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Abstract

This paper describes desiderata for an environment to
implement the model-based codesign methodology.  A
brief summary of model-based codesign is given, followed
by a discussion of related work.  The services and
capabilities required of a design environment are given
within the concept of a CAD framework.  The design flow
that realizes model-base codesign is presented.  Attention
is given to the required activities at each step and to  the
flow of design information between design steps.  The
design flow described here focuses on real-time
embedded systems. It covers engineering activities from
requirements documentation to the physical realization of
the design.  Emphasis is placed on modeling and
simulation to support automated design reasoning.
Considerations related to tool support and tool
integration are also given.

1. Introduction and motivation

Numerous authors point to the deficiencies of the
traditional hardware/software design frameworks
[1,2,3,4,5,6].  They strongly advocate a process that
fosters the integration of hardware and software design
perspectives.  Therefore, a unified representation is
needed for modeling a system independent of its physical
realization.

We have proposed a design approach called model-
based codesign [5,6] that uses stepwise refinement of
simulatable models and offers the opportunity to abstract
system components at multiple levels of representation.
In this methodology, a set of requirements and constraints
is obtained for the system to be modeled.  The system is
then described as an abstract model that is a combination
of its structural and associated behavioral specifications.
Model components are specified at a high level of
abstraction to remain implementation independent.

In model-based codesign, we verify correctness of
models through computer simulation.  A simulation test
setup is called experimental frame [7]. It is associated
with the system’s model during simulation.  Such frames
specify conditions under which the system’s model is
observed.  Simulation is then executed according to the
run conditions prescribed by the frames.  At the end of the
simulation process a virtual system’s prototype is
obtained.  The design is then partitioned into hardware,
software and corresponding interfaces using a process that
we call model mapping.

Clearly, the efficacy of a design methodology can
only be confirmed through its application in a design
environment.  Although much research has been done on
codesign, only two successfully implemented
environments have emerged that support heterogeneous
embedded systems design.

Recently reported work on the design environment
POLIS [1], describes a joint project of the University of
California at Berkeley and Cadence Design Systems.  Its
goal is to enhance the design of control-dominated
embedded systems applications.  There, the system is first
translated into a representation consisting of Codesign
Finite State Machines and formally validated.  After a
manual partitioning by a designer and automated
hardware and software synthesis, the generated
implementation is evaluated using a co-simulation engine.
One benefit of this development environment is the ability
to synthesize the formal CSFMs into hardware/software
components.  The partitioned components can be co-
simulated at a cycle level to guide the designer to the next
partitioning iteration.  The authors restrict themselves to
relatively small, real-time control systems applications.
Also, POLIS does not provide any hardware/software
partitioning algorithm yet.

COSYMA, a design environment developed at the
Technical University of Braunschweig [8], focuses on
codesign using a dual processor platform for the
exploration of the co-synthesis process applications that



require intensive data processing.  Initially the design is
realized entirely in software.  If a run-time analysis fails
to satisfy the specified timing constraints, processes are
then moved to an automatically generated application
specific co-processor in an iterative manner.  Automatic
design support guides the designer in scheduling the
software tasks to satisfy hard and soft constraints.
Partitioning is supported by simulated annealing - a
stochastic optimization algorithm.

At the University of Arizona, we are developing a
computer-aided design environment called SONORA.  This
environment implements the theory-based tenets of the
model-based codesign.  We are striving to provide an
integrated tool set that will support the design automation
of complex, real-time embedded systems.  In what
follows, we first summarize basic desiderata for an
electronic design automation (EDA) framework.  Then,
we proceed to specify the architecture of the SONORA

system and its functionality.

1.1. CAD framework concepts

The term framework in electronic design automation
denotes a computer-based, integrated design environment
that binds together and supports design tools [9].  In their
seminal paper, Harrison et al. [10] define a framework as
a set of underlying facilities provided to the CAD tool
developer, system integrator, and end user necessary to
facilitate their tasks.  The CAD Framework Initiative
views a framework as a collection of extensible
programs/modules used to develop a unified CAD system
[9].  In essence, a CAD framework is a software
infrastructure that provides a common operating
environment for computer aided design tools.  A
framework should enable users to launch and manage
tools; create, organize,  and manage data; graphically
view the entire design process; and perform design
management tasks such as configuration and version
management.  Among the key elements of a CAD
framework are platform independent graphics and user
interfaces, inter-tool communications, design data and
process management, and database services.  For a
summary of the evolution of the framework concept we
refer the readers to [10,11].

Here we briefly enumerate the postulates for
framework functionality that provide a comprehensive
abstraction of the universally accepted layers of design
support.  Bhat and Taku [9] proposed this model to
address the following issues of data integrity, distributed
design data management, design process management,
and configuration management.  Bhat and Taku stipulate
that seven functional layers (listed below in the increasing
degree of abstraction) be present in a CAD framework:

1. Basic Services: facilitate access to databases in the
form of procedural or command interface and
interprocess communication.

2. Design Representation: a model for creation, storage,
retrieval, and modification of design data.

3. Data Management: facilitates mapping the physical
design data onto the logical view of design.  This
layer also manages the design versions and
configurations as well as logical relationships
between design objects.

4. Tool Management: models of how to control various
design tools.  Tracing tool execution is the function
of this layer.  (See Bretschneider [11] for an
extensive treatment of this issue.)

5. Data and Tool Integration: provides facilities for
integrating tools independent of the physical, logical,
project, object, and tool specific data formats and
structures.

6. Design Process Management: offers facilities for
modeling the design process.  Supports decision-
making by aiding the user in design step selection
and iteration.

7. Methodology: guidelines, rules, procedures, and
methods, which reflect designers' style and
philosophies.

Furthermore, a division is drawn between tool
frameworks and design process frameworks.  Layers 1
through 3 of the hierarchy are usually related to
application tools.  The remaining layers are primarily
concerned with the design process management.

Our goal is to realize the model-based codesign
methodology in an integrated design environment that
meets the framework requirements stipulated above.  The
two principal objectives in developing the environment
are: a) to provide a integrated tool set for the design of
embedded systems, and b) to provide a design flow
control and management procedures.

In the following section, we introduce the
SONORA environment.

2. The SONORA environment

The SONORA environment is intended to realize the
model-based codesign methodology.  An abstract
representation of this methodology is shown in Figure 1.

The Functional and Behavioral Requirements
Specification and Modeling block embodies requirements
solicitation and documentation followed by development
of an executable model.  The Behavioral Simulation and
Model Refinement Loop is used to iteratively refine the
design model until it is functionally correct.  Structural



Requirements Specification and Modeling relates physical
design constraints to a proposed physical architecture.  In
the Performance Simulation and Model Refinement Loop
the model is enhanced with performance estimates for
computation and communication based upon the proposed
physical architecture.  Synthesis and Implementation
involves extracting design information from the models in
order to produce a physical prototype.  Experimental
Frame Development and Testing involves the creation of
a set of test cases based upon the system requirements that
are used to asses the current design at all stages of the
design process.

2.1. Functional and behavioral
requirements specification and
modeling

Modeling is a natural approach to codesign.  There
are many tools and environments [12,13,14,15,16,17,
18,19] available on the market that make model creation
easier and more understandable using graphical
enhancements.

Requirements are solicited from the customer or
derived from a perceived market need.  The functional
and behavioral requirements are documented by using a
structured form-based approach that emphasizes the
separation between system and interface requirements.
These requirements are used as input to the Experimental
Frame Development and Testing block. There,    they are
converted to test cases to be used throughout the design
process.

After requirements capture, an initial high level
model of the system is created.  An initial functional
structure for the model is extracted from the system

requirements.  The components of this model are then
refined to lower levels of abstraction by the designer with
the aid of simulation during the Behavioral Simulation
and Model Refinement Loop phase of the design process.
A repository of previously created model components is
maintained to allow reuse when possible.  These model
components may be used during initial model creation or
later, during model refinement.

The feedback path from the Test and Evaluation
Activities demonstrates the iterative nature of model-
based codesign.  If, at downstream step, an incomplete or
inconsistent requirement is detected, the requirements
must be refined and effects flowed down.

The behavioral aspects can be represented using
Petri [20] nets, StateCharts [14], Discrete Event System
Specification (DEVS) [21], and other system specification
formalisms.

2.2. Behavioral simulation and model
refinement

SONORA allows simulation of the different levels of
abstraction contained within the system model.  The
results of simulation verify behavioral requirements of the
embedded system, which can be used in the stages before
model-to-realization mapping (i.e., categorizing system
model components into types of generic hardware and
software).  Thus, in parallel to the simulation, we  assign
classifications to the system model components using a
Bayesian Belief Network (BBN) [22,23,24].

The application of BBN to hardware/software
partitioning was first introduced by Olson and Rozenblit
[25].  The BBN delineates the decomposition of the
system model into several levels of abstraction through
causal relationships between the component nodes (shown
in Figure 4).  The ability to iteratively analyze and modify
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the system model, and the ability to generate
classifications of all components are therefore, the
objectives of the behavioral simulation loop shown in
Figure 3.  The requirements necessary for simulation and
component classification and a brief description of the
simulate-analyze-and-classify loop follow.

The hierarchical nature of the system model requires
that experimental frames and interfaces between levels of
abstraction be well defined.  In addition, the BBN must
convert results from simulation runs into evidences that
can be introduced to the component nodes.  The
introduction of evidence shown as E1 and E2 in Figure 4,
along with the causal structure of the belief network can
be combined to calculate the beliefs of component
classifications (e.g., the analysis of a simulation result
may introduce evidence in support of implementing a
given component in a generic type of hardware or
software).  To see how these requirements affect
SONORA’s simulation, let us now examine its
functionality.

Before classification can begin, a functional
description of the model is created (in a manner similar to
the Specification Level Intermediate Format  (SLIF)
[26]).  Next, the BBN is generated with nodes
representing functional components, and causal links
corresponding to component couplings, function accesses,
and functional independence of components.  The choice
of which values to place inside the conditional matrices
associated with each link depends on the communication
needs between the given pair of elements, and how tightly
their performance is coupled.  Once the BBN is created, it
can be used to evaluate the current design by
incorporating the simulation results as evidences.

During each iteration of the behavioral simulation
loop, results are obtained from simulation and converted
into evidence that is propagated throughout the BBN.

The beliefs for each available type of classification are
calculated at each component node and the system model
(now possibly with some classified components) is altered
to reflect the new classifications, as shown in Figure 4 in
the model refinement block.

Simulation is performed again, and the process is
repeated until the components of the system model reach
a level that requires the introduction of structural
requirements for any further classification.  The result of
the refinement of the behavioral simulation is a
functionally correct virtual prototype of the design.  Each
component is assigned to a general classification of a type
of hardware or software.

2.3. Structural requirements specification
and modeling

Structural requirements, which have been deferred
from modeling to this point, are introduced here.  These
can include non-functional requirements and constraints
such as component budget, power consumption, off the
shelf components’ restrictions, etc.  A collection of
different design architectures will be used to support an
initial structural model and provide a starting point for the

Figure 3  Behavioral simulation and model
refinement
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following iterative fine-tuning of a prototype.
The structural aspects of a system can be represented

using many different methods.  Among these are OMT
[27] and System Entity Structure (SES) notation [28,29].
The SES notation allows for the representation of a family
of system configurations, which are then pruned to
generate specific design instances.

In the structural modeling, we transform our
behavioral model by adding the structural aspects of the
design which inherently introduces implementation
dependent parameters.  At the behavioral level, the
clearest solution available is a classification of a
functional component into a standard type of tangible
component, e.g., there exists a 75% belief that a particular
function should be implemented in a generic FPGA.  The
addition of structural information allows the functional
component to be mapped into a specific component
within a specific solution, e.g., instead of mapping into a
generic FPGA, a given component is combined with three
other similar classified components to share a single
FPGA chip to conserve space.  From the virtual model,
useful information can be retrieved that has a strong
influence on the model mapping, e.g., worst case
processing times or suggestions for an efficient
instruction set.  The structural model should incorporate
already existing components and architectures from a
design library to foster reuse.  In addition, the couplings
of the model are propagated in conjunction with the
component classifications as interface constraints in the
final Synthesis and Implementation block.  Timing
constraints are propagated to the following structural
simulation.  This unified model serves as a starting point
for the Performance Simulation and Model Refinement
block.

2.4. Performance simulation and model
refinement

After the system design is completed and evaluated
at the virtual model level, a physical realization of the
system is carried out by stepwise refinement.  The
translation from the model to the actual implementation
will be automated in SONORA.

For a summary of approaches that automate
hardware/software partitioning in codesign we refer the
reader to [4].  In our approach, we use  performance
simulation to finalize and refine the classification choices
made during the previous step, i.e., structural modeling.
Therefore, rather than assigning components to hardware
and software clusters, we group processes according to a
broad range of hardware and software classes so that they
fulfill the necessary requirements as a component in the
final embedded system design.  These requirements

consist of performance requirements needed to satisfy its
hard real-time processing constraints and non-functional
requirements, which are evaluated in the performance
simulation analysis.

A valid implementation is obtained if the
performance model manages to fulfill the entire set of
requirements.  The model is refined to a state that
supports conversion to a synthesizeable design description
in the Synthesis and Implementation block.

2.5. Synthesis and implementation

The ability to synthesize descriptions that define a
physical realization of the design is an important feature
of our SONORA environment.  These descriptions must
accurately reflect the design model and should facilitate
the fabrication of a system prototype.  The descriptions
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will be made up of many parts to cover the various
aspects of the design.

Given an assignment of functions to components
from the model mapping process, the software and
hardware descriptions of the mapped functions must be
generated.  Control architectures for the components must
also be defined.  The control architecture determines how
the functions executing on a particular component
communicate and are coordinated.  The description must
also define a system control architecture that defines how
the components communicate and how they are
coordinated.  In addition to these control architectures,
there is also the physical architecture for the system, i.e.,
its hardware components and interfaces.  The hardware
components have been defined by the model mapping but
the interfaces must be defined during this phase in order
to complete the physical design description.

There currently exist commercial tools that
synthesize hardware and software descriptions from
abstract atomic model components [14,18].  Syntheses of
the remaining aspects are current areas of research.  An
approach for the synthesis of the hardware architecture,
process mapping, and process scheduling has been
presented by Yen and Wolf [30].  A system to perform
synthesis of low-level interfaces of hardware components
has been demonstrated by Chou et al. [31].  A focus of
our research will be to explore methods to improve the
synthesis of these design aspects.

An approach that will be explored in the SONORA

environment will be the use of architectural patterns.
These templates will define structures that occur often in
the domain of embedded systems design.  The results
from model mapping and high level simulation and
analysis will provide constraints for the synthesis process.

The physical design specification will feed both low
level simulation and fabrication of a physical prototype.
Through simulation and test both of these representations
of the system will be evaluated based on the original
requirements embodied in the experimental frames.  The
detailed simulation will precede fabrication and the
results of which will be used as an input to the decision to
proceed with fabrication.  Evaluation of the physical
prototype will either confirm that an acceptable design
has been generated or that further refinement is necessary.
It should be pointed out that detection of unsatisfied
requirements at this late stage is intended to be extremely
rare due to the emphasis on early simulation at the higher
levels of the design process.

2.6. Experimental frame development and
testing

Model testing is carried out through the use of
experimental frames.  The experimental frame concept is
presented in detail in [7].  It is a construct that helps the
model builder to keep the primary model (the object of
interest) separate from the stimuli and responses used for
evaluation during simulation.

Experimental frames are generated in parallel to the
system modeling activities.  The experimental frames are
designed to test the system against the functional and
behavioral requirements.  Multiple experimental frames
are generated to cover multiple aspects of testing.
Experimental frames containing event scenarios will be
used to test systems or portions of systems which are
transaction oriented.  These scenarios contain both system
inputs and expected outputs and are generated from the
functional and behavioral requirements specification.
Experimental frames for aggregate functions such as
throughput are adapted from existing frames in an
experimental frame model base.

The set of experimental frames embodies the suite of
tests for the system being designed.  This suite shall be
used to evaluate all potential designs.  Maintaining a
consistent suite of experimental frames facilitates the
comparison of potential designs during trade-off analysis.

In addition to being used at the abstract modeling
and simulation level, this suite of experimental frames
shall be adapted and used to test the system at all
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downstream levels of the design process.  Translations
will be made to testbenches for hardware level computer
simulation and to a test environment that will enable us to
test of a physical prototype.

Non-functional requirements and design choices
shall be used as needed to translate the experimental
frames into forms suitable for use at the lower levels.
Maintaining a consistent set of tests based on the
experimental frame suite will insure that all executable
design representations, from the initial functional model
to the physical realization, meet the system requirements.

2.7. Design management and tool support

One of the factors determining the usability of an
environment is the method of tool integration.  In our
system, we plan to incorporate a design manager that will
assist designers in controlling the flow of their activities
by suggesting the choice of tools, interfacing with a
revision control system, invoking tools and checking
consistency of design data.

The communication between tools can be
accomplished in a similar way to the FIELD environment
[32].  There is a set of message interfaces for different
types of tools, e.g. simulation, partitioning, compiling,
which define the basic interface for that type of tool.  To
communicate with a commercial tool, an interface module
can receive messages in the common format from the
design manager, then convert the message into the format
expected by the design tool.  When a commercial tool
performs more than one stage of the design process, the
design manager has multiple interfaces with that tool.

3. Conclusions and future work

We are currently implementing SONORA on a
network of UNIX workstations by integrating commercial
and academic tools.  We are planning to work with the
graphical interfaces provided by commercial tools for
design entry as well as informal text descriptions.
Requirements can be entered prior to the modeling phase
and updated during model refinement using the
STATEMATE MAGNUM Requirements TracerTM.  The
requirements will be formatted in a semi-formal manner
and extracted to allow custom tools to generate top level
functional model structures and test cases for
experimental frame construction.

Various modeling formalisms will be used in
combination to be able to accurately reflect the different
modeling aspects: DEVS, SES, and StateCharts to build a
complete model specification.  The resulting model will
then be simulated with the appropriate simulation engines.
We currently use DEVS-Java, the most recent

implementation of the DEVS formalism [21], to simulate
models of a system.  However, we are investigating the
automatic generation of DEVS models from StateChart
[14] descriptions as well as the use of DEV and DESS
(Difference Equation System Specification) [33] to
represent system components that are more appropriately
modeled in the continuous time domain.

Research is being conducted on introducing
simulation results into a BBN during the simulation cycle.
When the model is refined to a synthesizable level, the
information from the BBN is used by model-to-realization
mapping algorithms to prepare the verified model for
prototype synthesis.

The use of the hardware and software language
synthesis tools within STATEMATE [14] is finally
considered for use in SONORA to provide the realization
descriptions for functions (e.g., C and VHDL). Synthesis
of control and communication descriptions requires
further research in order to realize a fully automated
prototype synthesis.  The advantage of SONORA over
other environments is that it will be able to heavily
leverage from the benefits offered by model-based
codesign.
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