
Journal of Intelligent and Robotic Systems 41: 87–112, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

87

Automating Test Generation for Discrete Event
Oriented Embedded Systems

STEVEN J. CUNNING and JERZY W. ROZENBLIT
University of Arizona, Electrical & Comp. Eng. Department, P.O. Box 210104, 1230 E. Speedway
Boulevard, Tuscon, AZ 85721-0104, USA; e-mail: head@ece.arizona.edu

Abstract. A method for the automatic generation of test scenarios from the behavioral requirements
of a system is presented in this paper. The generated suite of test scenarios validates the system design
or implementation against the requirements. The approach proposed here uses a requirements model
and a set of four algorithms. The requirements model is an executable model of the proposed system
defined in a deterministic state-based modeling formalism. Each action in the requirements model
that changes the state of the model is identified with a unique requirement identifier. The scenario
generation algorithms perform controlled simulations of the requirements model in order to generate
a suite of test scenarios applicable for black box testing. Measurements of several metrics on the
scenario generation algorithms have been collected using prototype tools.

Key words: test pattern generation, requirements modeling, embedded systems.

1. Introduction

1.1. MOTIVATION

Much work in the area of requirements engineering has been done over the past
twenty years. Many languages and methods have been developed and implemented
[2, 16, 17, 22, 30, 33, 35, 37–40]. White [45] provides a comparative analysis of
eight such methods. Throughout these works, the problem statement, which has
remained essentially unchanged over the years, is that incomplete, ambiguous,
incompatible, and incomprehensible requirements lead to poor designs. The con-
clusions have also been consistent. The use of a structured requirements language,
usually with tool support and within a requirements solicitation and documen-
tation process, leads to early detection of problems and misunderstandings. The
resolution of which leads to better designs.

While the idea of automatic generation of test scenarios from requirements
specifications is not new, acceptance of the proposed methods have not been em-
braced in industry. Most of these methods rely on the development of a finite state
machine (FSM) based representation of the system requirements [1, 3, 6, 7, 24,
26, 33–35], which we will call the requirements model. These models are evalu-
ated in order to derive sequences of stimuli (applied to the system) and responses
(expected from the system).



88 S. J. CUNNING AND J. W. ROZENBLIT

Automatic test generation will be adopted if adequate and flexible tool support
that is easily integrated with the requirements modeling tools is available. The
automatic test generation must provide effective test scenarios for a wide range
of systems and test objectives. Flexibility to allow an organization to control the
type of test coverage desired should also be included.

The current practice of test generation in industry is largely ad hoc [34]. One
of the benefits of automation is to provide consistent coverage of system require-
ments and to generate test scenarios in an objective and unbiased manner. Another
advantage of automation is relieving the designers or test engineers of much of
the tediousness of this task. And finally, automation will reduce the time needed
for test generation. This will allow an organization using automatic test generation
methods to more easily handle the inevitable changes in requirements.

Our motivation comes from a systems perspective, in particular, model-based
codesign of real-time embedded systems [12, 43]. This method relies on system
models at increasing levels of fidelity in order to explore design alternatives and to
evaluate the correctness of these designs. As a result, the tests that we desire should
cover all system requirements in order to determine if they have been implemented
in the design. The set of generated tests will then be maintained and applied to
system models of increasing fidelity and to the system prototype in order to verify
the consistency between models and physical realizations.

1.2. RELATED WORK

In [11], we provide an extensive survey of publications related to our work. Here
we present a brief synopsis of previous work.

Heitmeyer et al. describe the SCR formalism in [29]. This work includes the
method for developing the requirements specification (model) in the SCR formal-
ism and methods to automatically check the specification for a number of desirable
properties. In [30, 31] they describe tool support for the SCR language. A set
of tools is available to support the development, automatic consistency checking,
symbolic simulation, and dependency graph browsing, of SCR models.

In the area of test generation from state-based specifications, arguably the defin-
ing work is by Chow [7]. Chow describes a method to test the control structure of
software that can be modeled by finite state machines. The three step method is to
estimate the number states in the correct design, generate test sequences based on
the current design, and verify the responses by comparing to the expected responses
(derived from the system specification).

Hsia et al. provides a good treatment of scenario analysis in [33–35]. Conceptual
state machines are derived from scenario trees. The state machines are verified
against the trees, then the state machines are used to exhaustively create all pos-
sible scenarios. A prototype is generated from the produced scenarios. Finally, all
scenarios are validated by using the prototype.



AUTOMATING TEST GENERATION FOR EMBEDDED SYSTEMS 89

Clarke and Lee [8, 9] describe a test generation method that includes timing
constraints. Timing constraints are captured graphically through a constraint graph.
The Algebra of Communicating Shared Resources (ACSR) is used to represent
tests and process models. Their approach includes testing of timing constraints on
the environment (what they call behavioral) as well as constraints on the system
(what they call performance).

Ho and Lin [32] discuss a dual language approach that uses temporal logic to
formally and precisely describe the system and timed Petri nets as an operational
language to describe an abstract model of the behavior of the system to support
simulation. Glover and Cardell-Oliver [26] report on a tool that generates test suites
that include timing. Complexity is dealt with by decomposing the model and by
varying the temporal granularity. A graph-based approach is used where vertices
represent state and edges represent timed actions.

In [5] a method for generating conformance tests for real-time systems from
timed automata specifications is presented. The goal of the generated test suite is to
show trace equivalence between the system specification and the implementation.
Views are defined in an attempt to limit size complexity. Views define the aspects of
the system that are important to the particular test objective. Test cases are derived
from traces of the specification after expanding all reachable states. The test suite
is comprised of tests for every transition in the specification. Distinguishing se-
quences are appended as needed to distinguish final states that are within the same
equivalence class due to the selected view. Time is handled by quantizing system
clocks and including the clocks as part of the system state. For behavior that is
acceptable within a temporal range, timed transitions for all quantized time values
within the range are included in the specification. This leads to observable non-
determinism requiring the generation of all possible traces to support comparison
of test results in some cases.

While many of the previous references are closely related to the approach pre-
sented in our work, the differences can be summarized into a couple of key areas.
The first is the type of system description used as input to the test generation
process. While a formal and executable state-based requirements model with sepa-
rately specified temporal requirements are used here, other approaches use formal
logic descriptions (both with and without temporal aspects) [1, 32], finite state
machine descriptions (often augmented) [3, 6, 7, 20, 35], timed Petri nets [32], rule-
based models [44], input/output specifications [15], the algebra of communicating
resources [8], state-based models [1, 5, 24, 26], and more general languages such
as the Requirements Specification Language (RSL) [21].

The targeted end use of the generated test suite is also a distinguishing factor.
Many researchers target only software implementations, or constrained implemen-
tations that allow some visibility into the internal state of the system. Because the
target use for this work is to support model-based codesign through all levels of
the design process, a black box testing model must be used, which complicates
the test generation process. The works of Chow [7], En-Nouaary et al. [20], and



90 S. J. CUNNING AND J. W. ROZENBLIT

Cardell-Oliver [5] address the black box testing issue by applying characterization
set sequences to each generated test scenario. This provides a general solution but
is costly in terms of the size of the generated test set and En-Nouaary assumes
visibility of the internal system clocks. The work of Freeza [21] is applicable to
black box testing, but the generated tests are values and not sequences (i.e. only
static function and not behavior can be tested). The remaining works cited in this
section do not address the black box testing issue.

A third distinguishing factor is the treatment of time. Many of the related works
only generate test suites to support the validation of the functional correctness of
the system [1, 3, 7, 15, 21, 24, 35, 44]. For real-time systems, temporal correctness
is equally important. Temporal correctness is addressed by the tests generated in
[5, 6, 8, 20, 26, 32]. Our treatment of temporal requirements is described in [11].

1.3. CONTEXT

Although it should be possible to apply the algorithms developed in this work to
any design process using state-based requirements and design models, they have
been developed within a particular context. More specifically, this work focuses
on embedded computer-based systems with hard real-time deadlines [19, 23, 46].
Their development is often supported by codesign techniques [42].

The variant of codesign under development at the University of Arizona has
been termed model-based codesign [12, 43]. In model-based codesign, we ver-
ify correctness of models through computer simulation. A simulation test setup
is called an experimental frame [41, 47, 49] and is associated with the system’s
model during simulation. Such frames specify conditions under which the model
of the system is observed. Simulation is then executed according to the run con-
ditions prescribed by the frames. The test scenarios generated by the algorithms
described in this paper are intended to support the testing needs of all levels of the
model-based codesign process.

2. Test Generation Process

The top level problem to be solved by this work is to define a process that takes
as input the requirements for a system captured in natural language format and
produces as output a set of test scenarios that adequately tests the system. The
goal is to automate the defined process to the greatest extent possible. In order to
facilitate automation, a set of algorithms has been developed for certain steps in
the test generation process.

Model-based codesign relies heavily on modeling and simulation to evaluate
potential system designs. Efficient use of simulation requires prepared sets of sys-
tem stimuli and a means for evaluating the system responses to them. Test scenarios
must consist of a time ordered sequence of events representing both the stimuli to
be applied to the system and the expected responses.



AUTOMATING TEST GENERATION FOR EMBEDDED SYSTEMS 91

2.1. TEST GENERATION OVERVIEW

The proposed test generation process proposed to support model-based codesign
is illustrated in Figure 1. It is expected that any design project will start with a
document stating the system requirements in a textual form. The textual require-
ments will be modified to include a unique identifier for each requirement if such
identifiers do not already exist. The requirements model is then developed from
the textual representation. This model represents the system in the form of a finite
state machine specified in a formal modeling language. This model also provides
a virtual prototype of the system which can be used to gain insight into the sys-
tem’s dynamic behavior. This can be invaluable in correcting and clarifying the
requirements.

In addition to capturing the behavior of the system, the requirements modeling
language must support the annotation of interface requirements and requirements
identifiers. Interface requirements define the required behavior of the system’s en-
vironment and temporal requirements for both the system and environment. The
requirements identifiers provide traceablility between the model and the textual

Figure 1. Scenario generation and use.



92 S. J. CUNNING AND J. W. ROZENBLIT

requirements and are used by the test scenario generator to determine requirements
coverage.

After development of the requirements model, the interface constraints and
system functions are extracted and synthesized into a high level programming
language as described in [27]. This code is compiled with the test scenario genera-
tion algorithms to produce the test scenario generator. The test scenario generator
uses the system functions, interface constraints if any, and manually selected test
input values to perform a controlled simulation of the requirements model. This
simulation performs a state space exploration of the model by starting from the
specified initial state and applying available system stimuli in order to generate
new system states.

3. Example System

The example system is a Safety Injection System for a nuclear reactor adapted
from [10]. A block diagram of the system is shown in Figure 2. The basic operation
of this system is to monitor WaterPres and assert SafetyInjection to raise the water
pressure when WaterPres is sensed to be below the predefined threshold, LOW.
The block input is used to allow the operator to “block” or override the assertion
of the SafetyInjection output. Reset is used to unblock the system which re-enables
normal control of SafetyInjection. The input TRef (Time Reference) is monitored
by the system when the system is blocked. As a safety mechanism, the system will
autonomously unblock itself after three events are sensed on TRef.

The state variables for this system are Pressure, Overridden, TrefCnt, and Safe-
tyInjection. Pressure is an abstraction of WaterPres and is represented by an enu-
merated type with values of TOOLOW and PERMITTED. The values of TOOLOW
and PERMITTED are set based on whether WaterPres is above or below the pre-
defined threshold LOW. Overridden is a boolean variable which is set when the
operator asserts Block and reset when the operator asserts Reset. Overridden will
disable SafetyInjection even if the Pressure indicates that SafetyInjection should be
set to On. TRefCnt is an integer count of the number of events that have occurred
on the input TRef. SafetyInjection is enumerated with values of On and Off and
adds water to the cooling system, which increases WaterPres when set to On.
The initial state of the system is specified to be (Pressure, Overridden, TRefCnt,
SafetyInjection) = (PERMITTED, False, 0, Off).

Figure 2. Safety Injection System block diagram.



AUTOMATING TEST GENERATION FOR EMBEDDED SYSTEMS 93

Table I. Text-based requirements for Safety Injection System

[R1] The system shall assert SafetyInjection when WaterPres falls below LOW

[R2] The system shall be considered blocked in response to Block being asserted while
Reset is not asserted and WaterPres is below LOW, and shall remain blocked until
either Reset is asserted or WaterPres crosses LOW from a larger to smaller value

[R3] Once SafetyInjection is asserted, it shall remain asserted until the system becomes
blocked or WaterPres becomes greater than or equal to LOW

[R4] When the system is blocked and WaterPres is less than LOW, the system shall au-
tomatically unblock itself after the third timing reference event is sensed on input
TRef

Table II. Mode transition table for pressure

Old mode Event New mode

TooLow @T(WaterPres � LOW) Permitted [P1]

Permitted @T(WaterPres < LOW) TooLow [P2]

Table III. Event table for overridden

Mode Events

TooLow @C(Block) when [R2a] @T(Inmode) [R2b]

(Reset = Off)

TooLow @T(False) @T(Reset = On) [R2c]

TooLow @T(False) @C(Tref ) when [R4d]

(TrefCnt = 2)

Overridden′ True False

Text-based requirements for this system are given in Table I. These require-
ments have been labeled with requirement identifiers. LOW is the pressure thresh-
old which is defined to be 100.

The requirements model will be illustrated in the Software Cost Reduction
(SCR) formalism [29]. As discussed earlier, this formalism is based on finite state
machines specified through the use of tables. In these tables the formula @T(A)

is defined to mean the event that A has become true, @C(A) is the event that
A has changed, and a variable in primed notation (e.g., A′) indicates the value
that A will assume in the new state. The four tables (Tables II–V) define the func-
tions that control the values of Pressure, Overridden, TRefCnt, and SafetyInjection,
respectively.



94 S. J. CUNNING AND J. W. ROZENBLIT

Table IV. Event table for TRefCnt

Mode Events

TooLow @C(TRef ) when [R4a] @C(Block) when [R4c]

(Overridden) (Reset = Off)

TRefCnt′ TRefCnt + 1 0

Table V. Condition table for Safety Injection

Mode Conditions

Permitted True [R3a] False

TooLow Overridden [R3b] NOT Overridden [R1]

SafetyInjection Off On

These tables have been modified from the standard SCR notation in that require-
ment identifiers have been added to show the association to the original require-
ments. The requirement identifier information is actually stored in the free form
description block associated with each table provided by the SCR tools. Where
the original requirements where compound, the individual requirements have been
identified by the addition of an alphabetic character. The P1 and P2 identifiers
are a short hand for the fact that these transitions are needed to fulfill multiple
requirements. For example, the state Permitted, and therefore the transition from
TooLow to Permitted, is needed by requirements R2a, R2b, R2c, and R3a.

The state of the system is defined by: Pressure ∈ {P, TL}, Overridden ∈ {T, F},
TRefCnt ∈ {0..3}, SafetyInjection ∈ {On, Off}. The initial state of the system is (P,
F, 0, Off). Note that Overridden is symantically equivalent to Blocked in the textual
requirements.

4. Part 1: Base Test Scenario Generation

We have defined the test generation problem in terms of a covering of the re-
quirements. In order to better understand this formulation of the test generation
problem, a definition of “covering” is needed. A set of test cases that cover all
system requirements is one that exercises all state transitions associated with all
uniquely identified system requirements. The desired output of the test case gen-
eration process is a minimal set of test cases that cover all requirements. Minimal
will be defined to mean a set of test cases in which no test case may be removed
without destroying the covering property.

It must be noted that there is not a one-to-one mapping of textual requirements
to actions in the formal requirements model. The process of developing the re-



AUTOMATING TEST GENERATION FOR EMBEDDED SYSTEMS 95

quirements model is the conversion of the textual requirements into the formal
SCR notation. Every action in the model (i.e., state transition or generation of
an output) must exist to fulfill one or more system requirements or parts thereof.
An action that fulfills part of a requirement will exist when the textual require-
ment is compound in nature or, for instance, requires multiple outputs or multiple
transitions. An example of an action needed by multiple requirements would be
if a particular output was defined to be generated by two separate requirements,
possibly in response to different stimuli or in response to the same stimulus but
in distinct system modes. A unique requirement identifier will be associated with
every action in the requirements model.

4.1. DEVELOPMENT OF A SOLUTION TO THE REQUIREMENTS COVERING

FORMULATION

Formulating the problem into a covering problem provides the benefit of a po-
tentially reduced set of test scenarios (i.e., avoidance of the state-space explosion
problem). The cost is the increased complexity of solving the problem. It has been
shown in [11] that the requirements covering problem is NP-complete.

4.2. HEURISTIC APPROACH TO SOLVING THE REQUIREMENTS COVERING

PROBLEM

Given the hardness of the requirements covering problem, it is appropriate to seek
an approximation or heuristic approach that will provided an adequate solution in
a reasonable amount of time.

Initially, no requirements will have been covered, thus any available stimulus
that causes a state change in the model will help reach the covering goal. This
implies that a greedy approach should work well. One possible greedy algorithm
would expand all possible states for the most recent state added to a scenario search
tree, then add the state connected by the edge covering the most requirements not
yet covered. The number of non-covered requirements, which will be called the
Requirements Covering Value (RCV), is the quality measure used to select the next
state to be added to the scenario search tree. One difficulty is that when a new edge
and state are selected and added to the scenario tree, the potential states (states that
have been expanded but have not been added to the scenario tree) at that time may
have their RCVs change. As a result, the RCV for each potential state will have to
be recalculated after each new state is added to the scenario tree.

The greedy approach is not a complete solution because what could eventually
happen, and is quite likely, is that the queue of potential states will at some point
contain no entries that are associated with requirements remaining to be covered
(and all requirements have not yet been covered). When this happens, a switch to
a second strategy is needed because the greedy approach would degenerate into
a random selection process that in the worst case could expand the entire state



96 S. J. CUNNING AND J. W. ROZENBLIT

space of the requirements model. This situation will occur when there are some
requirements that are covered by edges near or at the leaves of the tree. These
transitions require that the system be exercised through a long series of inputs in
order to get the system into a state that allows the needed transition to be taken.
The remaining problem is how to guide the expansion process so that it is likely to
follow a path leading to a needed transition.

If the complete scenario search tree already existed, the states connected to a
needed transition would be known. Then, for all of the potential states, a distance
to the enabling state for the desired transition could be computed. This distance
could be the number of state variables that do not match. The selection of the next
state to expand could be made based on this measure, and the expansion could then
always follow the most promising path so far. Since the scenario search tree is not
available to work with, this approach cannot be used directly. What is available is
the requirements model. A transition that covers one of the elusive requirements
can be identified and from the conditions enabling this transition, a state can be
derived (most likely with don’t care values) that will allow the desired transition to
be taken. The selection of the next state to expand, based on the distance measure,
can then be applied as described above. If don’t care values exist in the enabling
state, they will not count in the distance calculation. This type of search will be
called the distance-based search.

During the distance-based search phase of the algorithm, if the edge leading
to the next state selected does not cover any additional requirements, it will not
be added to the scenario tree. The reason is that there is no guarantee that any
scenario containing that transition will eventually lead to the covering of additional
requirements. Instead, such states are kept in the list of potential states. After each
new state is expanded, all new edges will be checked for additional coverage. If
any are found, a backward trace is initiated that continues until it connects with the
current scenario tree. All edges and states along the path defined by the backward
trace are then added to the scenario tree.

This dual algorithm approach is described in more detail in [11, 13]. The test
scenarios defined by the scenario tree resulting from the application of the greedy
and distance-based search algorithms will be referred to as the base scenarios.

Base scenarios are limited in that they are not suitable for black box testing.
Each test scenario generated forces the system to traverse a set of state transitions.
Unfortunately the base scenarios only require that state transitions are traversed and
not that the effect of each transition can be verified by observing some change at a
system output. This is important in our context (i.e., model-based codesign) since
the test scenarios will be applied to design models and physical prototypes. Both
of these targets are to be treated as a black box. The first, since the correspondence
between the state variables of the requirements model and the design model will
most certainly differ, and the latter, in addition to the state mapping problem, due
to the limitations of physical access to internal changes. Based on these objectives,
the base scenarios are incomplete.



AUTOMATING TEST GENERATION FOR EMBEDDED SYSTEMS 97

PART 1 ALGORITHM.

1. Starting from the specified initialization state, perform a greedy
state search of the requirements model by applying all available
inputs to the currently selected state. Any transitions covering
requirement IDs not previously covered are added to the scenario
tree. The next state to expand is the state reached through the
transition covering the most requirement IDs not previously covered.

2. If all requirement IDs are not covered, repeatedly select one of
the remaining requirement IDs as a target until all remaining
requirement IDs have been selected, and then perform a distance
based search using the leaf states expanded by step 1 as the
starting pool of states available to expand. States are expanded as
before, by applying all available inputs to the currently selected
state. Any transitions covering a requirement ID that has not
previously been covered, along with the sequence of transitions
that connect this transition to the scenario tree, are added to the
scenario tree. As new states are expanded, they are added to the
pool of available states. The next state to expand is the available
state with the smallest distance value.

3. Output, as an intermediate result, all paths from the initialization
state (i.e. root node) to a leaf node in the scenario tree. These
sequences of stimulus, response, and state data define the base
scenarios.

4.3. PART 1 ALGORITHM EXAMPLE

Execution of the Part 1 Algorithm will now be described. Test stimuli for Reset is
set to On or Off and WaterPresure is set to 50 or 150. Block and TRef are event
types and therefore do not require defined test values. The description of the Part 1
Algorithm will be decomposed into the greedy and distance-based search portions.

Execution of the greedy portion of the Part 1 Algorithm results in the creation
of the scenario search tree illustrated in Figure 3. Edges are labeled by input/output
and covered requirements, which are listed in square brackets. The vertex number-
ing indicates the state name as defined by the set of unique system states listed
in Table VI. Note that states 8, 10 and 11 are equivalent to states 1, 3, and 6,
respectively, and are therefore not part of the set of unique states.

The greedy search always selects the potential state connected by the edge
covering the most remaining requirements, and selecting at random in the case
of a tie. The greedy portion of the Part 1 Algorithm continues in this manner until
the scenario search tree, SST, consists of the states shown in Figure 3. The scenario
tree ST which represents the scenarios, is defined by the bold edges. The edges
and vertices that are not part of the ST are potential states that did not cover any
additional requirements.



98 S. J. CUNNING AND J. W. ROZENBLIT

Figure 3. Greedy scenario search tree for Safety Injection System.

At this point the greedy portion of the algorithm will terminate since transition-
ing the system to any of the potential states covers no additional requirements. The
greedy search covered all but two requirements, R4d and R2b.

The distance-based portion of the algorithm will select one of these as a target.
Targeting R2b, the state required to enable the associated transition is P, T, X, X,
where X is a don’t care. At this point the potential states are 2, 5, 12, and 16
(8, 10, and 11 being equivalent to previously expanded states). Counting one for
each difference in enumerated types, the distances for these states are 0, 1, 0, and 2,
respectively. There are two states with minimum distance to choose from. With the



AUTOMATING TEST GENERATION FOR EMBEDDED SYSTEMS 99

Table VI. Unique system states at completion of Part 1 greedy

Name Pressure Overridden TrefCnt SafetyInj

1 PERMITTED FALSE 0 OFF

2 PERMITTED TRUE 0 OFF

3 TOOLOW TRUE 0 OFF

4 TOOLOW TRUE 1 OFF

5 TOOLOW TRUE 2 OFF

6 TOOLOW FALSE 0 ON

12 PERMITTED TRUE 1 OFF

16 TOOLOW FALSE 1 ON

Table VII. Additional unique system states at completion of
Part 1 distance-based

Name Pressure Overridden TrefCnt SafetyInj

7 TOOLOW FALSE 3 ON

13 PERMITTED TRUE 2 OFF

14 TOOLOW FALSE 2 ON

goal of keeping the lengths of the test scenarios as short as possible, a practical
aspect in the implementation of the Part 1 Algorithm is that it will select the po-
tential state with minimum depth in the scenario search tree in the case of a tie
(random select if all tied states are at the same level). As a result the state selected
for expansion is state 2. This results in the addition of state 9 and the edge from
state 2 to state 9 covers requirement R2b. The back trace from state 9 adds states 9
and 2 to the ST.

Targeting the final requirement, R4d, the state required to enable the associated
transition is TL, X, 2, X. At this stage the only expandable states are 2, 5, 12, and
16 (8, 9, 10, and 11 being equivalent to previously expanded states). Counting 1
for the enumerated Pressure and 2 for the difference in the numeric type TrefCnt,
the distance for state 2 is 3. Similarly, the distances for states 5, 12 and 16 are 0, 2
and 1, respectively. The distance-based search will expand state 5, adding states 7,
13, 14 and 15 to the scenario search tree. The transition to state 7 is discovered to
have covered the target requirement, R4d. The back trace then adds states 7 and 5
to the scenario tree. Noting that state 15 is equivalent to state 1, the values for these
addition states are given in Table VII.

The base scenario search tree at the completion of the Part 1 Algorithm is given
in Figure 4. Again, the scenario tree ST is represented by the bold edges and defines
the base scenarios.



100 S. J. CUNNING AND J. W. ROZENBLIT

Figure 4. Final base scenario search tree for Safety Injection System.

5. Part 2: Identifying Incomplete Base Scenarios

The approach selected to identify incomplete base scenarios is analogous to meth-
ods for automatic test pattern generation for digital systems where the circuit is
simulated both with and without the injection of a circuit fault. Inputs that are
found to produce different outputs for the fault free and faulty circuits are valid
tests for the given fault.

In the problem of identifying incomplete scenarios, the goal is to determine if
any system output would differ if the covered requirement was not implemented.



AUTOMATING TEST GENERATION FOR EMBEDDED SYSTEMS 101

The technique described above can be applied where the “injected fault” is to
disable the action associated with the target requirement identifier. Since the re-
quirement identifiers are mapped onto the state transitions of the requirements
model, this is equivalent to disabling a single transition in the model.

Each requirement identifier listed as being covered by each base test scenario
must be considered individually. Call the requirement identifier being considered
the target requirement. Both the correct requirements model and the model with the
transition associated with the target requirement disabled are simulated in parallel
while the associated base test scenario is applied to the system. At each step the
system outputs for the two models are compared. An observed difference confirms
that compliance with the target requirement can be verified by observing the system
outputs while applying the existing base test scenario. Of course the simulation
may be stopped as soon as a difference is observed. If, on the other hand, the entire
base scenario is applied and no system output difference is observed, then that test
scenario is incomplete with respect to the target requirement identifier.

PART 2 ALGORITHM.

1. For each step of each base scenario and each requirement ID
exercised by that step that has not been identified as verifiable,
simulate the requirement model with and without the transition
associated with the current requirement ID to the end of the current
scenario or until a difference is detected at a system output. If a
difference was detected, mark the requirement ID as verifiable.

2. Output, as an intermediate result, the list of requirement IDs not
marked as verifiable.

5.1. PART 2 ALGORITHM EXAMPLE

The set of test scenarios in the preceding section cover all requirements identi-
fied for the Safety Injection System model. But do these scenarios allow for the
verification of all requirements at the black box level? Application of the Part 2
Algorithm identifies one requirement, R4c, as not being verifiable for black box
testing. Requirement R4c is exercised in the last transition of scenario 4, which is
defined by the transitions from state 1 to state 10 in Figure 4. R4c resets the value of
TRefCnt to zero when Pressure is TOOLOW and Reset is not On. The previous step
in this scenario caused TRefCnt to be incremented to one, so applying Block in the
next step should indeed cause a change to the state of the system. This state change
cannot be verified by observing system outputs while applying system inputs per
scenario 4 as it stands. This is verified by the Part 2 Algorithm which executes the
requirements model with and without the transition associated with R4c disabled
and finds no differences at the system outputs.

As a practical consideration, the Part 2 Algorithm will list the earliest occur-
rence for each unverified requirement detected. In this case, earliest means that



102 S. J. CUNNING AND J. W. ROZENBLIT

for all scenarios covering the given requirement, the occurrence with the fewest
number of steps from the start of a scenario is selected. This is done because the
list produced by the Part 2 Algorithm feeds into the Part 3 Algorithm as starting
points for scenario enhancements. Selecting the earliest occurrence is intended to
minimize the length of the final scenarios.

6. Part 3: Enhancing the Base Scenarios

After the incomplete base test scenarios are identified, they must be enhanced to
support black box testing. The problem at hand, when in the domain of finite au-
tomata and general I/O systems, is termed in the literature as the problem of finding
a distinguishing or diagnosing experiment [18, 25, 36, 48]. In [11], we provide a
detailed discussion on how various authors have addressed the distinguishability
problem. Here, we introduce a heuristic called difference-based search that enables
us to enhance the base scenarios.

Starting with the premise that all internal change (IC) transitions (state changes
that are not immediately observable at a system output) will cause a state change
in the system and that this state change is distinguishable from all other states in
the system (i.e., the system is minimal), then there must exist an input sequence
that will distinguish the state reached after any IC transition has caused a state
change, from any other state. From the incomplete scenarios, the state following
the application of an input that exercised the IC transition will represent the state
which we need to distinguish. This state will be called Sa. If the “other” state is
selected such that the only difference between it and Sa is the effect of the IC, then
it should be possible to perform a state exploration that is guided by propagating
the difference until a difference can be observed at a system output. This type of
search will be termed a difference-based search and will operate by simulating
pairs of states and selecting state pairs that differ for continued expansion. This
approach was selected to generate enhancements to the base test scenarios in order
to enable black box testing.

PART 3 ALGORITHM.

1. For each requirement ID identified by Part 2 as unverified, perform
a difference based search starting with a single state pair. State
pairs are generated by simulating the requirements model with and
without the transition associated with the current requirement ID
disabled. The initial state pair is defined by the states reached
after applying the base scenario stimulus for exercising the current
requirement ID. As states are expanded, new state pairs that contain
a difference are added to the pool of available states. The search
continues until a difference is detected at a system output or the
pool of available states is empty.

2. If a difference was detected at a system output, as an intermediate
result, output the successful path from the generated search tree
(sequence of stimulus, response, and state data).



AUTOMATING TEST GENERATION FOR EMBEDDED SYSTEMS 103

6.1. PART 3 ALGORITHM EXAMPLE

The Part 3 Algorithm will target requirement R4c in scenario 4. The requirements
model is simulated by applying scenario 4 up to the step that exercised R4c. Then,
the input that exercised R4c, Block, is applied to the “Good” and “Bad” models
(i.e., with the transition associated with R4c enabled and disabled). This provides
the initial state pair for the difference-based search.

Figure 5 illustrates the process of applying the difference-based search to pro-
duce a verifying sequence for R4c. The states identified by a number indicate the
order in which state pairs where (or would have been) expanded. An ‘X’ following
a state indicates that that state pair was not added to the Potential List. If the ‘X’ is
covering a number, the new state pair was not added to the Potential List because
it was equivalent to the pair indicated by that number. If the ‘X’ is not covering a
number, the state pair was not added due to both states in that pair being equiva-
lent (i.e., the difference vanished). The bold arcs indicate the verifying sequence
for R4c.

The difference detected at the system output is also shown. If the value of
TRefCnt had not been reset to zero as it should have been, SafetyInjection would
be turned back to On one TRef event too soon, which is indicated by the “Good”
and “Bad” values listed above.

Figure 5. Application of difference-based search.



104 S. J. CUNNING AND J. W. ROZENBLIT

7. Part 4: Combining Base Scenarios and Scenario Enhancements

When enhancements have been generated for the incomplete base scenarios, these
must be combined with the base scenarios to produce a complete and consistent
set of test scenarios. This process is fairly straight forward except that in order to
avoid inducing redundancy, overlapping scenarios must be identified. Because the
scenario enhancements are generated without knowledge of the base scenarios, it
is certainly possible that sequences between the base scenarios and the scenario
enhancements and even between the enhancements themselves may overlap.

The scenario combining process will first reconstruct the scenario tree repre-
senting the base scenarios. Each enhancement will then be processed by identifying
the state (node in the scenario tree) at which the enhancement is to be applied and
adding the states (nodes) and transitions (edges) corresponding to the steps in the
enhancement to the scenario tree. Before a new state and transition are added to the
scenario tree, a check for state uniqueness will be made. If the state is not unique,
a check will be made to determine if the enhancement overlaps with an existing
scenario as defined by the present structure of the scenario tree. If an overlapping
condition is identified, the existing state and transition will be used. In this way the
scenario tree will represent a non-redundant set of scenarios.

After all enhancements have been added to the scenario, the complete set of
scenarios will be output by performing a depth first traversal, as was done to output
the base scenarios.

Additional details regarding the test generation algorithms are presented in [11].

PART 4 ALGORITHM.

1. Merge the base scenarios from part 1 with the scenario enhancements
from Part 3 by appending the scenario enhancements to the base
scenario tree. Before adding a state from an enhancement, check for
equivalent states in the base scenario tree to detect overlapping
paths and avoid redundancy.

2. Output all paths from the tree resulting from the previous step.
These sequences of stimulus, response, state data represent the
generated test suite.

7.1. PART 4 ALGORITHM EXAMPLE

Once the base scenarios and the scenario enhancements have been generated, the
Part 4 Algorithm will combine these results to produce the final set of test scenar-
ios. As described above, this is accomplished by adding the scenario enhancements
to the base scenario tree to produce the final scenario tree. The final scenario tree
for the Safety Injection System is shown in Figure 6. Note that due to the manner
in which this tree is constructed (i.e., it is not the direct result of a heuristic search)
it will not include potential states. In other words, it is a scenario tree where all



AUTOMATING TEST GENERATION FOR EMBEDDED SYSTEMS 105

Figure 6. Final scenario tree for Safety Injection System.



106 S. J. CUNNING AND J. W. ROZENBLIT

states and edges define scenarios, rather than a scenario search tree which includes
the results of unproductive search. This tree defines the final set of test scenarios
for the Safety Injection System.

8. Experimental Results

This section reports on the results collected while experimenting with the imple-
mented test generation algorithms. Several systems have been used to evaluate
the test generation process. The Safety Injection System (SIS) that has been used
throughout the preceding sections has actually been implemented in five variants.
The version used in the examples is a version that was modified from the SIS more
commonly presented [4, 28, 29] to ensure that the distance-based search portion of
the scenario generation algorithm would be tested. The common SIS was imple-
mented in four variants. The first two, called SISsm and SISlg, correspond to the
common SIS and differ only in the allowed range for the water pressure input and
thresholds as described in [24]. The remaining two variants of the SIS, SISsmNA
and SISlgNA, are equivalent to the SISsm and SISlg models except that a set of
“negative action” transitions have been added to allow for better comparison to the
results presented in [24]. “Negative action” transitions do not change the state of
the system (i.e., they are equivalent to self loops in a state transition diagrams) and
correspond to requirements that state what the system must not do.

A temperature controller system has also been implemented. This system can be
thought of as a digital thermostat with a few added features and is described in [14].
This model differs from the others in that it was not implemented in SCR followed
by synthesizing code. It was developed directly in C from the requirements forms
proposed in [14].

The final system modeled is that of an elevator controller. This model represents
a controller for an elevator in a three story building.

Table VIII provides a list of the models used and a the number of requirement
identifiers for each.

Table VIII. Summary of modeled systems

Name No. of requirement IDs

SIS 11

SISsm 10

SISlg 10

SISsmNA 24

SISlgNA 24

Temperature controller 31

Elevator controller 63



AUTOMATING TEST GENERATION FOR EMBEDDED SYSTEMS 107

8.1. TEST SCENARIO GENERATION RESULTS

The test generation process of Figure 1 has been applied to each of the models
described in the preceding section. Except for the development of the requirements
model from the textual requirements, this process has been fully automated by the
prototype tools described in [11, 27].

In what follows, we focus on two groups of results: (a) verifiabilty of require-
ments at the black-box level and (b) test generation efficiency.

8.2. REQUIREMENTS VERIFIABLE AT THE BLACK BOX LEVEL

As illustrated in Figure 7, all requirements are verifiable at the black box level for
the SIS and elevator controller models. There is one requirement identifier common
to both the SISsm and SISlg systems that remains unverifiable. This requirement
identifier represents a redundancy in the common Safety Injection Models.

The SISsmNA and SISlgNA systems, by definition, contain multiple require-
ment identifiers that do not change the state of the system. The temperature con-
troller system includes a requirement that the system should ignore certain inputs
when the system is in the idle mode. This translated into two requirement IDs in
the requirements model. Because the Scenario Enhancing Algorithm is based on
propagating a state difference until observable at a system output, this process will
obviously fail if there is no difference to start with.

The discussion in the preceding paragraphs indicate that it is not always possible
for the test generation algorithms to generate tests that are able to verify the correct
functionality at the black box level. The two cases where this is not possible is
when the assumption that the requirements model is minimal has been violated
and for negative action requirements.

Figure 7. Black box verifiable requirements.



108 S. J. CUNNING AND J. W. ROZENBLIT

8.3. SCENARIO GENERATION EFFICIENCY

Execution time is an important measure because the time needed to generate a suite
of test scenarios limits the practical size of systems to which this approach can be
applied.The reported execution times presented in this section were measured using
the standard C library clock() function. Test generation in all cases was performed
on a very lightly loaded Sun Sparc Ultra-1 workstation with 128 MB of RAM
running Solaris 2.5.1. The resolution of the clock() function on this platform is
10 milliseconds.

Using the total measured test scenario generation execution times for the ex-
ample systems, we can attempt to empirically derive a relation between the size of
the system and the time needed to generate test scenarios. Figure 8 charts the total
execution times and a best fit curve. This apparent relation is promising in terms of
the ability to scale this scenario generation process to much larger systems. Based
on this relation, it would take one hour to generate a suite of test scenarios for
a requirements model with just over 7,700 requirement IDs. Measurements with
some larger systems are still needed to increase the confidence in this execution
time relation.

Figure 8. Total execution time.



AUTOMATING TEST GENERATION FOR EMBEDDED SYSTEMS 109

9. Summary of Results

The primary research goal was defined to be the development of a method to au-
tomatically generate a suite of test scenarios from the requirements for the system.
The goal of the generated suite of test scenarios is to allow the system design to be
validated against the requirements.

The difficulty of the problem of automatic generation of optimal test scenarios,
even for event-oriented systems, has been established, resulting in the pursuit of
heuristic solutions to the problem. An approach has been proposed that utilizes
what has been called a requirements model and a set of four algorithms.

One of our primary goals was to avoid expanding the entire state space of the
requirements model in order to define a practical test generation algorithm/method.
Cardell-Oliver’s method is likely to be computationally expensive in terms of both
test generation time and test execution time (number of test cases).

We do not generate tests to demonstrate equivalence between the requirement
model and units under test by testing every unique transition in the requirement
model. Our goal is to exercise (cover) every state variable change defined (and
identified by a unique requirement ID) in the requirements model. An implemen-
tation does not need to be trace equivalent to fulfill its requirements. What must
be demonstrated is that the outward (black box) behavior of the implementation
must fulfill the requirements. The test suite our method generates is sufficient for
this.

Both methods, i.e., ours and that of Cardell-Oliver, generate test cases based on
state space exploration of a requirements model/system specification and both ap-
pend distinguishing sequences to allow conformance to be observed using a black
box model of testing.

Both methods may not detect extra states in the system under test. We agree
with the discussion and suggested approach in [5] for dealing with this issue. As
presented, our algorithms do not address temporal aspects. The approach in [5],
while technically sound, adds significant complexity to the specification and is
likely to be difficult for practicing engineers. Our approach is to use an untimed
requirements model, vary the temporal positioning of the environmental stimulus
within the defined constraints, and to test the responses of the system under test for
adherence to the system’s temporal requirements.

Having developed prototype tool support for the generation of test scenarios
from SCR requirements models, it was possible to collect measurements on sev-
eral interesting metrics of the scenario generation process. Although these
measurements were made on a limited set of relatively small systems, the re-
sults support the position that the algorithms are performing reasonably well,
that the generated test scenarios are adequately efficient, and that the process-
ing time needed for test generation grows slowly enough to support much larger
systems.



110 S. J. CUNNING AND J. W. ROZENBLIT

Acknowledgements

This work was supported by grant number 9554561 from the National Science
Foundation. Our thanks goes to the members of the Naval Research Labs, Con-
stance Heitmeyer, Bruce Labaw, Jim Kirby, Ralph Jeffords, and Todd Grimm, for
providing their SCR Toolset. We also thank the University of Bremen for the use
of the graph visualization tool, DaVinci, which was used to create the graphs in
figures 3, 4, and 6.

References

1. Ammann, P., Black, P., and Majurski, W.: Using model checking to generate tests from specifi-
cations, in: Proc. of the 2nd IEEE Internat. Conf. on Formal Engineering Methods (ICREM’98),
Brisbane, Australia, December 1998, pp. 46–54.

2. Awad, M., Kuusela, J., and Ziegler, J.: Object-Oriented Techniques for Real-Time Systems:
A Practical Approach Using OMT and Fusion, Prentice-Hall, Englewood Cliffs, NJ, 1996.

3. Bauer, J. and Finger, A.: Test plan generation using formal grammars, in: Proc. of the Fourth
Internat. Conf. on Software Engineering, Los Alamitos, CA, September 1979, pp. 425–432.

4. Bharadwaj, R. and Heitmeyer, C.: Verifying SCR requirements specifications using state ex-
ploration, in: Proc. of the First ACM SIGPLAN Workshop on Automatic Analysis of Software,
January 1997.

5. Cardell-Oliver, R.: Conformance tests for real-time systems with timed automata specifications,
Formal Aspects Comput. (2000), 350–371.

6. Chandrasekharan, M., Dasarathy, B., and Kishimoto, Z.: Requirements-based testing of real-
time systems: Modeling for testability, IEEE Computer 18 (May 1985), 71–80.

7. Chow, T.: Testing software design modeled by finite-state machines, IEEE Trans. Software
Engrg. 4(3) (1978), 178–187.

8. Clarke, D. and Lee, I.: Automatic generation of tests for timing constraints from requirements,
in: Proc. of the 3rd Internat. Workshop on Object-Oriented Real-Time Dependable Systems,
February 1997, pp. 199–206.

9. Clarke, D. and Lee, I.: Automatic test generation for the analysis of a real-time system: Case
study, in: Proc. of the Third IEEE Real-Time Technology and Applications Symposium, 1997,
pp. 112–124.

10. Courtios, P. J. and Parnas, D. L.: Documentation for safety critical software, in: Proc. of the
15th Internat. Conf. on Software Engineering (ICSE’93), Baltimore, MD, 1993, pp. 315–323.

11. Cunning, S. J.: Automating test generation for discrete event oriented real-time embedded
systems, PhD Dissertation, Department of Electrical & Computer Engineering, University of
Arizona, 2000.

12. Cunning, S. J., Ewing, T. C., Olson, J. T., Rozenblit, J. W., and Schulz, S.: Towards an inte-
grated, model-based codesign environment, in: Proc. of the 1999 IEEE Conf. and Workshop on
Engineering of Computer-Based Systems (ECBS’99), Nashville, TN, March 1999, pp. 136–143.

13. Cunning, S. J. and Rozenblit, J. W.: Automatic test case generation from requirements specifi-
cations for real-time embedded systems, in: Proc. of the 1999 IEEE Internat. Conf. on Systems,
Man, and Cybernetics (SMC’99), Vol. V, Tokyo, Japan, 12–15 October 1999, pp. 784–789.

14. Cunning, S. J. and Rozenblit, J. W.: Test scenario generation from a structured requirements
specification, in: Proc. of the 1999 IEEE Conf. and Workshop on Engineering of Computer-
Based Systems (ECBS’99), Nashville, TN, March 1999, pp. 166–172.

15. Dalal, S., Jain, A., Patton, G., Rathi, M., and Seymour, P.: AETGSM Web: A Web-based service
for automatic efficient test generation from functional requirements, in: Proc. of the 2nd IEEE
Workshop on Industrial Strength Formal Specification Techniques, October 1998, pp. 84–85.



AUTOMATING TEST GENERATION FOR EMBEDDED SYSTEMS 111

16. Davis, A.: The design of a family of application-oriented requirements languages, IEEE
Computer 15 (May 1982), 21–28.

17. Demetrovics, J., Knuth, E., and Rado, P.: Specification meta systems, IEEE Computer 15 (May
1982), 29–35.

18. Deshmukh, R. and Hawat, G.: An algorithm to determine shortest length distinguishing, hom-
ing, and synchronizing sequences for sequential machines, in: Conf. Record of Southcon’94,
March 1994, pp. 496–501.

19. Douglass, B.: Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frame-
works, and Patterns, Addison-Wesley, Reading, MA, 1999.

20. En-Nouaary, A., Dssouli, R., Khendek, F., and Elqortobi, A.: Timed test cases generation based
on state characterization technique, in: Proc. of the 19th IEEE Real-Time Systems Symposium
(RTSS’98), Madrid, Spain, December 1998, pp. 220–229.

21. Frezza, S.: Automating requirements-based testing for hardware design, RE’95 Doctoral
Consortium, 1995.

22. Frinke, D., Wolber, D., Fisher, G., and Cohen, G.: Requirements Specification Language (RSL)
and supporting tools, NASA Contractor Report 189700, July 1992.

23. Ganssle, J.: The Art of Designing Embedded Systems, Boston, Oxford, Newnes, 2000.
24. Gargantini, A. and Heitmeyer, C.: Using model checking to generate tests from requirements

specifications, in: Proc. of the Joint 7th European Software Engineering Conf. and 7th ACM
SIGSOFT on Foundations of Software Engineering (ESEC/FSE’99), Toulouse, France, 6–10
September 1999, pp. 146–162.

25. Gill, A.: Introduction to the Theory of Finite-State Machines, McGraw-Hill, New York, 1962.
26. Glover, T. and Cardell-Oliver, R.: A modular tool for test generation for real-time systems, in:

IEE Colloquium on Applicable Modelling, Verification and Analysis Techniques for Real-Time
Systems, London, UK, 1999, pp. 3/1–4.

27. Gupta, P., Cunning, S., and Rozenblit, J. W.: Synthesis of high-level requirements models for
automatic test generation, in: Proc. of the 2001 IEEE Conf. and Workshop on Engineering of
Computer-Based Systems (ECBS’01), Washington, DC, April 2001, pp. 76–82.

28. Heitmeyer, C.: Requirements specifications for hybrid systems, in: R. Alur, T. Henzinger and
E. Sontag (eds), Proc. of Hybrid Systems Workshop III, Lecture Notes in Computer Science,
Springer, New York, 1996.

29. Heitmeyer, C. L., Jeffords, R. D., and Labaw, B. G.: Automated consistency checking of
requirements specifications, ACM Trans. Engrg. Methodology 5(3) (July 1996), 231–261.

30. Heitmeyer, C., Kirby, J., and Labaw, B., The SCR method for formally specifying, verifying
and validating requirements: Tool support, in: Proc. of the 1997 Internat. Conf. on Software
Engineering, Boston, May 1997, pp. 610–611.

31. Heitmeyer C., Kirby, J., and Labaw B.: Tools for formal specification, verification, and
validation of requirements, in: Proc. of the 12th Annual Conf. on Computer Assurance
(COMPASS’97), Gaithersburg, MD, June 1997, pp. 35–47.

32. Ho, I. and Lin, J.: A method of test cases generation for real-time systems, in: Proc. of the First
Internat. Symposium on Object-Oriented Real-Time Distributed Computing, 20–22 April 1998,
pp. 249–253.

33. Hsia, P., Gao, J., Samuel, J., Kung, D., Toyoshima, Y., and Chen, C.: Behavior-based acceptence
testing of software systems: A formal scenario approach, in: Proc. of the Eighteenth Annual In-
ternat. Computer Software and Applications Conf. (COMPSAC’94), Los Alamitos, CA, USA,
1994, pp. 293–298.

34. Hsia, P., Kung, D., and Sell, C.: Software requirements and acceptance testing, Ann. Software
Engrg. 3 (1997), 291–317.

35. Hsia, P., Samual, J., Gao, J., Kun, D., Toyoshima, Y., and Chen, C.: Formal approach to scenario
analysis, IEEE Software 11 (March 1994), 33–41.

36. Kohavi, Z.: Switching and Finite Automata Theory, McGraw-Hill, New York, 1978.



112 S. J. CUNNING AND J. W. ROZENBLIT

37. Levene, A. and Mullery, G.: An investigation of requirement specification languages: Theory
and practice, IEEE Computer 15 (May 1982), 50–59.

38. Lovengreen, H., Ravn, A., and Rischel, H.: Design of embedded real-time systems: Developing
a method for practical software engineering, in: Proc. of the IEEE Internat. Conf. on Computer
Systems and Software Engineering, 1990, pp. 385–390.

39. Miller, T. and Taylor, B.: A requirements methodology for complex real-time systems, in:
Proc. of the Internat. Symposium on Current Issues of Requirements Engineering Environments,
Kyoto, Japan, 20–21 September 1982, pp. 133–141.

40. Potts, C., Takahashi, K., and Anton, A.: Inquiry-based requirements analysis, IEEE Software
11 (March 1994), 21–32.

41. Rozenblit, J. W.: Experimental frame specification methodology for hierarchical simulation
modeling, Internat. J. General Systems 19(3) (1991), 317–336.

42. Rozenblit, J. W. and Buchenrieder, K. (eds): Codesign: Computer-Aided Software/Hardware
Engineering, IEEE Press, New York, 1994.

43. Schulz, S., Rozenblit, J. W., Mrva, M., and Buchenrieder, K.: Model-based codesign, IEEE
Computer 31(8) (1998), 60–67.

44. Weber, R., Thelen, K., Srivastava, A., and Krueger, J.: Automated validation test generation,
in: Thirteenth AIAA/IEEE Digital Avionics Systems Conf. (DASC’94), November 1994, pp. 99–
104.

45. White, S.: Comparative analysis of embedded computer system requirements methods, in:
Proc. of the First Internat. Conf. on Requirements Engineering, 1994, pp. 126–134.

46. Wolf, W.: Hardware-Software Co-Synthesis of Distributed Embedded Systems, Kluwer Acad-
emic Publishers, Boston, MA, 1996.

47. Zeigler, B. P.: Multifaceted Modeling and Discrete Event Simulation, Academic Press, London,
1984.

48. Zeigler, B.: Theory of Modeling and Simulation, Wiley, New York, 1976.
49. Zeigler, B. P., Praehofer, H., and Kim, T. G.: Theory of Modeling and Simulation, 2nd edn,

Academic Press, New York, 2000.


