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Abstract 

A model based method f o r  task level command gen- 
eration is  used here t o  simulate a pipeline process. Us- 
tng a discrete event systems formalism,  a method for  
describing manufacturing systems i s  reviewed prior  to 
constructing the sequential assembly line simulation. 
This precedes a study of the entire assembly line model, 
i t s  coordination, and performance metrics. A n  exam- 
ple system i s  ihen simulated and analyzed for  language 
generation and system performance. 

1 Introduction 

Expanding computer power is causing increased in- 
terest in modeling and simulation. This is especially 
true in engineering where physical prototypes can be 
costly and time consuming. One step in this direction 
was taken by Zeigler [3] in implementing the Discrete 
Event System Specification (DEVS) in a software en- 
vironment called DEVS-Scheme [2]. It facilitates the 
construction of modular, hierarchical models and their 
organization. 

Jacak and Rozenblit [l] introduce the exact form 
robot and workstation models take to work together in 
an assembly line simulation. Their method deals with 
a series of workcells, each of which h a s  its own process- 
ing program. Moving parts between the workstations 
is done by robot pick and place actions. A program of' 
robot and workstation instructions is then expressed 
in a task-oriented robot programming language [4] [5] 
(TORPL). This program controls a discrete event, s y s  
tem simulating the sequential manufacturing process 
that is constructed using this methodology. It is then 
monitored for performance. 

An additional layer is introduced for motion plan- 
ning to their manufacturing system representation 

This provides collision free geometrical path planning 
and optimal trajectory planning. 

2 Background 

2.1 Discrete Event Systems Representa- 
tion 

With the overall goal of achieving a means for rapid 
modeling and simulation of the entire technological 
line, a representational formalism is required. In this 
case, we employ the Discrete Event System Specifica- 
tion (DEVS) formalism [3]. 

DEVS specification consists of external inputs, XI 
external outputs, Y,  and a set of states, S .  States tran- 
sitions are due to either an external event or the time 
limit,t,(s), elapsing. A statt: change due t80 an elapsed 
time limit is called an internal transition, c5int. Sim- 
ilarly, state changes due to  external events are called 
external transitions, be,,. All of these transitions oc- 
cur over the system's state set, S. 

Interpretation of the DEVS and a full explication 
of the semantics of the DEI'S are in [3]. 

2.2 Manufacturing Environment Repre- 
sentation 

The system presently under consideration is a se- 
quential technological process. This consists of robots 
and workstations where robots do pick and place ac- 
tions between workstations. Robot actions in this sys- 
tem occur so that each step has an associated set of 
instructions in the task oriented robot programming 
language [l], hereafter referred to as TORPL. 

The basic macroinstructions of TORPL are: 
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PICKUP “part” AT “position” 
PLACE “part” AT “position” 
WAIT FOR ‘‘sensor input signal” 
START “output signal” 

The above instructions synthesize the robot’s ac- 
tion program. This process requires a n  introduction 
of conditional instructions that depend on the states 
of each device of the assembly line. Thus, defining a 
program simulator requires modeling conditions that 
enable each program instruction. An example assem- 
bly line is shown in the Figure 1. 

Figure 1: Assembly Line 

2.3 Experimental Frame 

The experimental frame executes and monitors a 
model. I t  consists of a generator sending inputs to 
a model and a transducer that observes the resultant 
model behavior. This concept is implemented on the 
example assembly line by making the generator a parts 
feeder and the last workstation on the assembly line 
a transducer. Feed rate of incoming parts is modu- 
lated with the internal transition time of the feeder, 
and assembly line performance is observed with the 
transducer. 

The feeder, as shown in Figure 2, feeds parts to the 
assembly line at  given time intervals. Upon sending a 
part to the assembly line, the feeder waits in a pas- 
sive state for the specified time period before sending 
another part. 

The transducer is positioned as the last worksta- 
tion in the assembly line. Here, it takes in parts as 
they are completed and performs user specified calcu- 
lations. The transducer is also responsible for main- 
taining the observation time of the overall simulation. 
Once this observation time is exceeded, all models stop 
work. The transducer is shown in Figure 3. 

2.3.1 Robot Definit ion 

As explained in [l], robot states reflect position and 
action. Robot position designates where it is on the 
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Figure 2: State Behavior of Feeder 

time data to 

Figure 3: State Behavior of transducer 

simulated assembly line. Robot actions include pick- 
ing up a part, placing a part, or doing nothing. 

2.3.2 Robot Operation 

Zeigler [2] introduces event-based control as a method 
of monitoring an operation. This architecture con- 
sists of two models, a sender and receiver. The sender 
has a time window in which it expects the receiver to 
confirm the sent command’s completion. Should the 
receiving model’s confirmation not return within this 
time window, the sender assumes failure. 

Event based control is used here to interpret robot 
tasks as a date-space  [6] representation of actions 
needed to complete the task. The event based con- 
troller, hereafter referred to as EBC, controls the robot 
by sending subsequent actions, upon confirmation that 
the previous action is done, until the assigned task is 
complete. This is shown in Figure 4. 
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-Ion of the EBC and Robot w khin the Doer Cou~led Model 

Figure 4: Internal Robot Behavior 

2.3.3 Works t at ion Definition not free.” The workstation will automatically transi- 
tion to  state “not working and not free” upon com- 
pleting the part. Robot “picking” is then required to 
return the workstation to the state “not working and 
free”. This is shown is Figure 5. 

Shb B d m i a  of Wol*mWlm 

Figure 5:  Internal Workstation Behavior 

Workstations have three states. These states are “not 
working and free,” ”not working and not free,” and 
“working and not free.” This is defined in [l]. 

The workstation transitions between these states by 
interacting with the robot. For example, a worksta- 
tion in state unot working and free” which gets a part 
“placed” on it by a robot goes to  state “working and 

3 Modeling Effort 

3.1 System Construction 

Having decided on the methodology and model 
forms, the next step is building the sequential assem- 
bly line simulation. This includes constructing and 
testing each model independently, organizing models 
into an overall structure, coupling them, and deciding 
on performance metrics. 

Model construction was software implementation of 
the sequential assembly line. With the models devel- 
oped, the next step was aggregating them into one 
overall structure and coupling them. Communication 
between the models was achieved through name di- 

216 



rected coupling. This consists of sending communica- 
tions directly to  the model via its name. 

3.2 System Architecture 

The system architecture is centralized. This means 
that one central module, the controller, processes all of 
the assembly line entity states and positions, and then 
decides on work allocation. The system simulator’s 
architecture is shown in Figure 6.  

3.3 Task Formation 

The controller’s goaI is to  complete all tasks 
presently in the system. Tasks needing attention are 
determined by the states of sequential workstations. 
Robot and workstation states are communicated to 
the controller upon every change. 

The controller is a central data repository into 
which state updates for all assembly line entities are 
directed and stored Workstation states are tracked 
by a service list. It IS called a service list because the 
workstations are continually monitored for potential 
requirement of service. Other lists used are the task 
list, robot list, and job list. 

The service list contains the states of all worksta- 
tions. The service list maintains a state for every 
workstation on the assenibly line, all the time. When 
state updates come in from the assenibly line, the ser- 
vice list is updated to  thc new assembly line represen- 
tation. An example of the service list, is shown below: 

service-list = ((0 b) ( l  a)(2 c)(3 a)  .. ) 

A task is formed whenever two workstations are 
sequentially in states “B” and “A”. When this hap- 
pens, the two addresses are combined to  make a task 
as shown below: 

States: (1 b)(2 a) 
Task: (1 2)  

A task list could have any number of tasks, and 
would take the following form: 

Task-list: ((1 2)(3 4) ... 

An example robot list has the following form: 

robot-list = ((robl move-while-holding) ...) 

Multiple tasks require multiple robots to  maximize 
system performance. This need is met by allowing any 
number of robots to  service the assembly line. 

Once tasks are formed, a search is made for the clos- 
est robot to perform the task.  Proximity is measured 
both by physical distance and by an estimation of time 
to completion from the present task. Physical dis- 
tance is the distance from the present location of the 
robot to  the first workstation in the given task. This 
is what is used for free robots - robots that are empty 
and waiting for an assignment. If a robot is still com- 
pleting an action, distance equivalent approximations 
are interpolated from the present robot state. This 
approximation is then added to  the actual distance 
between addresses in order to find the total distance 
between the present robot and the first workstation in 
the t.ask. 

Robots presently working on a task are also evalu- 
ated for their proximity to  tasks awaiting assignment. 
The main reason for this is that a robot close to  a task 
to be assigned could be nearly finished with its present 
work when the nearby task becomes available. If only 
idle robots were considered, an idle robot farther away 
might be chosen for the task, resulting in a high travel 
time. Choosing the robot already working amounts 
to not choosing a robot, and waiting until that robot 
reports that it is free before assigning the task. 

When a task is assigned to a robot, this becomes 
a ‘‘job.)) Jobs are sent to the robot designated as the 
first element of the job. A n  example of a job is shown 
helow: 

Available Robot: (robl) 

Job: (robl (1 2)) 
Task: (1 2) 

3.4 Robot Application Strategy 

A n  example of control modification is assigning dif- 
ferent location prioritization algorithms to the robots. 
They are assigned to prioritize service to the beginning 
of the assembly line, the end, and the closest available 
task. This exercise monitors the system performance 
differences of alternative prioritization schemes. 

Priority on the beginning and end of the assem- 
hly line started off as an algorithmic exercise. Over 
time, however, we saw the merits of either of these 
in  application. Prioritizing the beginning of the as- 
sembly line might occur in situations where the line 
is, for one reason or another, perpetually starved for 
parts. Similarly, priority on the end of the assembly 
line, on getting parts out, might occur in a situation 
where there is a bottleneck at the end of the assembly 
line. Additionally, on a multi-robot assembly line, dif- 
ferent robots could be assigned different operational 
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Figure 6: Assembly Line Architecture 

algorithms for part processing. robot 1 move while holding robot1 
Simulating the robots with different prioritization 

schemes gives us a trace of the robot, movements on 
the sequential assembly line. Assuming the simulation 
accurately depicts the assembly line, this “trace” is 
validated robot code that could be used to control the 
actual robots working on an assembly line. 

3.5 TORPL Code 

TORPL code is sequentially output for each step 
taken by the robot model. A task, (0 l),  assigned to 
robot1 generates the following TORPL code: 

robot1 move while empty robot1 
moves to posi- 
tion 0. 

robot1 pickup widget at feed robot1 picks UP 

the part at  PO- 
sition 0, the 
feeder. 

moves the part 
between work- 
stations 0 and 
1. 

robotl place widget at 1 robot 1 

places the wid- 
get at  worksta- 
tion 1. 

This process is carried out in detail for each task 
performed. Completing the tasks leads up to complet- 
ing entire jobs, and job completion leads us to look at  
system performance. 

4 Assembly Line Performance Evalua- 
tion 

In this simulation model, assembly line throughput 
was selected as the performance measure. It was cal- 
culated on-line by a transducer that totals the number 
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of parts completed and divides this by the total time 
that the line is operational. 

This measurement is similar to what one finds on 
actual assembly lines. The system does an on-line up- 
date of throughput, and this allows any internal con- 
trol methods that rely on throughput to automatically 
evaluate the present state of the system and take ac- 
tion. 

4.1 Simulation Setup 

Setting up the simulation requires deciding the feed 
rate of parts coming into the process, the mean pro- 
cessing time per workstation, and the robot execution 
times. The feedrate, controlled by the feeder, is one 
new part into the process every 5 time units. Wcirk- 
station processing time is a uniform distribution from 
1 to 10 time units. The robot takes 2 time units to 
pick up or place a part, while moving takes the same 
number of time units as the distance traversed. In this 
system, 1 distance unit equals 1 time unit. 

4.2 Analysis of Model Results 

Looking at throughput data for the 5000 time unit 
production run in Figure 7,  we see the following 
throughput rates: 

Robot focusing on the beginning 0.049% 
Robot focusing on closest task 0.0494 
Robot focusing on the end 0.0455 

While the above numbers are relatively close, the 
robots prioritizing the closest available task and on the 
beginning of the assembly line exceed the performance 
of the robot prioritized to the end of the assembly line. 

This performance discrepancy by the robot focusing 
0 1 1  the end of the assembly line is due to its increased 
travel time between priority workstations at  the end of 
the line and jobs earlier i n  the line. The robot focusing 
on the closest task  has minimal travel time. The robot 
focusing on the beginning of the assembly line benefits 
from each workstation in the assembly line holding a 
Completed job before it moves to the: end of the line. 

4.3 Data Analysis 

At 0.0494 jobs per time unit, the robot prioritized 
to the closest task was slightly better than the robot 
prioritized to the beginning of the assembly lint: at  
0.0492 jobs per time unit. A less Intuitive merit of 

the robot prioritized to the beginning is that every 
workstation sits with a completed job before i t  starts 
completing jobs. So many jobs at  the end of the line 
results in “spurts” of job completions, exemplified by 
throughput oscillations as shown in Figure 7. 

The slowest throughput, 0.0455 jobs per time unit, 
came from the robot prioritized to the assembly line’s 
end. Decreased performance with this algorithm re- 
sults from its priority on getting jobs to the assembly 
line’s end. I t  uses too much travel time going from 
end of the line jobs to those earlier in the process. 

Algorithms focusing on the beginning of the assem- 
bly line, or simply on the closest task at hand, out- 
perform the algorithm whose only goal is output. A 
focus on the process, instead of only the goal, turned 
out to be the winning method. 

5 Future Work and Conclusions 

Model operation exemplified how TORPL code can 
be generated and verified before implementation in 
an actual manufacturing system. The example here 
requires both task  formation, and assignment of the 
task to the robot most suited. Real world scenarios 
are rarely so simple. Future systems require planning 
to deal with unprecedented difficulties. 

Planning is commonly approached in two ways, on- 
line and off-line. Off-line planning has merit in that 
computation time does not impose upon the present 
process. On-line planning benefits the user in its au- 
tonomy. Decisions are made and executed on the spot. 

ElMaraghy and Rondeau [7] propose ”a new envi- 
ronment for off-line programming of robot tasks, in- 
cluding a feature-based geometric database, an off-line 
programmingsystem with a knowledge base, an expert 
task and motion planner, and a run-time monitoring 
system.” This comprehensive planning methodology 
would substantially extend control capability in our 
system. 

Extending task  formation in our system to include 
the benefits of planning is a natural extension. Sim- 
ilarly, extending individual or group robot capability 
would take us from pick-and-place robotization to a 
myriad of possibilities. 

Decentralization of this system would involve mov- 
ing task and job formation to the robot level. This is 
similar to Jacak and Rozenblit’s [l] original conception 
of attaching an acceptor to each robot in order to allow 
it an immediate state representation of the assembly 
line The difference will be transforming robots into 
tzndomorphic agents as conceived by Zeigler [%I. 
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Figure 7: Assembly Line Throughput Performance 
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Adding planning and decentralization to assenibly 
line entities opens up a whole new world of robustliess 
for the system. Changing robots from simple slaves 

would significantly increase this system’s versatility. 

[5] R. Speed, “Off-line Programming for Industrial 
Robots” Proc. of ISIR 87, pp. 2110-2123, 1987. 

of the centralized controller to autonornous operators [6] N.J .  Nilsson, Principles Of Artificial Inteligence, 
Tioga, Palo Alto, CA, 1980. 
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