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Abstract

A brief overview of the requirements engineering, its
history, and state of practice are given.  A semi-formal
method to structure the behavioral requirements for real-
time embedded systems is presented.  This method is
based on a set of forms that contain both informal text-
based descriptions and formally defined language
constructs.  After documentation of requirements into
these forms, an algorithm to automatically generate event
scenarios is presented.  This algorithm extracts the
needed information from the requirements forms and
produces a set of scenarios that can be used to test
transaction oriented systems.  A design example is
presented that is used to illustrate the process of
converting text based requirements onto the structured
requirements form and to illustrate the operation of the
scenario generation algorithm

.

1. Introduction

Much work in the area of requirements engineering
has been done over the past twenty years.  Many
languages have been developed and implemented
[1,2,3,4].  Many methods have been proposed
[5,6,7,8,9,10] and White provides a comparative analysis
of eight such methods in [11].  Throughout these works,
the problem statement, which has remained essentially
unchanged over the years, is that incomplete, ambiguous,
incompatible, and incomprehensible requirements lead to
poor designs.  The conclusions have also been consistent.
The use of a structured requirements language, usually
with tool support and within a requirements solicitation
and documentation process leads to early detection of
problems and misunderstandings.  The resolution of
which leads to better designs.

The question raised by personal experience and
echoed in the literature [12,13] is “Why aren’t these
languages and methods in wide spread use today?”  Many
valid reasons are given, and it is certainly true that

management and engineering both need to believe in the
necessity of the requirements engineering effort and in the
benefits of the end product, the requirements
specification.  Another factor that may be hindering the
acceptance of worthy improvements is that they present
too large of a leap for many organizations to take.  In
other words, improvements are developed without paying
enough attention to the state of practice, and then it is
hoped that they will catch on.  We would argue that a
better approach would be to build on current practice, i.e.
languages, tools, and methods in use today.  This will
more easily guide industrial organizations toward
improved requirements engineering and the resulting
benefits.

2. Rationale for a structured requirements
specification

There are many approaches to the documentation of
requirements.  One approach that is still widely practiced
today is that requirements are maintained as native
language text throughout the design process.  This method
is inherently imprecise.  It is extremely difficult to
identify deficiencies and inconsistencies, particularly for a
large set of requirements.  Problems with the
requirements may become evident only in latter stages of
the design process when a certain level of detailed design
has been completed and the problems are exposed.

At the other extreme, the requirements may be
converted into a language based on formal logic.  The
formal description of requirements allows for the use of
theorem proving methods in order to prove the
correctness and consistency of the given set of
requirements.  A selected summary such specification
languages can be found in [14].  These methods, however,
are not widely used in practice due to difficulty in the
conversion process and the fact that most designers have
not been trained in these formal methods.

As a middle of the road approach, we propose the
use of a Structured Requirements Specification (SRS).
The structure as presented here is intended for use in the



domain of real-time embedded systems design.  This
approach will provide the designer with a structured set of
forms that will be used to convert from the native
language requirements to semi-formal requirements.
These forms will allow the designer to more easily
identify requirements deficiencies.

There are three goals for the proposed formulation
of requirements.  The first is to be formal enough to allow
for automated reasoning related to the documented
requirements.  The second is to maintain the requirements
in a format that is easily understood by the design and
systems engineers.  Finally, of primary importance is to
ensure that the proposed formulation of requirements
easily builds on existing requirements documentation
methods.  The first item will provide an improvement to
the design process while the second and third will allow it
to be used in practice.

In addition to the benefits mentioned above,
properly structured requirements can be used to aid in
other aspects of the design process.  The SRS as described
in this paper is intended to be used as the first step in our
model-based codesign methodology [15,16].  The process
is summarized in Figure 1.  This design process relies
heavily on modeling and simulation in order to verify the
functionality of the design prior to implementation.  The
modeling in our process begins with a functional
decomposition followed by behavioral modeling to
produce an executable model suitable for simulation.  As
a benefit of using the SRS forms, a top level functional
decomposition of the system can be easily extracted.
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Figure 1.  Model-based Codesign

With the use of high level simulation comes the
need for test cases.  The need for test cases will also exist
for design processes that do not include high level
simulation, since most will include simulation at lower

levels and there will always be a need to test the physical
prototypes.  The use of the SRS will help to automate the
activity of test case generation.  From analysis of the
information contained in the SRS, event scenarios based
upon the allowed input and output relationships can be
synthesized.  Test cases for the behavioral models in our
design process are used to define experimental frames.

The key concept of this aspect is experimental frame,
i.e., the specification of circumstances under which a model
(or a real system) is observed and experimented with. An
experimental frame reflects modeling objectives since: a) it
subjects a model to input stimuli (which represent potential
interventions into the model's operation); b) it observes the
model's reactions to the input stimuli and collects the data
about such reactions (output data); and 3) it controls the
experimentation by placing relevant constraints on values of
the designated model state variables and by monitoring
these constraints. Experimental frames are given concrete
form; employing the concepts of automata theory and the
DEVS (Discrete EVent System specification) formalism,
Zeigler [17] defines a generator which produces the input
segments sent to a model, an acceptor, i.e., a device that
continually tests the run control segments for satisfaction of
the given constraints, and a transducer which collects the
input/output data and computes the summary mappings.

The set of experimental frames, whether coupled to
an executable model or translated into a test environment
to test a physical realization of the design, will be used at
all levels of the model-based codesign process, as shown
in Figure 1.

Automatic generation of test scenarios had received
some attention in earlier research [18,19].  However,
recent research on this topic is scarce.  Industrial
experiences has shown that ad hoc and code-based
methods are still in practice.  Full automation of all types
of test cases is most likely a long way off, but the need for
practical improvements to this area certainly exists.  The
primary goal of this paper is to present a systematic
method that may be used to automate the generation of a
certain class of test cases.

3. Description of SRS forms

The SRS is composed of multiple forms in order to
cover different requirement aspects.  The formulation of
the SRS forms emphasizes the separation of interface and
functional requirements.  Temporal requirements are
specified in terms of relationships at the system
interfaces.  Functional requirements define data and state
transformations for the system.

Table 1 lists the fields of the I/O Requirements
From.  The Name field will specify a unique identifier for
the I/O item.  The Source field defines a link back to the



source of the requirement.  The Direction field will
specify one of the three direction types.  The Physical
field will be a text based description of the physical
requirements for the particular interface.  The Format
field will define the logical format of the interface.  If the
format is specified to be Enumerated or Analog then a
definition will follow.  If the format is specified to be
Bus, then the valid messages and associated direction for
each must be specified.  The next field is used to define
the availability of inputs or the update requirements for
outputs.  It will be defined as one of the four listed types.
Continuous is used only for inputs since the assumed
design domain is that of digital systems.  If defined to be
Periodic, a nominal, minimum, and maximum rate must
be specified.  If Event or State, the minimum/maximum
separation and relationships to other inputs or outputs
must be specified as appropriate (for State types, the
change of state is treated as an event).  The Initial Value
field is used to specify the required initial value for
outputs of type State.

Table 1.  I/O Requirements Form

Field Description
Name Symbolic
Source Requirement ID
Direction Input | Output | Bi
Physical Physical characteristics
Format Enumerated | Analog | Bus
Availability / Continuous | Periodic | Event | State
Initial value Format dependent

Table 2 lists the fields of the Functional
Requirements Form.  The Name and Source field are
defined in a similar manner as on the I/O Requirements
Form.  The Inputs field will be used to specify a list of all
inputs needed by the given function.  The Output field
will specify all outputs generated by the given function.
The Enabled field is used to specify when the function is
enabled by expressing a condition expression.  The
Transformation Definition field will be used to specify the
transformation performed by the named function.

One of the integral steps within our model-based
codesign methodology is the creation of an executable
behavioral model of the proposed system.  This model
may be specified in any number of simulatable languages
(e.g. Statecharts [20] or DEVS [21].  The functional
definitions may then be extracted from the model and a
pointer placed in the Transformation Definition field.
This will eliminate the need for the nearly duplicate effort
of developing a functional model within the SRS forms.
In this way, modules of the behavioral model will form a
part of the requirements specification.

Table 2.  Functional Requirement Form

Field Description
Name Symbolic
Source Link to source of the requirement
Inputs List of Names
Outputs List of Names
Enabled After | Before | While | Always | Every
Transformation Structured language

In the case where the structured requirements forms
are used outside of model-based codesign, the
Transformation Definition may be specified in the form of
a structured language.  The structured language must be
able to represent conditional (e.g. IF, THEN, etc.) and
data manipulation expressions (e.g. value assignment),
but does not need to represent temporal relations.  For
simplicity, the functional definitions presented in this
paper will be given in the C programming language.

During specification of the Transformation
Definition, it will almost certainly be necessary to specify
internal state variables. These state variables are needed
to "remember" I/O events that don't otherwise cause an
observable and persistent change at the system interface.
These variables will be documented in a separate form
called the Internal State Variables form.  On this form the
name, type, format, and initial value for each item will be
specified.  It should be noted that these variables are used
solely in the requirements specification and do not impose
a design choice.

4. Requirements definition and test
generation method

It is assumed that most initial requirements will be
in native language text format.  We shall refer to these as
the base requirements document.  This document will
then be used to fill out the SRS forms.  This process will
force those performing the transformation to consider
aspects that may have previously been overlooked.  This
will occur if a field within a form cannot be confidently
defined or conflicts with a related field.  This situation
exposes the need to return to the customer in order to
come to an agreement on the missing or inconsistent
requirement.

When the requirements definition team is satisfied
with the I/O and Functional Requirements forms, event
scenarios may be generated.  In order to generate event
scenarios, the behavior of the external systems and the
behavior of the system being designed must be known.
The former is defined through the interfaces through
which the system must communicate (at least to the extent
needed for transaction oriented systems) and is captured



on the I/O Requirements form.  The latter is defined on
the Functional Requirements form.

The process to get from text-based requirements to a
generated set of test scenarios is depicted in Figure 2.
Necessary information is extracted from the SRS forms
and combined with the Scenario Generation Algorithm
(SGA) to produce an executable model.  The executable
will be run to produce the scenario tree.  Finally the
scenario tree will be processed to output the list of event
scenarios annotated with any timing requirements.

Text-based Requirements

Manual Translation

SRS

Extract Functions
and constraints

Executable Scenario
Generator

Scenario Tree

SGA

Event Scenarios

Post Processing

Figure 2.  Process from Requirements to
Scenarios

In essence, event scenario generation is an adaptive
simulation of the partially executable specification
defined in the SRS forms.  The requirements specification
is processed into an executable model.  This model
contains the functions as specified on the Functional
Requirements form.  The control structure for the system
is embedded in the adaptive SGA.  The SGA will evaluate
the functions based on the constraints specified in the
Enabled fields and will apply inputs to the system based
upon the constraints specified on the I/O requirements
Form.  A high level representation of this algorithm is
given below.

1. Create list of state variables that define the system state.
2. For each system function, create an enable expression.
3. Create an initial state vertex (root) with an empty Updated

List and add it as the only member of the Active List.
4. Remove a vertex, va, from the Active List
4.1. For each item in the Updated List (if any) determine

enabled functions and create new potential state vertices
by evaluating these functions.  Connect the new vertex to
va with an edge labeled with the item from the Updated
List and any system output generated by the evaluated
functions.

4.2. If the Update List of va is empty
4.2.1. For each system input that applies to the state defined

by va, determine enabled functions and create new
potential state vertices by evaluating these functions.

Connect the new vertex to va with an edge labeled
with the input and any output generated by the
evaluated functions.

5. If new vertices where created by step 4
5.1. For each vertex, vn, added in step 4

If vn defines a state not previously reached
Add  vn to the Active List.

Else
5.2. If the Update List for va is not empty

Empty the Update List for va and return it to the
Active List

6. Repeat steps 4 and 5 until the Active List is empty.

System state variables include all persistent system
outputs (i.e. type is not Event) and all variables listed on
the Internal State Variables form with a type of State.
Initial values are extracted from the appropriate
requirements form.

Enabling expressions are derived from the Enabled
field of the Functional Requirements form for each
system function.  These expressions are needed to allow
the scenario generation algorithm to easily determine
when a particular function should be evaluated.

The scenario generation algorithm builds a scenario
tree in a breadth first manner.  The nodes represent
system state and the edges are labeled with input/output
list pairs.  New nodes are created by applying external
inputs to the system.  System state changes are propagated
until the system becomes stable (i.e. an external input or
advancement of time is needed to produce a further
change in state).  Branches in the tree are expanded until
all pendent nodes represent states that have previously
been reached.

It should be noted that the full state space of the
requirements specification will not be expanded.  The
states derived will be restricted in two ways.  First by the
specified availability and relations of the system inputs
and secondly through the use of the explicit test inputs
which restrict the scenario generation algorithm to a
domain subset for selected large domain inputs, including
time.

5. Design example using the SRS

To illustrate the use of the SRS forms, a temperature
control system (TCS) will be used as an example.  A
small set of selected requirements for the TCS will be
given in text form.  The corresponding entries in the SRS
forms will then be filled out by extracting the necessary
information.  Finally, execution of the SGA will be
illustrated using this example.

Below are the selected text based requirements for
the TCS.  The requirement numbers have been added in



order to facilitate requirements traceability.  References to
system inputs, outputs, I/O values, and implied system
variables are displayed in italics.

Table 3.  Text based Requirements for the TCS

R1: The system shall have an input called Control Disable,
which is a TTL compatible discrete signal.

R2: The system shall have an input/output bus called Message
Bus, which shall be RS232 compatible.

R6: The system shall have an output called Status, which shall
be a pair of TTL compatible discrete signals.

R8: The Set Temperature shall be set through the following
procedure:
1. If the Status output indicates Controlling, Control

Disable shall be provided to the TCS.  The TCS shall
respond by setting Status output to Idle within 10ms.

2. At least 10ms after the TCS has indicated Idle, a Set
Temperature message may be sent to the TCS.

3. Within 10ms of receiving the Set Temperature
message, the TCS shall respond with a Temperature
Valid message if the received temperature is valid,
otherwise the Status output shall be set to Fault.

4. At least 1ms after the TCS has responded with a
Temperature Valid message, the Control Disable
signal may be removed.

R9: A valid set temperature for the TCS is between 0°C and
110°C inclusive.

R10: The TCS shall begin controlling the Temperature within
1ms of the removal of Control Disable and shall indicate
this by setting the Status output to Controlling.

R14: If a Control Enable signal is received when the TCS has
not yet received a valid Set Temperature, or the most
recently received Set Temperature message was invalid,
the Control Enable signal shall be ignored and the system
shall remain Idle.

5.1 Translation to SRS Forms

The translation process should begin with the I/O
requirements form in order to define the system
interfaces.  The I/O Requirements form entries
corresponding to the given text based requirements are
listed in Table 4.

Table 4.  TCS I/O Requirements

Name: ControlDisable
Source: R1
Direction: Input
Physical: TTL compatible
Format: Enumerated - 0 = OFF, 1 = ON
Availability: Event – 0: at least 1ms after ValidTemp; 1 at

least 100ms after Control Disable = 0

Name: Status[1:0]
Source: R6
Direction: Output
Physical: TTL compatible
Format: Enumerated - 00 = IDLE, 01 =

CONTROLLING, 10 = FAULT
Update: State - at most 10 ms after ControlDisable or

ValidTemp
Initial value: IDLE
Name: MessageBus
Source: R2
Direction: Bi
Physical: RS232 compatible

Bus -
SetTempMsg - Input
ID: 2 bits: fixed: 00; Temp: 16 bits: analog:
2's compliment - LSB=0.01°C

Format:

ValidTempMsg – Output
ID: 2 bits: fixed: 01
SetTempMsg: Event - at least 10ms after
Status = IDLE

Avail./
Update:

ValidTempMsg: Event - at most 10 ms after
(SetTempMsg and ValidTemp = TRUE)

System functions are defined by extracting the
behavior described in the base requirements.  The
Functional Requirements form entries corresponding to
the given text based requirements are listed in Table 5.

Table 5.  TCS Functional Requirements

Name: StatusControl
Source: R8, R10, R14

Inputs: ControlDisable, ValidTemp

Outputs: Status

Enabled: After ControlDisable or ValidTemp

Trans.

Def.:

if (Status == IDLE) {
  if (ControlDisable == OFF) Status = CONTROLLING;
  if (ValidTemp == FALSE)  Status = FAULT; }
else if (Status == CONTROLLING)
  if (ControlDisable == ON)  Status = IDLE;
else if (Status == FAULT)
     if (ValidTemp == TRUE)   Status = IDLE;

Name: ProcessSetTemp
Source: R9

Inputs: Status, MessageBus

Outputs: ValidTemp, MessageBus, SetTemp

Enabled: After MessageBus while Status = IDLE

Trans.

Def.:

if (MessageBus.ID == 0)

  SetTemp = MessageBus.Temp * 0.01;

if (SetTemp >= 0 && SetTemp <= 110) {

  MessageBus = ValidTempMsg;

  ValidTemp == TRUE; }

else

  ValidTemp = FALSE;



The Internal State Variables form entries
corresponding to the given text based requirements are
listed in Table 6.

Table 6.  TCS Internal State Variables

Name: SetTemp
Type: State
Format: Real : LSB = 0.01°C
Initial value: 0.0°C
Name: ValidTemp
Type: State
Format: Enumerated : 0 = FALSE, 1 = TRUE
Initial value: FALSE

5.2 Scenario Generation

Scenario Generation proceeds as described in
section 4.  The state of the TCS (for the given subset of
requirements) is defined by the set {ControlDisable,
Status, SetTemp, ValidTemp}.  The initial state is defined
by {ON, IDLE, 0, FALSE}.

A potential problem for the SGA are inputs with a
large domain of potential values.  Attempting to apply a
large set of inputs that vary only slightly will generally
lead to a large number of system states that do not vary in
a useful manner.  This will cause the SGA to create many
potential states only to find that most have been
previously reached.  In order to restrict the SGA, a set of
test values will be defined for large domain inputs.  This
set will be a subset of the possible values for the given
input.  The test values will be selected at and near values
that produce alternate decisions in the system function
definitions.  For the TCS example, SetTempMsg is one
such input.  One set of test values for this input could be:

SetTempMsg: 1=-50°C, 2=0°C, 3=110°C, 4=90°C

The enable expressions in the TCS example are:

StatusControl: Available(ControlDisable) or
Updated(ValidTemp)

ProcessSetTemp: Available(SetTempMsg) and
Status = IDLE

The use of Updated() indicates that the given item
has been assigned a new value relative to the state in the
parent node of the scenario tree.

With the preliminaries complete, scenario generation
can begin.  Although the generation algorithm generates
all valid scenarios that lead to a unique system state, the
following discussion will trace a single path through the

scenario tree.  Initially the Availability fields of the I/O
requirements form are checked against the initial state to
determine that  SetTempMsg is a valid input to the system.
Tracing along the SetTempMsg_3 path, the function
ProcessSetTemp is evaluated.  Evaluation produces the
output event ValidTempMsg and produces a new system
state with SetTemp = 110°C and ValidTemp = TRUE.  For
this new state the simulation time is advanced to 0.01s
since the SetTempMsg is specified to occur at least 10ms
after Status = IDLE and the Updated list is set to include
SetTemp and ValidTemp.

CurTime = 0.0,
Update = {}

ON, IDLE, 0, FALSE

CurTime = 0.01,
Update = {SetTemp, ValidTemp}

ON, IDLE, 110, TRUE

CurTime = 0.011,
Update = {Status}

ON, CONTROLLING, 110, TRUE

CurTime = 0.111,
Update = {Status}

ON, IDLE, 110, TRUE

SetTempMsg_4 /SetTempMsg_3 /
ValidTempMsg

Update(ValidTemp) /

Temperature1-6 /

SetTempMsg_1-2 /

ControlDisable=OFF /
Status = CONTROLLING

SetTempMsg_1-4 /

ControlDisable = ON /
Status = IDLE

Figure 3.  Generated Event Scenario

The update of ValidTemp will cause the function
StatusControl to be evaluated.  This evaluation however
does not produce any system outputs or further changes to
the system state.  As a result, the availability fields are
checked against current state.  Now SetTempMsg, and
ControlDisable are both available inputs.  Selecting the
path for ControlDisable = OFF, the function
StatusControl is evaluated again.  This time, the system
responds by setting Status equal to CONTROLLING.
Since Status is a system output this change is listed as
both a system response (on the edge between nodes) and
in the newly generated state.  The new state has the
simulation time set to 0.011s since ControlDisable must
occur at least 1ms after ValidTemp and the Updated list is
set to include Status.

An update to Status does not enable any system
functions.  For the new state, the only available input is
ControlDisable.  ControlDisable = ON will cause
StatusControl to be evaluated.  This evaluation changes
Status back to IDLE which is a state previously reached



thus terminating this branch of the scenario tree.  Figure 3
shows the partial scenario tree.

Individual scenarios are extracted from the scenario
tree by reading stimuli and response labels from the edges
along each path and annotating with any associated timing
requirements.  All scenarios may be listed by performing
a depth first traversal.  Additional post processing of the
scenario tree may be performed to limit the set of
scenarios based on particular test objectives.

6. Conclusions and Future Work

A structured requirements specification for real-time
systems based on a set of forms has been presented. The
SRS forms build on current requirements engineering
practices used in industry.  It should be possible to use the
commercially available tool DOORS [22] to provide tool
support for the creation and maintenance of the SRS
forms.

In addition, a method for generating test scenarios
from the SRS has been presented. This method is based
on a simple space exploration algorithm that uses a finite
state machine representation of the proposed system.  The
inputs to the algorithm are extracted from the SRS forms
and the output is a tree structure that represents all
possible event scenarios based on the specification and
supplied constraints.

Further research is needed in the areas of tool support for
the process as depicted in

Figure 2, extensions to provide test case generation
for control-oriented systems and for erroneous behavior at
the system interface.
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