
 http://sim.sagepub.com/
SIMULATION

 http://sim.sagepub.com/content/72/4/238
The online version of this article can be found at:

DOI: 10.1177/003754979907200403

 1999 72: 238SIMULATION
Steve J. Cunning, Stephan Schulz and Jerzy W. Rozenblit

An Embedded System's Design Verification Using Object-Oriented Simulation

Published by:

 http://www.sagepublications.com

On behalf of:

 Society for Modeling and Simulation International (SCS)

 can be found at:SIMULATIONAdditional services and information for

 http://sim.sagepub.com/cgi/alertsEmail Alerts:

 http://sim.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://sim.sagepub.com/content/72/4/238.refs.htmlCitations:

 at UNIV ARIZONA LIBRARY on June 6, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/
http://sim.sagepub.com/content/72/4/238
http://www.sagepublications.com
http://www.scs.org/
http://sim.sagepub.com/cgi/alerts
http://sim.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://sim.sagepub.com/content/72/4/238.refs.html
http://sim.sagepub.com/

238TECHNICAL ARTICLE

An Embedded System’s Design Verification
Using Object-Oriented Simulation

Steve J. Cunning, Stephan Schulz and Jerzy W. Rozenblit
Department of Electrical and Computer Engineering

The University of Arizona
Tucson, Arizona, USA

E-mail: {scunning,sschulz,jr}@ece.arizona.edu

The ability for the embedded system designermodel and simulate proposed designs prior to
implementation is increasingly valuable in
today’s competitive market place. Simulation-
based design is a methodology that uses the vir-
tual prototype as a means of producing consis-
tent and reduced design time. This paper
presents this approach in the context of an auto-
motive embedded system application. Struc-
tural models are used to capture design knowl-
edge and define the space of possible design
alternatives. The Discrete Event Specification
(DEVS) formalism is used to develop behavioral
models which can be simulated. Results are ob-

tained through experimental frames which are
used to define the scope of simulation. These re-
sults allow the designers to confirm that the
proposed design solution meets the system re-
quirements and constraints.

Keywords: Modeling, discrete event simu-
lation, embedded systems design, hard-
ware/software codesign

1. Introduction

Simulation modeling is being increasingly recognized
as a useful tool in assessing the quality of design
choices and arriving at acceptable trade-offs. This ap-
proach is often called &dquo;simulation-based design.&dquo; How-
ever, computer simulation and other advanced com-
putational tools are of limited effectiveness without a
methodology to induce a systematic handling of the
multitude of goals and constraints impinging on a de-
sign process. Our work focuses on the development of
techniques in which design models can be synthesized
and tested through simulation within a number of ob-
jectives, taken individually or in trade-off combinations.

Given a set of specifications, we use a structured
representation of the project’s domain to derive alter-
native object models for the system being designed.
Object models are specifications of the components
from which a system is to be built. Object definitions
include attributes that express various properties of
system’s components as well as relationships to other
objects. Behavioral descriptions are associated with
object models in order to execute simulations.
We view simulation in the following, two-fold per-

spective : (a) as a means of verifying the functionality
of the proposed solutions by executing the model’s
dynamics so that we can ensure that the model’s be-
haviors are consistent with those perceived for the
system being designed, and (b) as a way of assessing

 at UNIV ARIZONA LIBRARY on June 6, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

239

how well performance requirements are met by the
proposed design solution.

Simulation studies are carried out using an experi-
mental frame [1], i.e., a structure that represents de-
sign objectives in the form of standard attributes. Such
attributes express measures of input/output perfor-
mance, utilization of resources, reliability assessments,
etc. Alternative design models are evaluated through
computer simulation in experimental frames that re-
flect design performance questions. Results are com-
pared and trade-off decisions are made in the presence
of conflicting criteria.
We believe that simulation-based design will be-

come increasingly important in the development of
heterogeneous systems that comprise hardware, soft-
ware, and interface components. In [2], we have pre-
sented the fundamentals of a codesign methodology
that leverage from model-based techniques. In this
article, we demonstrate how simulation can be used
to verify design properties of such systems.

2. Design Context: An Embedded System
Application

In the last decade, we have witnessed a sizable growth
in the application of electronics in the automotive in-
dustry. Early applications ranged from electronic fuel
injection devices to motor control units. With the ad-
vent of more powerful microprocessors, a new gen-
eration of devices aimed at improving the safety of
automobiles is emerging. Such devices are often highly
complex, embedded systems.

In what follows, we show how a hierarchical,
modular, object-oriented simulation framework is
used to verify design specifications of an embedded

system. Such a system inherently contains hardware,
software, and interface components. An autonomous,
intelligent cruise controller (AICC) has been selected
to illustrate our approach. The AICC is an extension
of the common cruise control that not only keeps a
fixed speed, but also adapts to the speed of the vehicle
ahead. It has no lateral control. The system is autono-
mous, i.e., it does not rely on communication between
vehicles. The driver remains in full control since he or

she can override the device by braking. The cruise
controller should only be activated for speeds higher
than 56 kilometers per hour (km/h). We require the
unit to keep the speed of the vehicle within ± 2 km/h
of the safe speed or set speed-whichever is lower. The
safe speed is the maximum speed that keeps the car
within a safe distance to the vehicle ahead. The set

speed is the speed requested by the driver.
In the design of the AICC, it is necessary to guaran-

tee that the safety distance is kept within a small mar-
gin of error under normal traffic conditions. The device
should differentiate between obstacles and moving
objects, warn the driver, and suggest or take appro-
priate actions.

The AICC is part of a complex, vehicle communica-
tion and control system as shown in Figure 1. The
modeling work presented in this paper focuses on
simulation-based verification of the AICC control
unit. The experimental frame concept is used to de-
scribe the environment, e.g., sensor and actuator

units, road conditions or terrain, that this control unit
is embedded in. Our approach to simulation makes a
clear distinction between the model and the experi-
ment to allow testing objectives to be separated from
the system being modeled.

Figure 1. High-level diagram of the AICC and its environment

 at UNIV ARIZONA LIBRARY on June 6, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

240

3. Design Modeling
Design modeling refers to developing a simulatable
representation of the system being designed (SBD).
This process is guided by a set of specifications and
requirements. Its goal is to generate a model of the
SBD. This model is the basis for assessing how well
the design solution (given in the form of this model)
meets the set of specifications and requirements. We
offer a means of constructing such models. However,
we do not attempt to carry out model validation and

credibility assessments as defined by Balci [3]. Since
we are developing models of a design concept (in es-
sence, a system that does not exist yet), we have no
repository of data against which the design model can
be validated. Nonetheless, we assess the credibility of
the design models by checking to see if the design re-
quirements and expected functionality are met
through the simulation results.
We develop models in a hierarchical, modular fash-

ion, adhering to the well accepted principles of decom-
posing the model space into object (structural) and
behavioral (functional and dynamic) models [4]. The
object model explains the structural decomposition of
the design. The functional model describes the overall
!..~~J.~~~~l~J.TT~! J.1-..~ ~~.-J~1 ~~.-J ~J.~ ~~J.~~~~J.~~~ ~~J.~ J.1-..~functionality of the model and its integration into thesurrounding environment. The dynamic model assignssurrounding environment. The dynamic model assigns
timing constraints to the internal functionality and
shows the details of state changes within the model.
These three different model descriptions are sufficient
to generate a simulatable specification for our embed-
ded system example, i.e., the autonomous intelligent
cruise controller.

3.1 The Object Model
To develop the AICC object model, we analyzed the
domain of automotive safety and selected an instance
of AICC [5]. Recent literature [6, 7] guided our de-
composition of the unit into various components. We
use the Object Modeling Technique (OMT) notation
[4] for structured knowledge representation. Figure 2
shows the corresponding diagram for the AICC con-
trol unit to be modeled.

3.2 The Behavioral and Functional Model

The functional and behavioral models of the AICC
Control Unit were defined based on the conversion of

assumptions and functional requirements into informal
specifications. The first is that data inputs are gener-
ated by the driver and from internal sensors. The
driver inputs originate from common switches which
are part of the Human Machine Interface (HMI) and
are typically found on a regular cruise controller:
ON/OFF, COAST, and RESUME/ACC. The internal
sensors may include radar units, steering angle, mo-
mentum, speed, throttle angle measurement devices,
etc. Data arrives with a specific protocol at a rate de-
pending on the type of source. From these data, infor-
mation about the distance and relative speeds of

’

Figure 2. OMT diagram for AICC control unit

surrounding vehicles can be obtained. To capture the
behavioral model, we have used the Statechart formal-
ism [8]. The complete Statechart can be found in [5].

3.3 Discrete Event Specification (DEVS) Models
In our system, models are developed using the Discrete
Event System Specification (DEVS) formalism. The
structural, behavioral and functional aspects are com-
bined in each DEVS model. This formalism underlies
the construction of models in the verification environ-
ment DEVS-fava [9]. A discrete modeling environment
was chosen for this task because the application was
limited to an embedded system which only required
the use and communication with digital components.
Continuous modeling would have to be included if
the system were to support analog functionality or
needed to interface with analog devices.

The DEVS hierarchical, modular set theoretic for-
malism for sequential implementations was developed
by Zeigler [1]. The implementation of DEVS-Java re-
flects the parallel DEVS formulation [9]. In such a for-
malism, one must specify basic models from which
larger ones are built, and how these models are con-
nected together in a hierarchical fashion. A basic
model, called an atomic DEVS model, is defined by
the following structure:

where:

X is a set, the external input event types
S is a set, the sequential states
Y is a set, the external output event types
6i~t is a function, the internal transition

specification
Sext is a function, the external transition

specification
h is a function, the output function
ta is a function, the time advance function

with the following constraints:

a. The total state set of the system specified by M is

 at UNIV ARIZONA LIBRARY on June 6, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

241

where e is the elapsed time since the last transition;

b. 6i~t is a mapping from S to S:

c. Sext is a function:

where Xb represents a bag of external events which
are held until internal transition and output genera-
tion is complete;

d. ta is a mapping from S to the non-negative real
numbers with infinity:

and

e. ~, is a mapping from Q to Y:

The second form of a model, called a coupled
model, tells how to couple several component models
together to form a new model. This latter model can
itself be employed as a component in a larger coupled
model, thus giving rise to the hierarchical construc-
tion of models. A coupled DEVS model is defined as a
structure:

where:

Xself is a set of input events

Yself is a set of output events
D is a set of components
for each i in D, Mi is a model component
for each i in D u {self f , Ii is a set of influences of i
for each j in Ii, ZI,~ is a function, the i-to-

j output translation

The structure is subject to the constraints that for each
i in D,

Mi is a parallel DEVS atomic model as described
above

Ii is a subset of D U (selfi, i is not in Ii

where self refers to the coupled model itself and is a
device for allowing specification of external input and
external output couplings.
An implementation of DEVS using Java has been

developed at the University of Arizona. The inter-
ested reader may refer to [10, 11]. DEVS-Java follows
the design of previous implementations using Scheme
and C++ [12]. As with the other implementations,

DEVS-Java provides the object-oriented constructs for
inheritance and message passing. In fact, DEVS-Java
provides the model builder with the base classes from
which all models are inherited.

Each model in DEVS-Java has a set of input and out-
put ports for receiving and sending external events,
state variables for maintaining the model’s state, and
the internal transition, external transition, output, and
time advance functions for specifying the behavior of
the model. The internal transition function is called by
the DEVS simulation engine when the current simula-
tion time is equal to the model’s next scheduled inter-
nal event. Internal events are scheduled by the time
advance function. The external transition function is
called by the DEVS simulation engine when an exter-
nal event has arrived at one of the model’s input
ports. The output function is called just prior to the
call to the internal transition function and is used to

map the current state of the model to any necessary
output events.

The implementation of DEVS in Java also provides
a few features that were not previously available. The
first is the multi-threading capability of Java. Each
model is given its own thread of control which simpli-
fies the scheduling in the simulator. Although execu-
tion is still sequential on single-processor machines,
threads conceptually are able to execute concurrently
and there is the opportunity for true concurrency on
multi-processor systems. Another feature is the plat-
form independent nature of Java which should allow
easier porting of simulations. Coupled with this is ad-
vanced graphical features of Java which also endeavor
to be platform-independent. This allows for the rela-
tively easy addition of graphical user interfaces to the
DEVS models.

3.4 DEVS Model for the Autonomous Intelligent Cruise
Controller

After initially building and testing the atomic compo-
nents of the AICC control unit, the model was ex-
tended to the final coupled model. The STATE MAN-
AGER keeps track of the state the cruise controller is
in. This is mostly influenced by actions taken by the
driver. The DATA MANAGER obtains, manages and
distributes all data received from the corresponding
sensors, and sent or requested by functions of the cal-
culation module. The calculation module contains

components that perform specific computations on
arriving data, e.g., calculating the safe distance or the
new throttle angle. For a more detailed description of
these components, the reader is referred to [13].
A complete diagram of the DEVS model of the AICC

control unit is shown in Figure 3. The lines labeled
&dquo;req&dquo; comprise the request network. Each component
connected to this line is implied to have a connection
to the &dquo;request_in&dquo; port of the DATA MANAGER and
a connection from the &dquo;request_out&dquo; port of the DATA
MANAGER back to the component. This model of the

 at UNIV ARIZONA LIBRARY on June 6, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

242

Figure 3. Final AICC DEVS model

control unit was then connected to an experimental
frame during the simulation phase.

Having described the model for the AICC Control
Unit and DEVS modeling in general, we will now pro-
ceed to describe the experimental frame that allows us
to test and evaluate the AICC Control Unit design.

4. Experimental Frame Specification
The experimental frame (EF) concept is presented in
detail in [14]. It is a construct which helps the model
builder to keep the primary model (the object of inter-
est) separate from the stimuli and responses used for
evaluation during simulation. This separation is analo-
gous to the idea of a test bench and unit under test
used in hardware simulations.

The separation of the primary model and the EF
has many benefits. An EF helps to define the aspects
of interest for the primary model. Since it is not prac-
tical for a model to accurately describe every possible
behavior that the real-world object might exhibit, a
subset of behaviors is usually selected. The EF will
generate input parameters and observe output param-
eters that are related to these behaviors of interest.
More than one EF may be used with the same model
in order to test different behaviors or to test at differ-
ent levels of model granularity. As long as the inter-
face for the primary model is well defined, alternative
primary models may be tested with the same EF.

The EF provides three primary functions. The first
is that of a generator, which provides the stimulus
needed to drive the primary model through all tests
of interest. The second primary function is that of a
transducer, which observes the outputs from the pri-
mary model and converts them to a form desired by
the user. This output may also be fed into the genera-
tor to influence future stimuli. The last is that of an

acceptor, which provides control over the simulation
run. Termination of a simulation run, if not provided
by the underlying simulation engine, should be easily
controlled by the user. This may be determined prior
to the start of a simulation for a batch type simulation,
or at execution time if the simulation is interactive. The

coupling of the EF components and the coupling of
the EF to the primary model are illustrated in Figure 4.

4.1 AICC Experimental Frame
The objective of the AICC EF is to provide a suitable
environment for the evaluation of AICC Control Unit

designs. The initial purpose of the simulation is to
verify the proper operations of the AICC, such as con-
trolling the speed of a vehicle as a standard cruise
control does, the calculations of the safe speed and
safe distance for the primary vehicle, and the proper
control of the speed of the vehicle when presented
with an obstacle. After an initial AICC Control Unit

design has been developed that meets the objectives

Figure 4. Structure of an experimental frame

 at UNIV ARIZONA LIBRARY on June 6, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

243

listed above, alternative designs intended to optimize
selected parameters may be evaluated.
With these objectives in mind, the AICC EF has

been designed to operate in one of two modes, both of
which are selected and controlled through a Graphical
User Interface (GUI). The first is the interactive mode
where the operator acts as the driver of the primary
vehicle. This mode is useful for model development
and debugging and for developing test scenarios. Af-
ter an initial AICC control unit model has been devel-

oped and test scenarios have been determined, our
focus shifts toward multiple repeated simulation of
alternative AICC designs. For this situation, a pro-
grammed primary vehicle driver that would stimulate
the AICC in a repeatable manner is needed. This ca-
pability is provided by the script mode of EF opera-
tion. This mode allows test scenarios, which are saved
as a sequence of events in a system file to be selected
prior to the start of a simulation run.

In addition to the control functionality described
above, the EF must model the environment in which
the AICC is expected to function, i.e., it must complete
a closed-loop system with the AICC Control Unit.
This environment (as illustrated in Figure 1) has the
following components and functions:
1. A vehicle to be controlled by the AICC
2. A sensor to provide distance and speed informa-

tion for an object ahead of the primary vehicle
3. A Graphical User Interface (GUI) to display infor-

mation and accept user input
4. A transducer to monitor selected parameters dur-

ing simulation runs
The generator functions of the EF are provided by the
driver (acting through the GUI model), the sensor
model, and the vehicle model. The driver provides
various inputs such as throttle control, brake control,
clutch control, and AICC controls (ON/OFF, COAST,
RESUME/ACC). The sensor model contains an accel-
eration profile for the lead vehicle. When the operator
starts this profile through the GUI, the sensor model
provides the AICC Control Unit with the distance to
and speed of the lead vehicle. The vehicle model takes
throttle and brake control input from both the driver
and AICC Control Unit and produces the speed of the
vehicle, which is fed back through a bus controller
component to the AICC.

The transducer functions of the EF are provided by
the GUI and the transducer model. The items that are

easily observable are displayed on the GUI for the op-
erator. An example would be observing that the dis-
tance to the lead vehicle was allowed to reach zero.

For items that require computation or summation, the
transducer is used. The parameters to be monitored
by the transducer are the time that the primary ve-
hicle speed exceeds the computed safe speed and the
time that the distance to the lead vehicle is less than

the computed safe distance.

4.2 EF Model Base

The model base for the AICC EF system contains the
following atomic models which correspond to the EF
functions listed in the previous section:

. Primary Vehicle

. Sensor

. GUI

. Bus Controller

. Transducer

In order to illustrate the design of a DEVS model,
the primary vehicle model will be described in detail.
Only brief descriptions of the other EF models will be
provided.

Primary Vehicle Model
The primary vehicle model is, in a sense, the master
for all of the other models in the experimental frame.
It periodically outputs its speed to the Sensor and
AICC Control Unit models and also generates run-

ning clock information which is passed to the GUI
and Transducer models. The Sensor, GUI, and Trans-
ducer are essentially passive models since they rely
on an external input to drive their actions. Each of
these models does nothing until an external message
is received. After the message is processed, a transi-
tory output state is immediately scheduled so that
outputs may be generated. This was done to provide
synchronization between the EF models.

Figure 5 illustrates the input and output ports asso-
ciated with the primary vehicle model. The port names
are used in the pseudo-code description of the external
transition, internal transition, and output functions
for this model (see Table 1). In this description the
variable sigma represents the time advance function
in that it determines the scheduled time for the next
internal event for the model. The variable phase repre-
sents the model’s current state.

This model continuously schedules internal events
every delta_t time units. Since the output and internal
transition functions are called as a result of each inter-
nal event, the speed of the vehicle is updated at a rate
of I ldelta_t. External events are handled as they ar-
rive, and the appropriate parameters (which influence
the vehicle’s speed equations) are updated.

To determine the Primary Vehicle’s speed, accelera-
tions are calculated using a = F/m. The forces modeled
are power train, resistive, and braking system forces.
The force exerted by the power train is determined by

Figure 5. Port diagram for primary vehicle model

 at UNIV ARIZONA LIBRARY on June 6, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

244

Table 1. Pseudo-code description for primary vehicle model shown in Figure 5

the throttle setting and the present speed of the ve-
hicle. The resistive forces are assumed to be of two

types: (a) constant, e.g., tire and bearing resistance,
and (b) varying forces, e.g., wind resistance. The brak-
ing force is determined by the present brake pedal po-
sition, which is also controlled by both the driver and
AICC.

Since the throttle and brake commands are gener-
ated by both the driver and AICC Control Unit, the
vehicle model contains maximum functions for both
of these parameters. The vehicle determines the actual

positions as the maximum of either the driver or
AICC command.

Sensor Model

Sensors should provide the AICC Control Unit with
the distance to and speed of the object in front of the
primary vehicle. This implies that the object in front
of the primary vehicle (the Lead Vehicle or LV), needs
to be modeled. In order to simplify the system, the
lead vehicle will be modeled within the model of the
sensor which will contain an acceleration profile that

 at UNIV ARIZONA LIBRARY on June 6, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

245

may be started by the operator through a button on
the GUI window.

GUI Model
This DEVS model acts as an interface between the
DEVS simulator and the Java object that controls the
GUI window. During initialization it opens a window
frame and populates it with all of the necessary GUI
controls. Figure 6 is an illustration of the GUI window
frame.

The status of interesting simulation parameters is
provided by labels and scroll bars (the Lead Vehicle
scroll bars are for display only). The operator can pro-
vide input to the simulation through the text edits,
buttons, and the brake and throttle scroll bars. The
simulation may be operated in interactive or script
mode to allow easily repeatable experiments.

The messages that are sent to the GUI model from
other EF models are intended to update a GUI control
(e.g., a label or scrollbar object). The GUI controls are
updated by calling the methods provided by the Java
window frame developed for the GUI interface. After
all external messages are processed, the model enters
a transitory state that is used to check if the operator
has acted on any of the user modifiable controls. If
this is the case, appropriate messages are generated to
all models concerned with the control(s) containing
the actions.

Bus Controller Model

This component models a bus controller chip that is
used to interface the processor of the AICC control
unit to the communication bus. Its purpose is to
buffer up messages or data sent by all of the compo-
nents listed above, and to transfer this information in
the form of data packages to the control unit.

Transducer Model

The items monitored by the transducer are: the speed
of the primary vehicle, the safe speed and safe dis-
tance computed by the AICC Control Unit, and the
distance to the lead vehicle reported by the sensor.
These items are used to accumulate the amount of
time that the primary vehicle speed exceeds the safe
speed and the amount of time the distance to the lead
vehicle is less than the safe distance. The transducer

outputs statistics to the Java system standard output
window whenever any statistic has changed.

5. Coupled Model
Figure 7 illustrates the internal couplings for the
AICC evaluation system model. In addition, the pos-
sible messages are listed near the source of each cou-

pling. Referring back to Figure 4, the AICC model
represents the primary model with the dashed line
enclosing the EF. Since this is the top level model,

Figure 6. AICC EF GUI window

 at UNIV ARIZONA LIBRARY on June 6, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

246

Figure 7. Coupled AICC evaluation system model

there are no external couplings. Execution control of
this model is handled through the DEVS-Java simula-
tor window.

6. Simulation Results

As discussed previously, our design approach calls
for the use of simulation to verify the behavioral cor-
rectness of proposed design solutions. This allows for
the incorporation of corrections at the virtual level
rather than after physical prototypes are built, where
it is more costly. The results presented in this section
provide an illustrative example of this approach as it
was applied to the design of the AICC Control Unit.

The first requirement for the AICC is that it be able
to control the speed of the primary vehicle. The sce-
nario selected to evaluate this function is as follows:

(a) the cruise control is set by pressing COAST, (b) the
brake is applied to slow down the vehicle, and (c) the
cruise control is re-engaged by pressing RESUME.
Figure 8 and Figure 9 show the simulation results ob-
tained from the initial AICC design. It can be seen
that the controller was not stable and produced an
oscillating speed by alternating between application
of the brake and full throttle. The simulation results

indicated that the speed control function of the AICC
needed to be corrected. Figure 10 and Figure 11 show
the simulation results obtained by executing the same
scenario after the AICC speed control calculations
were revised.

The most important aspect of the AICC is its ability
to maintain a safe distance from the lead vehicle. One
of the scenarios used to evaluate this function of the
AICC starts by setting the AICC to control the primary
vehicle speed at about 90 km/h. The lead vehicle then
appears (by changing lanes for example) 55 meters in
front of the primary vehicle. The lead vehicle is initially
traveling slightly slower than the primary vehicle and
is decelerating. After about two seconds the lead ve-
hicle begins an acceleration that lasts for about four
seconds and leaves the lead vehicle speed traveling
faster than the original set speed of the primary ve-
hicle.

The simulation results from this scenario are pro-
vided in Figure 12 and Figure 13. The graphs show
how the primary vehicle was slowed down and that
its speed was kept within the calculated safe speed. It
can also be seen that the distance between the vehicles
was allowed to get slightly less than the calculated

 at UNIV ARIZONA LIBRARY on June 6, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

247

Figure 8. Primary vehicle speed control by initial AICC design

Figure 9. Primary vehicle throttle and brake control by initial AICC design

Figure 10. Primary vehicle speed control by revised AICC design

Figure 11. Primary vehicle throttle and brake control by revised AICC design
 at UNIV ARIZONA LIBRARY on June 6, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

248

Figure 12. Lead vehicle speed, distance and calculated safe distance

Figure 13. Primary vehicle speed and calculated safe speed

safe distance. This result indicates that an additional

adjustment to the AICC is required.

7. Summary and Conclusions
We now summarize the major tenets of our simula-
tion-based design approach and emphasize their ben-
efits in the embedded systems development process.
We use models as a means of generating a virtual,
simulatable prototype prior to a realization of the de-
sign solution in a specific technology. This has pro-
found consequences in the area of heterogeneous
systems development. Such systems typically com-
prise a mix of hardware, software, and interface com-
ponents. Conventional design techniques pursue the
software and the hardware threads separately. Model-
ing and simulation tools are used that typically ad-
dress these threads in isolation. Hence, it is difficult
for the designers to assess design solutions in a holis-
tic, unifying manner that addresses the system under
development fully and comprehensively.

The approach we take postpones partitioning into
hardware or software until we gain a high degree of
confidence in the viability of the proposed design so-
lution. We are able to assess the solutions by model-
ing the system as a whole and simulating it in a suite

of various experimental conditions. The modular, hi-
erarchical simulation modeling techniques that we
use allow us to:

a. Flexibly construct a variety of design models, each
reflecting a particular design solution approach,

b. Easily reuse design models when new designs are
being considered,

c. Assess a proposed solution within a variety of ex-
perimental setups. This not only allows us to verify
functionality and conformance to design perfor-
mance requirements, but it also facilitates trade-off
analyses to select designs that best meet the project
specifications.
In our simulation-based design framework, we are

developing techniques that will allow us to map
model specifications onto a specific technology real-
ization [13]. This has a significant potential to speed
up the design cycles and reduce their overall costs. In
addition to the definition of technology mapping
techniques, we are further refining the simulation
methodology as its application to the realm of embed-
ded systems imposes various constraints.

 at UNIV ARIZONA LIBRARY on June 6, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

249

8. Acknowledgements
This work has been sponsored in part by the National
Science Foundation under Grant 9554561 and by Si-
emens AG, Central Research and Development Labo-
ratories, Munich, Germany.

9. References
[1] Zeigler, B.P. Multifacetted Modeling and Discrete Event Simula-

tion, Academic Press, London and Orlando, 1984.

[2] Schulz, S., Rozenblit, J.W., Mrva, M., Buchenrieder, K.
"Model-Based Codesign: The Framework and Its Applica-
tion." IEEE Computer, August 1998.

[3] Balci, O. "Verification, Validation and Testing." The Handbook
of Simulation, J. Banks, editor, John Wiley & Sons, New York,
1998.

[4] Rumbaugh, J. Object-Oriented Modeling and Design, Prentice
Hall, 1991.

[5] Schulz, S., Rozenblit, J.W., Buchenrieder, K. "Towards Model-
Based Codesign: An Intelligent, Autonomous Cruise Con-
troller Application." Proceedings of the 1997 IEEE Conference
and Workshop on Engineering of Computer Based Systems, IEEE
Cat. 97B100105, pp 73-80, Monterey, CA, March 1997.

[6] Ioannou, P.A., Chen, C.C. "Autonomous Intelligent Cruise
Control." IEEE Transactions on Vehicular Technology, Vol. 42,
No. 4, pp 657-672, 1993.

[7] Palmquist, U. "Intelligent Cruise Control and Roadside Infor-
mation." IEEE Micro, Vol. 13, No. 1, pp 20-28, 1993.

[8] Harel, D. "STATEMATE: A Working Environment for the
Development of Complex Reactive Systems." IEEE Transac-
tions on Software Engineering, Vol. 16, No. 4, pp 403-414, 1990.

[9] Chow, A. "Parallel DEVS: A Parallel, Hierarchical, Modular
Modeling Formalism and its Distributed Simulator."
TRANSACTIONS of the Society for Computer Simulation,
Vol. 13, No. 2, pp 55-102, June 1996.

[10] Zeigler, B.P. Objects and Systems: Principled Design with Imple-
mentations in C++ and Java, Springer-Verlag, New York, 1996.

[11] Zeigler, B.P., Sarjoughian, H., Au, V. "Object-Oriented
DEVS." Enabling Technology for Simulation Science, SPIE,
AeoroSense, Orlando, FL, April 1997.

[12] Zeigler, B.P. Object-Oriented Simulation with Hierarchical,
Modular Models, Academic Press, 1990; copyright B.P. Zei-
gler, 1995.

[13] Schulz, S. "A Model-Based Codesign Application: The Design
of an Autonomous Intelligent Cruise Controller." Master’s
Thesis for the Department of Electrical and Computer Engi-
neering, University of Arizona, Spring 1997.

[14] Rozenblit, J.W. "Experimental Frame Specification Methodol-
ogy for Hierarchical Simulation Modeling." International
Journal of General Systems, Vol. 19, No. 3, pp 317-336, 1991.

Steve Cunning is a PhD candidate
in Electrical and Computer Engi-
neering at the University of Ari-
zona. His research interests include
model-based codesign for embed-
ded systems, hardware/software
interface synthesis, requirements
engineering for real-time systems,
and system-level test case genera-
tion. He is employed as a Systems
Engineer at Raytheon, where he
has taken part in the design and in-
tegration of a hardware-in-the-loop

simulation facility and in the design and specification of
real-time embedded systems. He received a BS in Electrical
Engineering from the University of Iowa, and an MS in
Electrical and Computer Engineering from the University
of Arizona.

Stephan Schulz is a PhD candidate
in Electrical and Computer Engi-
neering at the University of Ari-
zona. His research interests include
embedded systems applications,
model-based design, real-time op-
erating systems, continuous and
discrete-event simulation, and
hardware/software codesign. He
received a BS EE from the State

University of New York-
Binghamton, and an MS in Electri-
cal and Computer Engineering
from the University of Arizona.

Jerzy Rozenblit is Professor of
Electrical and Computer Engineer-
ing at the University of Arizona. He
holds PhD and MS degrees in Com-
puter Science from Wayne State
University, Michigan, and an MSc
in Computer Engineering from the
Technical University of Wroclaw,
Poland. His research and teaching
are in the areas of complex systems
design and simulation modeling.
His research in design has been sup-

ported by the National Science Foundation, Siemens AG,
Semiconductor Research Corporation, McDonnell Douglas,
and the US Army Research Laboratories, where he was a
Research Fellow. Dr. Rozenblit serves as an associate editor
of several international journals, and as a reviewer for a
number of national and international funding agencies. In
1994 and 1995 he was Fulbright Senior Scholar and Visiting
Professor at the Institute of Systems Science, Johannes
Kepler University, Austria. He has also held visiting scien-
tist appointments at the Central Research Laboratories of
Siemens AG in Munich.

 at UNIV ARIZONA LIBRARY on June 6, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

