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ABSTRACT 

This paper presents continuing research toward 
automatic generation of test cases from requirements 
specifcations for event-oriented, real-time embedded systems. 
The requirements documentation and test case generation 
activities make up the initial steps in our method to realize 
model-based codesign [ I ] .  In this codesign method, test cases 
are used to validate system models and prototypes against the 
requirements specifcation. This ensures coherence between the 
system models at various levels of detail, the system prctotype. 
and the final system design. Automating the test case 
generation process provides a means to ensure that tke test 
cases have been derived in a consistent and objective manner 
and that all system requirements have been covered. The 
formulation and d i f fu l@ of the test case generation problem 
are discussed and a heuristic algorithm to automatically 
generate test cases is presented. The inputs to the algorithm are 
extracted from the requirements specification. The algorithm is 
a two phase exploration of the system states defined in the 
requirements specification. The goal is to generate a suite of 
test cases that provide complete coverage of all documented 
system requirements. A design example is presented that is 
used to illustrate the generation of test-cases. 

1. INTRODUCTION AND MOTIVATION 

While the idea of automatic generation of test cases from 
requirements specifications is not new, acceptance of the 
proposed methods have not been embraced in industry. All 
such methods rely on the development of a finite state machine 
(FSM) based representation of the system requirements, which 
we will call the requirements model. These models are 
evaluated in order to derive sequences of stimuli (applied to the 
system) and responses (expected from the system). 

What we feel is necessary for industry acceptance, is that 
industry management must believe that the benefits of the 
requirements model outweighs the cost to develop them. In 
order for this to happen, at least one necessary aspect is the 
availability of tools that allow quick and easy development of 
these models. These tools must be available and, at least to 
some extent, presently in use by industry. Examples of two 
such tools are Statemate [2] and the SCR tool set [3]. 

Using a language and tool set presently in use allows 
industrial organization to more easily adopt or expand their use. 
Automatic test generation will be adopted if tool support that is 
flexible and easily integrated with the requirements modeling 

tools is available. The automatic test generation must provide 
effective test cases for a wide range of systems and test 
objectives. Flexibility to allow an organization to control the 
type of test coverage desired should also be included. 

The current practice of test generation in industry is 
largely ad hoc [4]. One of the benefits of automation is to 
provide consistent coverage of system requirements and to 
generate test cases in an objective and unbiased manner. 
Another advantage of automation is relieving the designers or 
test engineers of much of the tediousness of this task. The time 
needed for test generation will be reduced which will allow an 
organization to more easily handle the inevitable changes in 
requirements. 

Our motivation comes from a systems perspective. In 
particular, Model-based Codesign of real-time embedded 
systems [1,5]. This method relies on system models at 
increasing levels of fidelity in order to explore design 
alternatives and to evaluate the correctness of these designs. As 
a result, the tests that we desire should cover all system 
requirements in order to determine if all requirements have been 
implemented in the design. The set of generated tests will then 
be maintained and applied to system models of increasing 
fidelity and to the system prototype in order to verify the 
consistency between models and physical realizations. 

In section 2 an overview of the test case generation 
process and how the generated tests are applied within Model- 
based Codesign are discussed. Section 3 describes the problem 
of covering all system requirements, determines why this 
problem is computationally hard, and proposes a heuristic 
approach to provide an adequate solution. Section 4 gives an 
example that is used to illustrate the generation of test cases 
using the heuristic approach. Section 5 concludes with a 
summary of related work and the future direction of our 
research. 

2. TEST CASE GENERATION AND USE 

Model-based codesign relies heavily on modeling and 
simulation to evaluate potential system designs. Efficient use of 
simulation requires prepared sets of system stimulus and a 
means for evaluating the system responses to them. Test cases 
must consist of a time ordered sequence of events representing 
both the stimulus to be applied to the system and the expected 
responses (also referred to as test scenario). The approach to 
test case generation that we propose is illustrated in Figure 1. 

It is expected that any design project will start with a 
document stating the system requirements in a textual form. 
The textual requirements will be modified to include a unique 
identifier for each requirement if such identifiers do not already 
exist. The requirements model is then developed from the 
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textual representation. This model represents the system in the 
form of a finite state machine, in a formal modeling language. 
The internal structure of this model is not of primary 
importance, as long as the external behavior is complete and 
consistent with the original requirements. This model also 
provides a prototype of the system that can be used to gain 
insight into the dynamic behavior of the system. This can be 
invaluable in correcting and clarifying the requirements. 

Text-based Requirements 

Manual Translation4 

Structured Requirements 
Specification 

Extract 110 constraints 
and synthesize code 

Extract Functions and 
synthesize function code 

Source Code for Test Test Case Generation 
Case Generator Alsorithm 

Compile 

Test Case Generator 
Executable 

Execute 

Scenario Tree 

& Processing 

Figure 1. Test Case Generation Process 
In addition to capturing the behavior of the system, the 

requirements modeling language must support the annotation of 
interface requirements and requirements identifiers. Interface 
requirements define the required behavior of the system's 
environment and temporal requirements for both the system and 
environment. The requirements identifiers provide traceablility 
between the model and the textual requirements and are later 
used by the test case generator in order to determine 
requirements coverage. 

After development of the requirements model, the 
interface constraints and system functions are extracted and 
synthesized into a high level programming language. This code 
is compiled with the test case generation algorithm to produce 
the test case generator. The test case generator uses the system 
functions and interface constraints to perform a controlled 
simulation of the requirements model. This simulation 
performs a state space exploration of the model by starting from 
the specified initial state and applying available system stimulus 
in order to generate new system states. The control of the state 
exploration is described in section 3. 

The output produced by executing the test case generator 
is a rooted tree called the scenario tree. Vertices represent 
system model states and the edges represent transitions between 
states. The edges are labeled by the stimulus applied, any 
responses generated, and the associated requirements identifiers. 
The root vertex represents the specified initial state for the 
system. Paths originating at the root represent valid test cases 
for the modeled system. All test cases are extracted from the 
scenario tree by performing a modified depth first traversal. 
The test cases are represented as a sequence of 
stimuludresponse pairs annotated with the associated temporal 
requirements. 

Application of test cases to design models is performed 
through the concept of an experimental frame [6].  The 

experimental frame is a formalism that ensures the clear 
separation between the model under test (MUT) and the 
environment. The experimental frame is decomposed into three 
components, the generator, transducer, and acceptor. The 
generator is responsible for applying input segments (a series of 
system stimulus) to the MUT. The transducer is responsible for 
collecting and verifying system responses and for calculating 
performance measures. The acceptor interfaces to the operator 
and monitors the state of the simulation in order to control the 
startup and termination of the experiment. 

When the design proceeds to the prototype level, the same 
set of test cases will be used and interpreted by a real-time test 
environment. 

3. PROBLEM FORMULATION 

In the approach to test case generation presented in [7], 
the complete scenario tree is generated. This complete tree 
represents all possible system state transitions under the 
limitations of environmental constraints regarding the 
applications of stimulus and defined test values for stimulus 
containing data values. While this approach is practical for 
smaller systems, the tree may quickly grow beyond a 
manageable size for more complex systems. 

The primary purpose of a set of test cases within model- 
based codesign is to validate the proposed system design against 
the system requirements and to provide measurable test data to 
support design alternative analysis. In light of this goal and the 
state explosion problem, it is appropriate to explore the 
possibility of applying a more 'intelligent' tree generation 
approach. Only a sufficient subset of the scenario tree should 
be generated such that when all scenarios from this subset are 
applied to the system, all system requirements are covered. In 
order to accomplish this, the test case generation algorithm will 
have to be modified from that described in [7] and will require 
additional information. 

The information needed will be the complete set of 
requirements and a mapping of these requirements onto the 
requirements model. The process of developing the 
requirements model is the conversion of the textual 
requirements into the formal notation. Every action in the 
model (i.e., state transition or generation of an output) must 
exist to fulfill one or more system requirements or parts thereof. 
An action that fulfills part of a requirement will exist when the 
textual requirement is compound in nature or, for instance, 
requires multiple outputs. An example of an action needed by 
multiple requirements would be if a particular output was 
defined to be generated by two separate requirements, possibly 
in response to different stimuli or in response to the same 
stimulus but in distinct system modes. 

In order to define the problem at hand, a definition of 
'covering' is needed. A set of test cases that cover all system 
requirements is one that causes at least one state transition 
(possibly generating a system response) associated with each 
uniquely identified system requirement. 

In the previous approach, all test cases defined by the 
complete scenario tree represented all possible stimulus and 
response behaviors for both the system and environment (under 
a one stimulus at a time constraint). The other extreme would 
be to require each system response to be triggered at least once 
within the set of scenarios. This would be analogous to 
software branch testing. A more robust approach would be to 
require that actions with disjunctive triggers be separated into 
individual actions. For example, a single state transition 
triggered by event A or B and associated with requirements 1 
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and 2 would be separated into two distinct transitions each 
associated with a single requirement. This approach will ensure 
that every action specified in the requirements model will be 
exercised at least once by any set of test cases that cover all 
requirements. This is analogous to software decision testing. 

The desired output of the test case generation process is a 
minimal set of test cases that cover all requirements. Minimal 
will be defined to mean a set of test cases in which no test case 
may have a transition removed without destroying the covering 
property. Changing the goal to be a minimum covering, it can 
be shown that the problem of minimal test case generation can 
be reduced to the set covering problem and is therefore NP- 
complete. 

4. A HEURISTIC APPROACH 

Initially, no requirements will have been covered, so any 
available stimulus that causes a change in the model will help 
reach the goal. This suggests a greedy approach. This approach 
would expand all possible states for the most recent state added 
to the minimal scenario tree, MST, then add the state connected 
by the edge covering the most as yet uncovered requirements. 
The number of uncovered requirements, call this value the 
Requirements Covering Value or RCV, is the quality measure 
used to select the next state to be added to the scenario tree. 

The greedy approach is not a complete solution. It is 
quite likely that the queue of potential states will at some point 
contain no entries that are associated with uncovered 
requirements (and all requirements are not yet covered). When 
this happens, a switch to a second strategy is needed, because 
the greedy approach would degenerate into a random selection 
process. What may occur is that a few requirements might only 
be covered by edges near or at the leaves of the tree. These 
transitions require that the system be taken through a long series 
of stimuli in order to get the system in a state that allows the 
needed transition to be taken. 

From the requirements model, the transition associated 
with an elusive requirement can be analyzed to determine the 
enabling state (possibly with don't care values) for that 
transition. This enabling state can then be compared to each 
potential state in order to calculate a distance measure. The 
distance will be the sum of the differences for numeric state 
variables plus the number of enumerated state variables that do 
not match. The selection of the next state to expand will be 
made based on this measure, and the expansion will follow the 
most promising path so far. 

During the distance based search phase of the algorithm, 
if the edge leading to the next state selected did not cover any 
additional requirements, it will not be added to the MST. This is 
because there is no guarantee that any test case containing that 
transition will eventually lead to the covering of additional 
requirements. Instead, such states are kept in the list of 
potential states. After each new state is expanded, all new 
edges will be checked for additional coverage. If any are 
found, a backward trace is initiated that continues until it 
connects with the current M n .  All edges and states along this 
trace are then added to the MST. 

Our heuristic algorithm uses the two phase approach just 
described: greedy search followed by a distance based search if 
needed. In the following paragraphs the algorithm is presented 
in pseudo code form. Some details have been omitted in the 
hope of improving the ease of comprehension. As noted 
previously, vertices represent states of the requirements model. 
As a result, references to states and sets of states also imply the 
corresponding vertices where appropriate. 

The algorithm maintains graphs ST and MST, 
representing the scenario tree and minimal scenario tree, and 
sets POT, COV, and RS, representing the states (vertices) not 
yet part of the MST, the covered requirements, and the 
requirements remaining to be covered respectively. These are 
initialized as follows: 

ST = graph with initial state vertex only 
MST = Null graph 
POT = { }; COV = { }; RS = { set of all requirements 1 

The top level structure of the algorithm is given below. 
The greedy search phase will continue until no further progress 
can be made. The potential state set is then cleansed of any 
states that already exist in the MST since these have already 
been expanded. If the greedy search has not covered all 
requirements and there are potential states available, a target 
requirement is then selected for the distance based search phase. 
Finally, all test cases are output. Note that although not 
explicitly shown, if at any time during the distance based 
search, if POT is found to be empty and all requirements have 
not been covered, an error message would be output indicating 
an ill formed model. 

nextS = Initial state; nextE = NULL 
do { 

) until ( nextS = NULL ) 
for all si E POT 

if si E States(MST) Delete si from POT 
if (RS is not empty and POT is not empty ) 

Select rfurRrf from RS and determine it's enabling state se. 
else 

rfw, = NULL 
while (rfargef !=NULL ) { 

DistanceBasedSearchO 

Greedy Search() 

1 
Output all rooted paths from MST 
stop 

In the description of the greedy search below, the 
Expand() function applies all available stimuli based on the 
given state in order to generate new potential states. Expand() 
returns the set of new states and their connecting edges so that 
they may be added to ST. The function Req() returns the list of 
all requirements associated with the given edge. 
ComputeRCV() calculates the RCV for all elements of the 
given state set and returns the maximum RCV along with the 
state and edge associated with the maximum. 

Greedy Search() 
{ 

if ( nextS e States(MST) ) 
(S,,,, E,,,) = Expand(nextS) 
Add (S,w,, Enew) to ST and add S,, to POT 

Add (nextS, nextE) to MST 
Move all Req(nextE) from RS to COV 
RCV,,, smm, em, = ComputeRCV(P0T) 
if (RCV,, > 0) 

else 
nextS,nextE = s,,,,,e,,,, 

nextS = NULL 
I 

In the description of the distance based search below, the 
ComputeDist() function calculates the distances from each 
member of the given state set to the given enabling state and 
returns the state associated with the minimum value found. The 
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BackTraceO function add states and edges to MST by 
performing the backward trace as previously described. 

DistanceBasedSearchO 
{ 

smin = ComputeDist(POT, se,,) 

Add S,,E,, to ST and add S,,, to POT 
for all ( s i 4  E ( ~ , , ~ ~ , e , ~ ~ )  

SnewSnew = ExPand(smin) 

if any member of Req(ei) E RS 
BackTrace(si) 
Move all Req(ei) from RS to COV 

for all si E POT 
if si E States(MST) Delete si from POT 

if ( RS is empty or POT is empty ) 
rlnrgrf = NULL 

elseif ( rfWgel e RS ) 
Select rlmef from RS and determine it’s enabling state se,, 

1 

Mode 
TooLow 

5. TEST CASE GENERATION EXAMPLE 

Events 
@T(TReJ WHEN [R4a] @F(Inmode) [R4b] 
Overridden 

Consider the following example based on the control 
system described in [8] and simplified in [9]. We have 
modified the system slightly to more fully exercise our test 
generation algorithm. The example is of a controller for a 
safety injector of a reactor core. The system monitors pressure 
and adds coolant if the pressure drops below a given threshold. 
The operator may block the safety injection by toggling a Block 
switch and can reset the block by toggling a Reset switch. The 
system also receives a time reference input, Tref: If the pressure 
is below the threshold and the system is blocked, after the third 
Trefinput is received, the system will automatically turn off the 
block and allow safety injection. Figure 2 shows a block 

WuterPres Safety Injection 
System SufetyInjection 

Reset 

diagram for the system. 

Figure 2. Safety Injection System 
Text based requirements for this system are given below. 

These requirements have been labeled with requirement 
identifiers. LOW is the pressure threshold which is assumed to 
be 100. 

The system shall assert Sujdyhjection when 
WuterPres falls below LOW as long as the system is 
not blocked. 
The system shall be considered blocked in response to 
Block being asserted while Reset is not asserted, and 
shall remain blocked until either Reset is asserted or 
WuterPres crosses LOW in either direction. 
Once Sufitylnjection is asserted, it shall remain 
asserted until the system becomes blocked or 
WuterPres becomes greater than or equal to LOW. 
When the system is blocked and WuterPres is less 
than LOW, the system shall automatically unblock 
itself after the third timing reference event is sensed 
on input TRef: 

The requirements model will be illustrated in the Software 
Cost Reduction (SCR) formalism [9]. This formalism is based 
on finite state machines specified through the use of tables. In 
these tables the formula @T(A) is defined to mean the event 
that A has become true. 

Table 1. Mode Transition Table for Pressure 

I Old Mnde I Event - . - . - - - - - .  _ _ _ _  
I’ooLow 
Permitted I lii)TftVuterPres < LOW) I TooLow 

I @T( CVuterPres 2 LOW) I Permitted 

Table 2. Event Table for Overridden 

Events 

Reseeoff 
@T(Reset=On) [Mc] 

TooLow 

Table 3. Event Table for TRefCnt 

Table 4. Condition Table for Safety Injection 

These tables have been modified from the standard SCR 
notation in that requirements labels have been added to show 
the association to the original requirements. Where the original 
requirements where compound, the individual requirements 
have been identified by the addition of an alphabetic character. 
The P1 and P2 identifiers are a short hand for the fact that these 
transitions are needed to fulfill multiple requirements. For 
example, the state Permitted, and therefore the transition from 
TooLow to Permitted, is needed by requirements ma, R2b, 
R2c, and R3a. 

The state of the system is defined by: Pressure E {P, TL}, 
Overridden E {T, F}, TReKnt E {Natural}, Sufityhjection E 
{On, Off). The initial state of the system is (P, F, 0, Off). Note 
that Overridden is equivalent to Blocked in the textual 
requirements. 

The execution of the algorithm described in the previous 
section is illustrated in Figure 3. The test stimuli for the 
Waterpressure input are limited to 50 and 150. Edges are 
labeled by inputloutput and covered requirements are listed in 
square brackets. The vertex numbering indicates the order in 
which the vertices are created and added as potential states. The 
edge number indicates the order in which edges are added to the 
scenario tree. 

Initially the algorithm starts with the greedy approach, 
always selecting the potential state connected by the edge 
covering the most as yet uncovered requirements, and selecting 
at random in the case of a tie. The greedy portion of the 
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1 

I I P=50 I SI=On [RI,P2]  W P = I 5 0  / [ I  Rese t=On/  [ ] Block=On I [R2a] 

0 ,  Off  

Reset=On I [ ] Block=On / SI=Off  [R2a, R 3 b ]  

I() 1 2 9 & 1 4 % >  

TL,  T P, F TL,  T TL, F 
0 ,  O f f  0 ,  Of f  1, O f f  0 ,  On 

1 8 6 

Wp=50  I [ 1 WP=150 / [ 1, R2b. R4bl T R e f /  [R4a1 Reset=On / SI=On [ R ~ c ,  R I .  R4c]  Blo 

0 ,  Of f  3 .  On 0 ,  On 1 , O f f  

Figure 3. Scenario Tree for Safety Injection System 

algorithm continues in this manner until the MST consists of 
states 0, 1, 7, 10, 12, 13, 17, and 19. One possible order for 
adding these states is indicated by the numerical edge labels. 
Note that states that are part of the scenario tree but have not 
been expanded are equivalent to states that are already part of 
the MST. 

At this point the greedy portion of the algorithm will 
terminate since transitioning the system to any of the potential 
states covers no additional requirements. The single remaining 
requirement is R4d. The state required to allow R4d is TL, X, 
3, X where X is a don't care. At this stage the only expandable 
states are 5 and 18. The distance for state 5 is 4 ( 1  for the 
enumerated Pressure plus 3 for the difference in Trefcnt) and 
the distance for state 18 is 1 (for the difference in Trefcnt). 
Expanding state 18 reveals the desired transition leading to the 
addition of states 23 and 18 to the scenario tree. 

The generated scenario tree contains the five scenarios 
listed below. 

1 WP=50 I SI=On 2 WP=50 I SI=On 
WP=150 I SI=Off Block=On I SI=Off 

WP=150 I 

Block=On I SI=Off 
3 WP=50 I SI=On 4 WP=50 I SI=On 

Block=On I SI=Off 
TRef I TRef I 
WP=150 I R e s e w n  I SI=On 

Block=On I SI=Off 
TRef I 
TRef I 
TRef I SI=On 

5 WP=50 I SI=On 

6. CONCLUSIONS AND FUTURE WORK 

An approach for automatic test case generation from 
system requirements has been presented. This approach is 
based upon a formulation into a covering problem The 
difficulty of this problem has been discussed and a heuristic 
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algorithm to solve the problem has been given. The use of this 
algorithm has been illustrated using a small example. 

Our approach is similar to the previous work done at GTE 
Laboratories [lo]. Our work differs in that we are developing 
test cases for embedded hardware/software systems rather than 
purely software systems and in the way requirements are 
associated with test cases. In their approach, stimulus and 
responses are interactively associated with requirements as a test 
engineer requests test cases to be generated. In our approach, 
the association is determined when the requirements model is 
generated and the test cases are generated to ensure the covering 
as previously described. 

The work of Hsia [4,11] is also relevant. Their domain is 
again, software systems. Scenarios are elicited from the 
customer and used to develop conceptual finite state machines. 
From these FSMs, the set of all possible scenarios are generated. 
The desire to not generate all possible scenarios is one of the 
primary motivations for our heuristic approach. Also, since 
Hsia has no explicit relation between requirements and scenario, 
the bases for selective generation of scenarios does not exist. 

Blackbum [12] describes a method to generate test vectors 
from SCR style specifications by converting the SCR model 
into a formal logic description used by the T-VEC systeni [ 131. 
The T-VEC system generates test vectors. Test vectors are 
singular entities applied at a single point in time. As a result, 
they do not represent a sequence of events and would not allow 
for the verification of temporal requirements. 

The focus of our continued research will be focused on 
the evaluation of this method on various systems. In addition, a 
notation to capture the temporal requirements of systems will be 
determined and a method to apply and verify these requirements 
at the model and physical prototype level will be developed. 
Finally, it is desirable to investigate extending the requirements 
model beyond FSMs in order to apply this approach to a wider 
range of systems. 
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