate the mapping by converting the DEVS model
of our design example into an equivalent StateChart
specification.

There exists a strong correlation between the input
and the output set of a model component. Input arrivals
and generated outputs are communicated to the

simulator using events. While the StateCharts
formalism is entirely based on named events in DEVS
events have both, a name and a value.

XDEVS ↔ ΠΠStateChart

YDEVS ↔ ΠΠg
StateChart

We can convert inputs and outputs in between the two
formalisms by associating a StateChart event and a
variable with every mapped DEVS event. In our
example the set of inputs for the controller is XDEVS =
{Switch Position, Desired Temperature, Room
Temperature, Water Temperature, Motor Speed, Fuel
Level, Combustion Sensor} and set of outputs YDEVS =
{Motor Command, Oil Valve, Ignite, Circulation}.
These sets are converted into the corresponding
StateCharts event sets ΠStateChart = {SP_event,
DT_event, RT_event, WT_event, MS_event,
Fuel_Low, Combustion_Error} and Πg

StateChart =
{MC_event, OV_event, Ignite, C_event}. In addition, a
set of variables is created which is named after the

DEVS event sets which used in the StateChart
transitions in conjunction with the events which are part
of ΠStateChart and Πg

StateChart.
We determined that there is a direct mapping for the

state set of a model component:

QDEVS ↔ ∪all XStateChart

or
 (s∈ SDEVS, e) ∈ QDEVS ↔ XStateChart

XStateChart is defined as the maximal state configuration
of a StateChart at a specific point in time. Therefore,
the union all maximal state configurations (over time)
refers to all possible states that a StateChart will ever be
in.

In DEVS the concept of a state is augmented with a
notion of time. Fortunately we can compensate for the
lack of information in our StateChart equivalent model.
We directly map the original set of DEVS states SDEVS

to a set of StateChart states but introduce an extra
orthogonal state to all other states called sET which
keeps track of the elapsed time in the StateCharts
model with an e_t variable. Mapping the original state
set from StateCharts to DEVS is trivial. We map the set
of StateCharts states directly to the set of DEVS States
and set the elapsed time e always to zero. Notice that
we need to introduce also a state for each StateChart
transition in this mapping since in DEVS outputs can
only be generated after an internal transition.

The DEVS state set in our example SDEVS = {Off,
Furnace Idle, Motor Control, Motor Monitor, Furnace
Control, Pump Monitor, Pump Control, Furnace On,
Furnace Off, Pump Off, Motor Restart, Exceptions}
becomes SStateChart = SDEVS ∪ sET. From our mapping it
follows that for each (si, e) ∈ QDEVS we have an
equivalent XStateChart = {si , sET}.

The state transition functions is only explicitly
defined in DEVS. Combining information from the
StateCharts system configuration and reaction we can
also describe a transition function.

δDEVS: QDEVS × (XDEVS ∪{ ∅}) → SDEVS ↔
δStateChart: XStateChart × ϒStateChart → XStateChart

In StateCharts, component state transition is defined
implicitly in the time step. Our function δStateChart maps
a state configuration before the time step with a set of
taken transitions ϒStateChart to a new state configuration
after the time step. The graphical representation of our
DEVS atomic model makes the conversion to
StateCharts very easy. State transitions and labels for
each state as shown in the DEVS diagram are directly
converted into transition arcs with associated events
and actions.

A StateCharts output function is indirectly specified
by the system reaction:

λDEVS ↔ λλStateChart

Let the set Aϒ ⊂ A be the subset of actions that are
associated with transitions ϒStateChart taken during a
time step. Aϒ contains events which update variable
values and conditions or affect other transitions directly
as named events during a time step. Then λStateChart is
defined by Aϒ. Both functions return output values just
before the end of there respective time step. Similarly
as for the transition function the conversion form the
DEVS diagram to a StateChart is trivial and involves
the conversion of internal transition labels into actions
for its corresponding transition arc.

Time advance is specified differently in the two
formalisms. While DEVS includes timing in its formal
definition of an atomic model. We can informally
specify time delays using one of the time functions in
StateCharts. It is fairly straight forward to create a
mapping for the DEVS time advance function to
StateCharts. We do so by using the timeout() time
function to specify an internal transition for a
component state:

taDEVS(s) → taStateChart:
timeout(entering_state_s, taDEVS(s))

The mapping in the opposite direction is trivial for the
case when no time functions are used in the StateChart:

taDEVS(s) = 0 ← taStateChart

If the StateChart uses time functions we need to
introduce additional DEVS components and states
which reproduce the StateCharts simulator scheduling
behavior in order to create a valid mapping.

4.3 The Equivalent StateCharts Model
Component
The equivalent StateChart representation of our Home
Heating System Controller is shown in Figure 3. The
figure was directly derived from our DEVS example in
previous section using our informal mapping from
DEVS to StateCharts. Notice that the transition arc
labels include both an event and variable values.
Conditions on the elapsed time in the current state are
added in the corresponding triggering conditions if
necessary. In addition, reset_e_t and updated_sigma
events handle the DEVS-like time advance of the
elapsed time variable e_t which is only manipulated in
state sET. The variable sigma is used for implementing
the DEVS component scheduling of composed models.

5. Conclusions
By using DEVS as opposed to StateCharts we are

able to model both the structure and behavior of an
embedded system. We presented here an informal
mapping of which allows a conversion of any DEVS
model component into an equivalent StateMate
StateCharts representation. The structure of the DEVS

L1

L7

L8
L9

L12

L10

L13

L14

L6
Off

Motor
Control

Furnace
Idle

Motor
Monitor

Furnace
Control

Pump
Monitor

Pump
Control

Furnace
On

Exceptions

Furnace
Off

Pump
Off

Motor
Restart

L11

SET

/e_t=0

Let1

Let2

L15

Controller

L2

L3

L5

L4

L1 (SP_event and [Switch_Position = HEAT]) / Hd = Desired_Temperature ; reset_e_t
L2 (SP_event and [Switch_Position = OFF]) / reset_e_t
L3 tm(en(Motor Restart), 300) / sigma = (300 - e_t); updated_sigma; reset_e_t
L4 (RT_event and [Room_Temperature < (Hd – 2)]) / reset_e_t
L5 ((RT_event and [Room_Temperature > (Hd + 2)]) OR (SP_event and [Switch_Position = OFF])) / reset_e_t
L6 tm(en(Motor Restart), 5) / C_event; Circulation = OFF; MC_event; Motor_Command = OFF; sigma = (5 - e_t);

updated_sigma; reset_e_t
L7 / MC_event; Motor_Command = ON; reset_e_t
L8 (MS_event and [Motor_Speed > Sd]) / reset_e_t
L9 / OV_event; Oil_Valve = OPEN; Ignite; reset_e_t
L10 (WT_event and [Water_Temperature > Tw]) / MWT = e_t; reset_e_t
L11 tm(en(Pump Monitor), maxontime) / sigma = (maxontime - e_t); updated_sigma; reset_e_t
L12 / C_event ; Circulation = ON; reset_e_t
L13 (tm(en(Furnace On), maxontime - MWT) OR Combustion_Error OR Fuel_Low) / reset_e_t
L14 tm(en(Furnace Off), 1) / OV_event; Oil_Valve = CLOSE; sigma = (1 - e_t); updated_sigma; reset_e_t
L15 / reset_e_t
Let1 reset_e_t / e_t = 0
Let2 (not(reset_e_t) and updated_sigma) / e_t = e_t + sigma

Figure 3. The StateCharts Controller

model can be preserved by creating Activity Charts for
each of the components with corresponding StateCharts
which describe their behavior. We choose StateCharts
due to a broad support by a sophisticated suite of tools.

While our presented mapping applies only directly
for model components but not necessarily for
composed models we are working on a complete formal
proof of equivalence at the level of a global state of a
composed model. We want to point out that composed
models can be converted in both specifications into one
single component: DEVS is closed under coupling and
any composed StateCharts model can be represented as
a single StateChart with orthogonal states.

6. Acknowledgements
We would like to thank Hessam Sarjoughian for his

help on some DEVS related questions. This work has
been supported by the National Science Foundation
under grant No. 9554561 “Hardware/Software
Codesign for High Performance Systems” in
cooperation with Infineon Technologies, Central
Research and Development Laboratories, München,
Germany.

7. References
[1] F. Balarin et al., Hardware-Software Co-Design of

Embedded Systems – The POLIS Approach, Norwell,
MA, Kluwer Academic Publishers, 1997.

[2] S.J. Cunning, T.C. Ewing, J.T. Olson, J.W. Rozenblit,
and S. Schulz, " Towards an Integrated, Model-Based
Codesign Environment", Proceedings of the IEEE
Conference and Workshop on Engineering of
Computer Based Systems, Nashville, TN, 136-43,
March 1999.

[3] D. Gajski et al., Specification and Design of
Embedded Systems, Englewood Cliffs, NJ: Prentice-
Hall, 1994.

[4] D. Harel and A. Naamad, "The STATEMATE
Semantics of StateCharts", ACM Transactions on
Software Engineering Methodology, p. 293-333,
October 1996.

[5] D. Harel et al., "On the Formal Semantics of
StateCharts", Proceedings of the Symposium on Logic
in Computer Science, pp. 54-64, 1987.

[6] D. Harel et al., “STATEMATE: A Working
Environment for the Development of Complex
Reactive Systems”, IEEE Transactions on Software
Engineering, 16(4), pp. 403-14, 1990.

[7] i-Logix Inc., Statemate Technical Overview, 1995.
[8] M. Peleg, and D. Dori, "Specifying Reactive Systems

through the Object-Process Methodology",
Proceedings of the IEEE Conference on Engineering
of Computer-Based Systems, Jerusalem, Israel, 29-36,
March 1998.

[9] H. Praehofer, “System Theoretic Formalisms for
Combined Discrete-Continuous System Simulation,”
International Journal of Systems, Vol. 19, pp. 219-40,
1991.

[10] S. Schulz, J.W. Rozenblit, M. Mrva, and K.
Buchenrieder, "Model-Based Codesign", IEEE
Computer, 31(8), 1998.

[11] B.P. Zeigler, Theory of Modeling and Simulation,
John Wiley & Sons, New York, 1976.

[12] B.P. Zeigler, Object Oriented Simulation with
Hierarchical Models, Copyright by Author, 1995.

