NASA GSFC ILL
ILLiad TN: 62767 *©2757*

Borrower: AZU

Lending String: *NAG,NAG,NAG,NAG,NAG
Patron: Valenzuela, Michael L

NAS

Journal Title: Reconfigurable architechtures ; high
performance by Configware /

Volume: Issue:
Month/Year: 1997Pages: 49-54

Article Author:

Article Title: Ewing, T.C. and Rozenblit, JW.;
Simulation-Based Verification in HW/SW Codesign;
An FPGA Approach

Imprint: Chicago ; ITpress Verlag, ¢c1997.

ILL Number: 78750186

78750186%

call #: QA76.9 .A73 R43 1997260 Ci7 i1
Location: Book Stacks

ODYSSEY

ODYSSEY ENABLED

Charge
Maxcost: $50IFM

Shipping Address:

UNIVERSITY ARIZONA LIBRARIES/ILL
1510 E UNIVERSITY

TUCSON, AZ. 85720-0055

Fax: (520)621-4619
Ariel: 128.196.228.120

Simulation-Based Verification in HW/SW Codesign:
An FPGA Approach”*

Tony Ewing and Jerzy W. Rozenblit
Department of Electrical and Computer Engineering
The University of Arizona '
Tucson, Arizona 85721-0104, USA
{tceljr@ece.arizona.edu}

Abstract

This paper develops design principles for a reconfigurable system to assist in verification
of HW/SW systems developed using model-based codesign [1]. One of the key issues in
codesign is the verification of specifications and requirements prior to system
implementation and deployment. Simulation is used as a means for gathering data
necessary to assess if the specifications are met by a proposed design solution. However,
one must ensure that hardware, software, and interfaces are all simulated correctly. We
argue that the use of an FPGA will enable us to simulate hardware and its interfaces more
accurately and efficiently. Our goal is to demonstrate that the use of an in-system FPGA
will be much more efficient than using software simulation of hardware to detect timing
and other design errors.

1. Introduction and Motivation

The design method of model-based codesign views a system as a source of observable data.
If a real system exists, this would be measurements of outputs for the system for a given set
of inputs. When designing a new system the input to output relationship is determined by
the specifications of the system. A model is a set of instructions that capture the behavior
or a subset of the behavior of the desired real system.

When using model-based codesign, it is important to be able to correctly and efficiently
simulate the model of the system being designed. A simulator runs the model and allows
the model to interact with an experimental frame.[1] The experimental frame allows
measurement of the behavior of the model. It obtains the answers to questions about the
system being designed. This separation of the model from measurements made on the
model allows the same testing apparatus to be used for any proposed model. This means
that the measurement of properties of the system is independent of the model used to
generate the data. This allows for many different proposed systems to be simulated before
partitioning of the system into its components. The experimental frame aiso allows
verification that a refined model (or the real system) behave the same as the specification
of the proposed system. The design comes from the iterative process of refining a current
model, then determining if the new version meets more of the requirements. During this
process different decisions can be compared to determine which solutions are good. When
the model is refined enough to be implemented, a system is needed to convert the system
into a usable prototype. When this prototype is built, new constraints on the design may be
found. These new constraints should be used to improve the model, and the experiment

* This research has been supported by the National Science Foundation under grant No. 9554561
“Hardware/Software Codesign for High Performance Systems”

49

base. When the final system is deployed, the model used to build it should be available.
This model can be placed into a library to help with designing future systems. A user can
test the system by designing their own experiments to see if it also meets their needs.

System

Specification

Modeling
p

Refinement

Simulation-Based
Verification

Experimental
Frame Base

Technology
Assignment

L M E

Figure 1: Model-Based Codesign

In the specific field of embedded systems there are some requirements not present in the
simulation of software only or hardware only systems. Some of the properties of
embedded systems that make simulation difficult are real-time IO, custom hardware
interfaces, and software on custom hardware.

The first property of embedded systems that makes simulation difficult is real-time I/O.
This IO can be both analog and digital, and can be used to control mechanical systems. In
a pure software simulation system, the /O must be simulated along with its effects on the
mechanical systems. This forces the experimentat frame to be complex. It is required that
the experimental frame be an accurate representation of how the real mechanical system
responds.

Another property of embedded systems that causes problems is the use of custom hardware
that interfaces with /O signals. Most simulations ignore the interfacing because the virtual
signals are easy to interface with. The sensitivity of the interfacing to exact values is not
generally tested, because it would make the simulation have multiple copies of the model
with slightly different parameters. However, when the real system is built, tolerances on
components exist so each real system is slightly different.

Software running on custom hardware forces a simulator to run a virtual machine inside a
virtual simulation of a real system. This causes simulations to be slow and not able to
interact under the real-time constraints. The interactions between the custom hardware and

the devices it controls are highly dependent on the timing. The simulation must have
enough time resolution to capture these interfaces.

There are many commercial simulation tools available including Arena[12], Statemate[13],
SES/workbench[14], and Modsim I [15]. These tools are relatively easy to use and can
generate models of a wide variety of systems. They are good for testing a concept or
determining feasibility of a system. However, they lack in the ability to separate the
experiment from the model that is running. It is difficult to rapidly test muitiple models
and compare the results. Another probiem with these tools is that they are hard to interface
to a real system.

There are also design environments such as Cadence[7], Mentor Graphics[8], Altera[9],
and Xilinx[10]. These environments limit themselves to hardware design. These tools are
designed to aid in ASIC VLSI design, or for designing systems to be placed on their
(FPGA) hardware. The simulation tools are tightly coupled to the product used. A change
from one design tool to another means the entire model needs to be redone in the new
design environment. These tools are very good for designing specific hardware, but the
testing of software to run on the hardware is difficult and time consuming.

Other systems developed at universities such as the Ptolemy/Gabriel System [2] from UC
Berkeley can handle Hardware/Software Codesign. The problem is that the system is
specialized to handle DSP systems. This limits the scope of designs to specific hardware
before the specifications are fully known for the system. If the system grows beyond the
capabilities of a DSP system, another design tool must be used to implement it. Ptolemy
does a good job of separating the model from the experiment, but it forces an early
partitioning of hardware and software in the model. The Ptolemy system also works with
only one level of the design. It would be difficult to start with a conceptual model, then
refine it to a working model.

The simulation of mechatronic systems is more difficult due to the real-time demands. The
mechanical system must be accurately modeled, or the simulation must be able to handle
real-time interactions with a mechanical system. The VO of mechatronic systems is usually
tested only in a virtual simulation, but the /O is a major problem in implementing the real
system.

2. Cosimulation Methods

There are a few different methods of cosimulation of a model. One method is to limit the
design to known hardware. Another one is to use a hardware accelerator to perform
computations for the experimental frame. Another method is to choose the transducers
based on known requirements and interface directly to them. Finally, a unified
representation scheme can be used to aid in simulation.

The first method of limiting the design to built hardware limits the design space. It forces
the software to handle any design changes that might occur. If a design change occurs that
the software cannot handle, the system requirements must be changed. This method really
limits the problem to software design.

Using hardware accelerators for the simulation system can be very useful. It allows for
more complex designs to be simulated in real-time, or for more complex experimental

51

frames. The Kress machine [3] is an example of a hardware accelerator that could be used
in a simulation system. The Kress machine could be configured to represent a variety of
hardware systems, then used to run the software for the custom hardware. This eliminates
the virtual machine inside a virtual machine slowdown problem. The physical hardware is
reconfigured to match functions of the model.

The method of choosing the transducers for the system, then designing the system limits
the amount of change allowed in the original specifications. This method works well when
updating or replacing an already existing system. It limits solutions to the same style as the
previous solutions for the problem reducing the amount of innovation allowed in finding a
better solution.

The final method for assisting cosimulation is using a unified representation scheme. This
is a formal method that allows the simulation system to handle only one representation for
all systems. The problem is designing a language that can represent both hardware and
software efficiently. Many attempts [4,5,6] have been made to describe hardware/software
systems using a formal scheme. These attempts have chosen Petri nets, finite state
machines, and functional mathematics to try to represent complex systems. These systems
are good for proving that the system is correct, but designing a complicated system is very
difficult to accomplish. The representation scheme chosen may not easily map onto a real
system that can be built. These systems usually have a bias towards one side of
hardware/software making it easier to represent certain designs. A good unified modeling
schema is not easy to develop.

3. Towards a Cosimulation System

A good cosimulation system would have the following properties:
*Easy revision or replacement of models
sReconfigurable hardware
sAccess to digital and analog l/O
sCommon representation scheme for models
«Compiler/synthesis tool that converts model to software/hardware

Host

Computer FPGA FPGA

Design Environment / P bl
o Erog 1€
:

i Interconnect

FPGA | * | FPGA

Analog and Digital VO

4
r Analog and Digital UO l

Figure 2: Diagram of Proposed System

52

We propose that such a system should start with a general purpose computer that has in
system programmable FPGA(s) to represent hardware. These FPGAs would be connected
using a programmable interconnect. The programmable interconnect allows for hardware
module interfaces to be accurately modeled. If the timing is incorrect, the operation of the
modeled system will not be correct. The simulation system could get state information
from the model by using boundary scan access to the FPGAs. The FPGAs allow custom
hardware to be used to accelerate the design. A major problem with software simulations
of hardware is the amount of time to run a simulation. This leads to the use of very simple
hardware models that do not accurately model the behavior of the system. The use of
FPGAs allows the hardware model to be very close to the final implemented model. A
conversion from the partitioning onto an FPGA to an ASIC design could readily be
accomplished. The use of FPGAs will allow for more accurate simulations that execute
faster than a software only model.

Access to digital and analog 1/O is important for capturing real-time aspects of the design.
When the system is close to being deployed, it could be tested using the actual chosen
transducers. This /O would also be helpful in choosing which transducers are necessary
for the system. By using real /O it is easier to separate the experimental frame from the
system being tested. Instead of having perfect signals that exist only inside a simulation,
real tools could be used to measure the outputs and compare them to the expected values in
the specifications. Using real IO is closer to the environment of the real system. Early in
the design process simulated /O is useful to determine that the system responds according
to the specification. As the design progresses, it is important to validate that the
transducers used match the model of them used early in the design process. A system with
real /O can be treated as an experimental frame for the transducers. This means that the
same model-based design can be used for making a wider variety of the design decisions.
Better specifications can be determined for required transducers, based on a simulation of
the system. This will help to limit possibly expensive purchases of transducers that will
not work in the final system.

A common representation scheme would need to be able to capture the interface aspects of
the system. Previous attempts were good at representing hardware and software, but not
the interface or timing that is necessary to build the system. The representation needs to
hierarchical to allow for complex designs. Being able to associate multiple models with a
single component is useful for different types of simulations. If this part of the model has
been tested and is known to be correct, a simpler version could be used so that resources
could be concentrated on the unverified parts of the system.

In conjunction with a common representation scheme, compilers or synthesis tools are
necessary. These tools should be able to convert from the representation scheme into a
variety of software or hardware configurations. A front end that partitions the model for a
specific simulation, then converts software to C and hardware to VHDL could be used.
The goal is to not force the design into a specific configuration by the choice of design tool.
The front end may be able to convert a high level model to a pure software representation,
then as the design is refined portions are converted to hardware as acceleration becomes
necessary.

53

References

[1] J. Rozenblit and K. Buchenrieder. “Codesign: An Overview.” in Codesign: Computer-
Aided Software/Hardware Engineering. IEEE Press. 1995 New York. pp. 1-15.

[2] A. Kalavade and E. A. Lee. “Hardware/Software Codesign Using Ptolemy: A Case
Study.” in Codesign: Computer-Aided Software/Hardware Engineering. IEEE Press.
1995 New York. pp. 397-413.

[31R. Kress. A Fast Reconfigurable ALU for Xputers. Universitit Kaiserslautern. 1996.

[4] G. Dittrich. “Modeling of Complex Systems Using Hierarchical Petri Nets.” in
Codesign:Computer-Aided Software/Hardware Engineering. IEEE Press. 1995 New
York. pp. 128-144.

{51 J. Staunstrup. «Towards a Common Model of Software and Hardware Components.” in
Codesign:Computer-Aided Software/Hardware Engineering. IEEE Press. 1995 New
York. pp. 117-127.

[6] R. Boute. “A Declarative Formalism Supporting Hardware/Software Codesign.” in
Codesign:Computer-Aided Software/Hardware Engineering. [EEE Press. 1995 New
York. pp. 41-66 '

[7] Cadence Design Systems, Inc. Concept: Mixed Level Design Entry Svstem Product
Description. 1997

(81 Mentor Graphics Corporation. Seamless C VE ™ Product Description. 1996.

[9] Altera Corp. Max+PLUS II Getting Started.1996.

[10] Xilinx, Inc. Development Systems Product Overview. 1996.

{117 S. Kumar. A Unified Representation for Hardware/Software Codesign. University of
Virginia. May 1995.

[12] N.A. Markovitch and D.M. Profozich. “ARENA Sofiware Tutorial.” in Proc. 1996
Winter Simulation Conference, San Diego, pp. 437-440. 1996.

[13] i-Logix, Inc. Statemate Technical Overview. 1995.

{14] Scientific and Engineering Software, Inc. SES/workbench Introductory Overview.
1996.

[15] A. Mullarney. “MODSIM III —A Tutorial.” in Proc. 1996 Winter Simulation
Conference, San Diego, pp- 542-546. 1996.

54

