
Automatic Test Case Generation from Requirements Specifications
for Real-time Embedded Systems

S.J. Cunning and J.W. Rozenblit
Department of Electrical and Computer Engineering,

The University of Arizona
Tucson, Arizona 85721-0104, US.A.

(scunn inglir) @ece. arizona. edu

ABSTRACT

This paper presents continuing research toward
automatic generation of test cases from requirements
specifcations for event-oriented, real-time embedded systems.
The requirements documentation and test case generation
activities make up the initial steps in our method to realize
model-based codesign [I] . In this codesign method, test cases
are used to validate system models and prototypes against the
requirements specifcation. This ensures coherence between the
system models at various levels of detail, the system prctotype.
and the final system design. Automating the test case
generation process provides a means to ensure that tke test
cases have been derived in a consistent and objective manner
and that all system requirements have been covered. The
formulation and d i f fu l@ of the test case generation problem
are discussed and a heuristic algorithm to automatically
generate test cases is presented. The inputs to the algorithm are
extracted from the requirements specification. The algorithm is
a two phase exploration of the system states defined in the
requirements specification. The goal is to generate a suite of
test cases that provide complete coverage of all documented
system requirements. A design example is presented that is
used to illustrate the generation of test-cases.

1. INTRODUCTION AND MOTIVATION

While the idea of automatic generation of test cases from
requirements specifications is not new, acceptance of the
proposed methods have not been embraced in industry. All
such methods rely on the development of a finite state machine
(FSM) based representation of the system requirements, which
we will call the requirements model. These models are
evaluated in order to derive sequences of stimuli (applied to the
system) and responses (expected from the system).

What we feel is necessary for industry acceptance, is that
industry management must believe that the benefits of the
requirements model outweighs the cost to develop them. In
order for this to happen, at least one necessary aspect is the
availability of tools that allow quick and easy development of
these models. These tools must be available and, at least to
some extent, presently in use by industry. Examples of two
such tools are Statemate [2] and the SCR tool set [3].

Using a language and tool set presently in use allows
industrial organization to more easily adopt or expand their use.
Automatic test generation will be adopted if tool support that is
flexible and easily integrated with the requirements modeling

tools is available. The automatic test generation must provide
effective test cases for a wide range of systems and test
objectives. Flexibility to allow an organization to control the
type of test coverage desired should also be included.

The current practice of test generation in industry is
largely ad hoc [4]. One of the benefits of automation is to
provide consistent coverage of system requirements and to
generate test cases in an objective and unbiased manner.
Another advantage of automation is relieving the designers or
test engineers of much of the tediousness of this task. The time
needed for test generation will be reduced which will allow an
organization to more easily handle the inevitable changes in
requirements.

Our motivation comes from a systems perspective. In
particular, Model-based Codesign of real-time embedded
systems [1,5]. This method relies on system models at
increasing levels of fidelity in order to explore design
alternatives and to evaluate the correctness of these designs. As
a result, the tests that we desire should cover all system
requirements in order to determine if all requirements have been
implemented in the design. The set of generated tests will then
be maintained and applied to system models of increasing
fidelity and to the system prototype in order to verify the
consistency between models and physical realizations.

In section 2 an overview of the test case generation
process and how the generated tests are applied within Model-
based Codesign are discussed. Section 3 describes the problem
of covering all system requirements, determines why this
problem is computationally hard, and proposes a heuristic
approach to provide an adequate solution. Section 4 gives an
example that is used to illustrate the generation of test cases
using the heuristic approach. Section 5 concludes with a
summary of related work and the future direction of our
research.

2. TEST CASE GENERATION AND USE

Model-based codesign relies heavily on modeling and
simulation to evaluate potential system designs. Efficient use of
simulation requires prepared sets of system stimulus and a
means for evaluating the system responses to them. Test cases
must consist of a time ordered sequence of events representing
both the stimulus to be applied to the system and the expected
responses (also referred to as test scenario). The approach to
test case generation that we propose is illustrated in Figure 1.

It is expected that any design project will start with a
document stating the system requirements in a textual form.
The textual requirements will be modified to include a unique
identifier for each requirement if such identifiers do not already
exist. The requirements model is then developed from the

0-7803-5731-0/99/$10~00 01999 IEEE v -784

textual representation. This model represents the system in the
form of a finite state machine, in a formal modeling language.
The internal structure of this model is not of primary
importance, as long as the external behavior is complete and
consistent with the original requirements. This model also
provides a prototype of the system that can be used to gain
insight into the dynamic behavior of the system. This can be
invaluable in correcting and clarifying the requirements.

Text-based Requirements

Manual Translation4

Structured Requirements
Specification

Extract 110 constraints
and synthesize code

Extract Functions and
synthesize function code

Source Code for Test Test Case Generation
Case Generator Alsorithm

Compile

Test Case Generator
Executable

Execute

Scenario Tree

& Processing

Figure 1. Test Case Generation Process
In addition to capturing the behavior of the system, the

requirements modeling language must support the annotation of
interface requirements and requirements identifiers. Interface
requirements define the required behavior of the system's
environment and temporal requirements for both the system and
environment. The requirements identifiers provide traceablility
between the model and the textual requirements and are later
used by the test case generator in order to determine
requirements coverage.

After development of the requirements model, the
interface constraints and system functions are extracted and
synthesized into a high level programming language. This code
is compiled with the test case generation algorithm to produce
the test case generator. The test case generator uses the system
functions and interface constraints to perform a controlled
simulation of the requirements model. This simulation
performs a state space exploration of the model by starting from
the specified initial state and applying available system stimulus
in order to generate new system states. The control of the state
exploration is described in section 3.

The output produced by executing the test case generator
is a rooted tree called the scenario tree. Vertices represent
system model states and the edges represent transitions between
states. The edges are labeled by the stimulus applied, any
responses generated, and the associated requirements identifiers.
The root vertex represents the specified initial state for the
system. Paths originating at the root represent valid test cases
for the modeled system. All test cases are extracted from the
scenario tree by performing a modified depth first traversal.
The test cases are represented as a sequence of
stimuludresponse pairs annotated with the associated temporal
requirements.

Application of test cases to design models is performed
through the concept of an experimental frame [6]. The

experimental frame is a formalism that ensures the clear
separation between the model under test (MUT) and the
environment. The experimental frame is decomposed into three
components, the generator, transducer, and acceptor. The
generator is responsible for applying input segments (a series of
system stimulus) to the MUT. The transducer is responsible for
collecting and verifying system responses and for calculating
performance measures. The acceptor interfaces to the operator
and monitors the state of the simulation in order to control the
startup and termination of the experiment.

When the design proceeds to the prototype level, the same
set of test cases will be used and interpreted by a real-time test
environment.

3. PROBLEM FORMULATION

In the approach to test case generation presented in [7],
the complete scenario tree is generated. This complete tree
represents all possible system state transitions under the
limitations of environmental constraints regarding the
applications of stimulus and defined test values for stimulus
containing data values. While this approach is practical for
smaller systems, the tree may quickly grow beyond a
manageable size for more complex systems.

The primary purpose of a set of test cases within model-
based codesign is to validate the proposed system design against
the system requirements and to provide measurable test data to
support design alternative analysis. In light of this goal and the
state explosion problem, it is appropriate to explore the
possibility of applying a more 'intelligent' tree generation
approach. Only a sufficient subset of the scenario tree should
be generated such that when all scenarios from this subset are
applied to the system, all system requirements are covered. In
order to accomplish this, the test case generation algorithm will
have to be modified from that described in [7] and will require
additional information.

The information needed will be the complete set of
requirements and a mapping of these requirements onto the
requirements model. The process of developing the
requirements model is the conversion of the textual
requirements into the formal notation. Every action in the
model (i.e., state transition or generation of an output) must
exist to fulfill one or more system requirements or parts thereof.
An action that fulfills part of a requirement will exist when the
textual requirement is compound in nature or, for instance,
requires multiple outputs. An example of an action needed by
multiple requirements would be if a particular output was
defined to be generated by two separate requirements, possibly
in response to different stimuli or in response to the same
stimulus but in distinct system modes.

In order to define the problem at hand, a definition of
'covering' is needed. A set of test cases that cover all system
requirements is one that causes at least one state transition
(possibly generating a system response) associated with each
uniquely identified system requirement.

In the previous approach, all test cases defined by the
complete scenario tree represented all possible stimulus and
response behaviors for both the system and environment (under
a one stimulus at a time constraint). The other extreme would
be to require each system response to be triggered at least once
within the set of scenarios. This would be analogous to
software branch testing. A more robust approach would be to
require that actions with disjunctive triggers be separated into
individual actions. For example, a single state transition
triggered by event A or B and associated with requirements 1

V -785

and 2 would be separated into two distinct transitions each
associated with a single requirement. This approach will ensure
that every action specified in the requirements model will be
exercised at least once by any set of test cases that cover all
requirements. This is analogous to software decision testing.

The desired output of the test case generation process is a
minimal set of test cases that cover all requirements. Minimal
will be defined to mean a set of test cases in which no test case
may have a transition removed without destroying the covering
property. Changing the goal to be a minimum covering, it can
be shown that the problem of minimal test case generation can
be reduced to the set covering problem and is therefore NP-
complete.

4. A HEURISTIC APPROACH

Initially, no requirements will have been covered, so any
available stimulus that causes a change in the model will help
reach the goal. This suggests a greedy approach. This approach
would expand all possible states for the most recent state added
to the minimal scenario tree, MST, then add the state connected
by the edge covering the most as yet uncovered requirements.
The number of uncovered requirements, call this value the
Requirements Covering Value or RCV, is the quality measure
used to select the next state to be added to the scenario tree.

The greedy approach is not a complete solution. It is
quite likely that the queue of potential states will at some point
contain no entries that are associated with uncovered
requirements (and all requirements are not yet covered). When
this happens, a switch to a second strategy is needed, because
the greedy approach would degenerate into a random selection
process. What may occur is that a few requirements might only
be covered by edges near or at the leaves of the tree. These
transitions require that the system be taken through a long series
of stimuli in order to get the system in a state that allows the
needed transition to be taken.

From the requirements model, the transition associated
with an elusive requirement can be analyzed to determine the
enabling state (possibly with don't care values) for that
transition. This enabling state can then be compared to each
potential state in order to calculate a distance measure. The
distance will be the sum of the differences for numeric state
variables plus the number of enumerated state variables that do
not match. The selection of the next state to expand will be
made based on this measure, and the expansion will follow the
most promising path so far.

During the distance based search phase of the algorithm,
if the edge leading to the next state selected did not cover any
additional requirements, it will not be added to the MST. This is
because there is no guarantee that any test case containing that
transition will eventually lead to the covering of additional
requirements. Instead, such states are kept in the list of
potential states. After each new state is expanded, all new
edges will be checked for additional coverage. If any are
found, a backward trace is initiated that continues until it
connects with the current M n . All edges and states along this
trace are then added to the MST.

Our heuristic algorithm uses the two phase approach just
described: greedy search followed by a distance based search if
needed. In the following paragraphs the algorithm is presented
in pseudo code form. Some details have been omitted in the
hope of improving the ease of comprehension. As noted
previously, vertices represent states of the requirements model.
As a result, references to states and sets of states also imply the
corresponding vertices where appropriate.

The algorithm maintains graphs ST and MST,
representing the scenario tree and minimal scenario tree, and
sets POT, COV, and RS, representing the states (vertices) not
yet part of the MST, the covered requirements, and the
requirements remaining to be covered respectively. These are
initialized as follows:

ST = graph with initial state vertex only
MST = Null graph
POT = { }; COV = { }; RS = { set of all requirements 1

The top level structure of the algorithm is given below.
The greedy search phase will continue until no further progress
can be made. The potential state set is then cleansed of any
states that already exist in the MST since these have already
been expanded. If the greedy search has not covered all
requirements and there are potential states available, a target
requirement is then selected for the distance based search phase.
Finally, all test cases are output. Note that although not
explicitly shown, if at any time during the distance based
search, if POT is found to be empty and all requirements have
not been covered, an error message would be output indicating
an ill formed model.

nextS = Initial state; nextE = NULL
do {

) until (nextS = NULL)
for all si E POT

if si E States(MST) Delete si from POT
if (RS is not empty and POT is not empty)

Select rfurRrf from RS and determine it's enabling state se.
else

rfw, = NULL
while (rfargef !=NULL) {

DistanceBasedSearchO

Greedy Search()

1
Output all rooted paths from MST
stop

In the description of the greedy search below, the
Expand() function applies all available stimuli based on the
given state in order to generate new potential states. Expand()
returns the set of new states and their connecting edges so that
they may be added to ST. The function Req() returns the list of
all requirements associated with the given edge.
ComputeRCV() calculates the RCV for all elements of the
given state set and returns the maximum RCV along with the
state and edge associated with the maximum.

Greedy Search()
{

if (nextS e States(MST))
(S,,,, E,,,) = Expand(nextS)
Add (S,w,, Enew) to ST and add S,, to POT

Add (nextS, nextE) to MST
Move all Req(nextE) from RS to COV
RCV,,, smm, em, = ComputeRCV(P0T)
if (RCV,, > 0)

else
nextS,nextE = s,,,,,e,,,,

nextS = NULL
I

In the description of the distance based search below, the
ComputeDist() function calculates the distances from each
member of the given state set to the given enabling state and
returns the state associated with the minimum value found. The

V -7786

BackTraceO function add states and edges to MST by
performing the backward trace as previously described.

DistanceBasedSearchO
{

smin = ComputeDist(POT, se,,)

Add S,,E,, to ST and add S,,, to POT
for all (s i 4 E (~ , , ~ ~ , e , ~ ~)

SnewSnew = ExPand(smin)

if any member of Req(ei) E RS
BackTrace(si)
Move all Req(ei) from RS to COV

for all si E POT
if si E States(MST) Delete si from POT

if (RS is empty or POT is empty)
rlnrgrf = NULL

elseif (rfWgel e RS)
Select rlmef from RS and determine it’s enabling state se,,

1

Mode
TooLow

5. TEST CASE GENERATION EXAMPLE

Events
@T(TReJ WHEN [R4a] @F(Inmode) [R4b]
Overridden

Consider the following example based on the control
system described in [8] and simplified in [9]. We have
modified the system slightly to more fully exercise our test
generation algorithm. The example is of a controller for a
safety injector of a reactor core. The system monitors pressure
and adds coolant if the pressure drops below a given threshold.
The operator may block the safety injection by toggling a Block
switch and can reset the block by toggling a Reset switch. The
system also receives a time reference input, Tref: If the pressure
is below the threshold and the system is blocked, after the third
Trefinput is received, the system will automatically turn off the
block and allow safety injection. Figure 2 shows a block

WuterPres Safety Injection
System SufetyInjection

Reset

diagram for the system.

Figure 2. Safety Injection System
Text based requirements for this system are given below.

These requirements have been labeled with requirement
identifiers. LOW is the pressure threshold which is assumed to
be 100.

The system shall assert Sujdyhjection when
WuterPres falls below LOW as long as the system is
not blocked.
The system shall be considered blocked in response to
Block being asserted while Reset is not asserted, and
shall remain blocked until either Reset is asserted or
WuterPres crosses LOW in either direction.
Once Sufitylnjection is asserted, it shall remain
asserted until the system becomes blocked or
WuterPres becomes greater than or equal to LOW.
When the system is blocked and WuterPres is less
than LOW, the system shall automatically unblock
itself after the third timing reference event is sensed
on input TRef:

The requirements model will be illustrated in the Software
Cost Reduction (SCR) formalism [9]. This formalism is based
on finite state machines specified through the use of tables. In
these tables the formula @T(A) is defined to mean the event
that A has become true.

Table 1. Mode Transition Table for Pressure

I Old Mnde I Event - . - . - - - - - . _ _ _ _
I’ooLow
Permitted I lii)TftVuterPres < LOW) I TooLow

I @T(CVuterPres 2 LOW) I Permitted

Table 2. Event Table for Overridden

Events

Reseeoff
@T(Reset=On) [Mc]

TooLow

Table 3. Event Table for TRefCnt

Table 4. Condition Table for Safety Injection

These tables have been modified from the standard SCR
notation in that requirements labels have been added to show
the association to the original requirements. Where the original
requirements where compound, the individual requirements
have been identified by the addition of an alphabetic character.
The P1 and P2 identifiers are a short hand for the fact that these
transitions are needed to fulfill multiple requirements. For
example, the state Permitted, and therefore the transition from
TooLow to Permitted, is needed by requirements ma, R2b,
R2c, and R3a.

The state of the system is defined by: Pressure E {P, TL},
Overridden E {T, F}, TReKnt E {Natural}, Sufityhjection E
{On, Off). The initial state of the system is (P, F, 0, Off). Note
that Overridden is equivalent to Blocked in the textual
requirements.

The execution of the algorithm described in the previous
section is illustrated in Figure 3. The test stimuli for the
Waterpressure input are limited to 50 and 150. Edges are
labeled by inputloutput and covered requirements are listed in
square brackets. The vertex numbering indicates the order in
which the vertices are created and added as potential states. The
edge number indicates the order in which edges are added to the
scenario tree.

Initially the algorithm starts with the greedy approach,
always selecting the potential state connected by the edge
covering the most as yet uncovered requirements, and selecting
at random in the case of a tie. The greedy portion of the

v -7787

1

I I P=50 I SI=On [RI,P2] W P = I 5 0 / [I Rese t=On/ [] Block=On I [R2a]

0 , Off

Reset=On I [] Block=On / SI=Off [R2a, R 3 b]

I() 1 2 9 & 1 4 % >

TL, T P, F TL, T TL, F
0 , O f f 0 , Of f 1, O f f 0 , On

1 8 6

Wp=50 I [1 WP=150 / [1, R2b. R4bl T R e f / [R4a1 Reset=On / SI=On [R ~ c , R I . R4c] Blo

0 , Of f 3 . On 0 , On 1 , O f f

Figure 3. Scenario Tree for Safety Injection System

algorithm continues in this manner until the MST consists of
states 0, 1, 7, 10, 12, 13, 17, and 19. One possible order for
adding these states is indicated by the numerical edge labels.
Note that states that are part of the scenario tree but have not
been expanded are equivalent to states that are already part of
the MST.

At this point the greedy portion of the algorithm will
terminate since transitioning the system to any of the potential
states covers no additional requirements. The single remaining
requirement is R4d. The state required to allow R4d is TL, X,
3, X where X is a don't care. At this stage the only expandable
states are 5 and 18. The distance for state 5 is 4 (1 for the
enumerated Pressure plus 3 for the difference in Trefcnt) and
the distance for state 18 is 1 (for the difference in Trefcnt).
Expanding state 18 reveals the desired transition leading to the
addition of states 23 and 18 to the scenario tree.

The generated scenario tree contains the five scenarios
listed below.

1 WP=50 I SI=On 2 WP=50 I SI=On
WP=150 I SI=Off Block=On I SI=Off

WP=150 I

Block=On I SI=Off
3 WP=50 I SI=On 4 WP=50 I SI=On

Block=On I SI=Off
TRef I TRef I
WP=150 I R e s e w n I SI=On

Block=On I SI=Off
TRef I
TRef I
TRef I SI=On

5 WP=50 I SI=On

6. CONCLUSIONS AND FUTURE WORK

An approach for automatic test case generation from
system requirements has been presented. This approach is
based upon a formulation into a covering problem The
difficulty of this problem has been discussed and a heuristic

V -788

algorithm to solve the problem has been given. The use of this
algorithm has been illustrated using a small example.

Our approach is similar to the previous work done at GTE
Laboratories [lo]. Our work differs in that we are developing
test cases for embedded hardware/software systems rather than
purely software systems and in the way requirements are
associated with test cases. In their approach, stimulus and
responses are interactively associated with requirements as a test
engineer requests test cases to be generated. In our approach,
the association is determined when the requirements model is
generated and the test cases are generated to ensure the covering
as previously described.

The work of Hsia [4,11] is also relevant. Their domain is
again, software systems. Scenarios are elicited from the
customer and used to develop conceptual finite state machines.
From these FSMs, the set of all possible scenarios are generated.
The desire to not generate all possible scenarios is one of the
primary motivations for our heuristic approach. Also, since
Hsia has no explicit relation between requirements and scenario,
the bases for selective generation of scenarios does not exist.

Blackbum [12] describes a method to generate test vectors
from SCR style specifications by converting the SCR model
into a formal logic description used by the T-VEC systeni [131.
The T-VEC system generates test vectors. Test vectors are
singular entities applied at a single point in time. As a result,
they do not represent a sequence of events and would not allow
for the verification of temporal requirements.

The focus of our continued research will be focused on
the evaluation of this method on various systems. In addition, a
notation to capture the temporal requirements of systems will be
determined and a method to apply and verify these requirements
at the model and physical prototype level will be developed.
Finally, it is desirable to investigate extending the requirements
model beyond FSMs in order to apply this approach to a wider
range of systems.

Acknowledgments
This work has been supported by the National Science

Foundation under grant No. 9554561 “Hardware/Software
Codesign for High Performance Systems.” We would like to
thank Tony Ewing and Stephan Schulz their help in the
development of the heuristic algorithm.

7. References

Cunning, S.J., Ewing, T.C., Olson, J.T., Rozenblit, J.W.,
Schulz, S., “Towards an Integrated, Model-Based
Codesign Environment,” Proceedings of the I999 IEEE
Conference and Workshop on Engineering of Computer
Based Systems (ECBS’99), pp. 136-43, Nashville, TN,
March 1999.
‘Harel, D. “STATEMATE: A Working Environment for
the Development of Complex Reactive Systems.” IEEE
Transactions on Software Engineering, 16(4), pp. 403-14,
1990.
Heitmeyer C., Kirby, J., Labaw B., “Tools for Formal
Specification, Verification, and Validation of
Requirements,” Proceedings of the 12/h Annual
Conference on Computer Assurance (COMPASS ‘97), pp.
35-47, Gaithersburg, MD, June, 1997.
Hsia, P., Kung, D., Sell, C., “Software Requirements and
Acceptance Testing,” Annals of Software Engineering,
vol. 3, pp. 291-317, 1997.

Schulz, S., Rozenblit, J.W., Mrva, M. and Buchenrieder,
K., “Model-Based Codesign,” IEEE Computer, 32(8), 60-
68, 1998.
Zeigler, B.P. “Multifaceted Modeling and Discrete Event
Simulation.” Academic Press, London; Orlando, 1984.
Cunning, S.J., Rozenblit, J. W., “Test Scenario Generation
from a Structured Requirements Specification,”
Proceedings of the 1999 IEEE Conference and Workshop
on Engineering of Computer Based Systems (ECBS’99),
pp. 166-72, Nashville, TN, March 1999.
Courtios, P.J., Parnas, D.L., “Documentation for Safety
Critical Software,” Proceedings of the 151h International
Conference on Software Engineering (ICSE’93), pp. 3 15-
23, Baltimore, MD, 1993.
Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.,
“Automated Consistency Checking of Requirements
Specifications,” ACM Transactions on Engineering and
Methodology, vol. 5(3), pp. 231-61, July 1996.

[101 Chandrasekharan, M., -Dasarathy, B., Kishimoto, Z.,
“Requirements-Based Testing of Real-Time Systems:
Modeling for Testability,” IEEE Computer, vol. 18, pp.
71-80, April 1985.

[I 11 Hsia, P., Samuel, J., Gao, J., Kung, D., Toyoshima, Y.,
Chen, C., “Formal Approach to Scenario Analysis,” IEEE
Software, vol. 11, pp. 33-41, March, 1994.

[12] Blackburn, M.R., Busser, R.D., Fontain, J.S., “Automatic
Generation of Test Vectors for SCR-Style Specifications,”
Proceedings of the 12Ih Annual Conference on Computer
Assurance (COMPASS’97), pp. 54-67, Gaithersburg, MD,
June, 1997.

[13] Blackburn, M.R., Busser, R.D., “T-VEC: A Tool for
Developing Critical Systems,” Eleventh International
Conference on Computer Assurance (COMPASS’96), pp.
237-49, Gaithersburg, MD, June, 1996.

V -789

