
Generation, Control, and Simulation of Task Level Actions Based
on Discrete Event Models

J.M. Couretas J.W. Rozenblit

Department of Electrical and Computer Engineering
The University of Arizona

Tucson, Arizona 85721
{ couretas jr}@ece.arizona.edu

Abstract

A model based method f o r task level command gen-
eration is used here t o simulate a pipeline process. Us-
tng a discrete event systems formalism, a method for
describing manufacturing systems i s reviewed prior to
constructing the sequential assembly line simulation.
This precedes a study of the entire assembly line model,
i t s coordination, and performance metrics. A n exam-
ple system i s ihen simulated and analyzed for language
generation and system performance.

1 Introduction

Expanding computer power is causing increased in-
terest in modeling and simulation. This is especially
true in engineering where physical prototypes can be
costly and time consuming. One step in this direction
was taken by Zeigler [3] in implementing the Discrete
Event System Specification (DEVS) in a software en-
vironment called DEVS-Scheme [2]. It facilitates the
construction of modular, hierarchical models and their
organization.

Jacak and Rozenblit [l] introduce the exact form
robot and workstation models take to work together in
an assembly line simulation. Their method deals with
a series of workcells, each of which h a s its own process-
ing program. Moving parts between the workstations
is done by robot pick and place actions. A program of'
robot and workstation instructions is then expressed
in a task-oriented robot programming language [4] [5]
(TORPL). This program controls a discrete event, s y s
tem simulating the sequential manufacturing process
that is constructed using this methodology. It is then
monitored for performance.

An additional layer is introduced for motion plan-
ning to their manufacturing system representation

This provides collision free geometrical path planning
and optimal trajectory planning.

2 Background

2.1 Discrete Event Systems Representa-
tion

With the overall goal of achieving a means for rapid
modeling and simulation of the entire technological
line, a representational formalism is required. In this
case, we employ the Discrete Event System Specifica-
tion (DEVS) formalism [3].

DEVS specification consists of external inputs, XI
external outputs, Y, and a set of states, S . States tran-
sitions are due to either an external event or the time
limit,t,(s), elapsing. A statt: change due t80 an elapsed
time limit is called an internal transition, c5int. Sim-
ilarly, state changes due to external events are called
external transitions, be,,. All of these transitions oc-
cur over the system's state set, S.

Interpretation of the DEVS and a full explication
of the semantics of the DEI'S are in [3].

2.2 Manufacturing Environment Repre-
sentation

The system presently under consideration is a se-
quential technological process. This consists of robots
and workstations where robots do pick and place ac-
tions between workstations. Robot actions in this sys-
tem occur so that each step has an associated set of
instructions in the task oriented robot programming
language [l], hereafter referred to as TORPL.

The basic macroinstructions of TORPL are:

214
0-8186-6440-ll94 $04.00 Q 1994 IEEE

mailto:jr}@ece.arizona.edu

PICKUP “part” AT “position”
PLACE “part” AT “position”
WAIT FOR ‘‘sensor input signal”
START “output signal”

The above instructions synthesize the robot’s ac-
tion program. This process requires a n introduction
of conditional instructions that depend on the states
of each device of the assembly line. Thus, defining a
program simulator requires modeling conditions that
enable each program instruction. An example assem-
bly line is shown in the Figure 1.

Figure 1: Assembly Line

2.3 Experimental Frame

The experimental frame executes and monitors a
model. I t consists of a generator sending inputs to
a model and a transducer that observes the resultant
model behavior. This concept is implemented on the
example assembly line by making the generator a parts
feeder and the last workstation on the assembly line
a transducer. Feed rate of incoming parts is modu-
lated with the internal transition time of the feeder,
and assembly line performance is observed with the
transducer.

The feeder, as shown in Figure 2, feeds parts to the
assembly line at given time intervals. Upon sending a
part to the assembly line, the feeder waits in a pas-
sive state for the specified time period before sending
another part.

The transducer is positioned as the last worksta-
tion in the assembly line. Here, it takes in parts as
they are completed and performs user specified calcu-
lations. The transducer is also responsible for main-
taining the observation time of the overall simulation.
Once this observation time is exceeded, all models stop
work. The transducer is shown in Figure 3.

2.3.1 Robot Definit ion

As explained in [l], robot states reflect position and
action. Robot position designates where it is on the

el, M apidc
message is
delivered
from the
Khol

feedrate time is ebpsed

Figure 2: State Behavior of Feeder

time data to

Figure 3: State Behavior of transducer

simulated assembly line. Robot actions include pick-
ing up a part, placing a part, or doing nothing.

2.3.2 Robot Operation

Zeigler [2] introduces event-based control as a method
of monitoring an operation. This architecture con-
sists of two models, a sender and receiver. The sender
has a time window in which it expects the receiver to
confirm the sent command’s completion. Should the
receiving model’s confirmation not return within this
time window, the sender assumes failure.

Event based control is used here to interpret robot
tasks as a date-space [6] representation of actions
needed to complete the task. The event based con-
troller, hereafter referred to as EBC, controls the robot
by sending subsequent actions, upon confirmation that
the previous action is done, until the assigned task is
complete. This is shown in Figure 4.

215

-Ion of the EBC and Robot w khin the Doer Cou~led Model

Figure 4: Internal Robot Behavior

2.3.3 Works t at ion Definition not free.” The workstation will automatically transi-
tion to state “not working and not free” upon com-
pleting the part. Robot “picking” is then required to
return the workstation to the state “not working and
free”. This is shown is Figure 5.

Shb B d m i a of Wol*mWlm

Figure 5: Internal Workstation Behavior

Workstations have three states. These states are “not
working and free,” ”not working and not free,” and
“working and not free.” This is defined in [l].

The workstation transitions between these states by
interacting with the robot. For example, a worksta-
tion in state unot working and free” which gets a part
“placed” on it by a robot goes to state “working and

3 Modeling Effort

3.1 System Construction

Having decided on the methodology and model
forms, the next step is building the sequential assem-
bly line simulation. This includes constructing and
testing each model independently, organizing models
into an overall structure, coupling them, and deciding
on performance metrics.

Model construction was software implementation of
the sequential assembly line. With the models devel-
oped, the next step was aggregating them into one
overall structure and coupling them. Communication
between the models was achieved through name di-

216

rected coupling. This consists of sending communica-
tions directly to the model via its name.

3.2 System Architecture

The system architecture is centralized. This means
that one central module, the controller, processes all of
the assembly line entity states and positions, and then
decides on work allocation. The system simulator’s
architecture is shown in Figure 6.

3.3 Task Formation

The controller’s goaI is to complete all tasks
presently in the system. Tasks needing attention are
determined by the states of sequential workstations.
Robot and workstation states are communicated to
the controller upon every change.

The controller is a central data repository into
which state updates for all assembly line entities are
directed and stored Workstation states are tracked
by a service list. It IS called a service list because the
workstations are continually monitored for potential
requirement of service. Other lists used are the task
list, robot list, and job list.

The service list contains the states of all worksta-
tions. The service list maintains a state for every
workstation on the assenibly line, all the time. When
state updates come in from the assenibly line, the ser-
vice list is updated to thc new assembly line represen-
tation. An example of the service list, is shown below:

service-list = ((0 b) (l a)(2 c)(3 a) ..)

A task is formed whenever two workstations are
sequentially in states “B” and “A”. When this hap-
pens, the two addresses are combined to make a task
as shown below:

States: (1 b)(2 a)
Task: (1 2)

A task list could have any number of tasks, and
would take the following form:

Task-list: ((1 2)(3 4) ...

An example robot list has the following form:

robot-list = ((robl move-while-holding) ...)

Multiple tasks require multiple robots to maximize
system performance. This need is met by allowing any
number of robots to service the assembly line.

Once tasks are formed, a search is made for the clos-
est robot to perform the task. Proximity is measured
both by physical distance and by an estimation of time
to completion from the present task. Physical dis-
tance is the distance from the present location of the
robot to the first workstation in the given task. This
is what is used for free robots - robots that are empty
and waiting for an assignment. If a robot is still com-
pleting an action, distance equivalent approximations
are interpolated from the present robot state. This
approximation is then added to the actual distance
between addresses in order to find the total distance
between the present robot and the first workstation in
the t.ask.

Robots presently working on a task are also evalu-
ated for their proximity to tasks awaiting assignment.
The main reason for this is that a robot close to a task
to be assigned could be nearly finished with its present
work when the nearby task becomes available. If only
idle robots were considered, an idle robot farther away
might be chosen for the task, resulting in a high travel
time. Choosing the robot already working amounts
to not choosing a robot, and waiting until that robot
reports that it is free before assigning the task.

When a task is assigned to a robot, this becomes
a ‘‘job.)) Jobs are sent to the robot designated as the
first element of the job. A n example of a job is shown
helow:

Available Robot: (robl)

Job: (robl (1 2))
Task: (1 2)

3.4 Robot Application Strategy

A n example of control modification is assigning dif-
ferent location prioritization algorithms to the robots.
They are assigned to prioritize service to the beginning
of the assembly line, the end, and the closest available
task. This exercise monitors the system performance
differences of alternative prioritization schemes.

Priority on the beginning and end of the assem-
hly line started off as an algorithmic exercise. Over
time, however, we saw the merits of either of these
in application. Prioritizing the beginning of the as-
sembly line might occur in situations where the line
is, for one reason or another, perpetually starved for
parts. Similarly, priority on the end of the assembly
line, on getting parts out, might occur in a situation
where there is a bottleneck at the end of the assembly
line. Additionally, on a multi-robot assembly line, dif-
ferent robots could be assigned different operational

217

Figure 6: Assembly Line Architecture

algorithms for part processing. robot 1 move while holding robot1
Simulating the robots with different prioritization

schemes gives us a trace of the robot, movements on
the sequential assembly line. Assuming the simulation
accurately depicts the assembly line, this “trace” is
validated robot code that could be used to control the
actual robots working on an assembly line.

3.5 TORPL Code

TORPL code is sequentially output for each step
taken by the robot model. A task, (0 l), assigned to
robot1 generates the following TORPL code:

robot1 move while empty robot1
moves to posi-
tion 0.

robot1 pickup widget at feed robot1 picks UP

the part at PO-
sition 0, the
feeder.

moves the part
between work-
stations 0 and
1.

robotl place widget at 1 robot 1

places the wid-
get at worksta-
tion 1.

This process is carried out in detail for each task
performed. Completing the tasks leads up to complet-
ing entire jobs, and job completion leads us to look at
system performance.

4 Assembly Line Performance Evalua-
tion

In this simulation model, assembly line throughput
was selected as the performance measure. It was cal-
culated on-line by a transducer that totals the number

218

of parts completed and divides this by the total time
that the line is operational.

This measurement is similar to what one finds on
actual assembly lines. The system does an on-line up-
date of throughput, and this allows any internal con-
trol methods that rely on throughput to automatically
evaluate the present state of the system and take ac-
tion.

4.1 Simulation Setup

Setting up the simulation requires deciding the feed
rate of parts coming into the process, the mean pro-
cessing time per workstation, and the robot execution
times. The feedrate, controlled by the feeder, is one
new part into the process every 5 time units. Wcirk-
station processing time is a uniform distribution from
1 to 10 time units. The robot takes 2 time units to
pick up or place a part, while moving takes the same
number of time units as the distance traversed. In this
system, 1 distance unit equals 1 time unit.

4.2 Analysis of Model Results

Looking at throughput data for the 5000 time unit
production run in Figure 7, we see the following
throughput rates:

Robot focusing on the beginning 0.049%
Robot focusing on closest task 0.0494
Robot focusing on the end 0.0455

While the above numbers are relatively close, the
robots prioritizing the closest available task and on the
beginning of the assembly line exceed the performance
of the robot prioritized to the end of the assembly line.

This performance discrepancy by the robot focusing
0 1 1 the end of the assembly line is due to its increased
travel time between priority workstations at the end of
the line and jobs earlier i n the line. The robot focusing
on the closest task has minimal travel time. The robot
focusing on the beginning of the assembly line benefits
from each workstation in the assembly line holding a
Completed job before it moves to the: end of the line.

4.3 Data Analysis

At 0.0494 jobs per time unit, the robot prioritized
to the closest task was slightly better than the robot
prioritized to the beginning of the assembly lint: at
0.0492 jobs per time unit. A less Intuitive merit of

the robot prioritized to the beginning is that every
workstation sits with a completed job before i t starts
completing jobs. So many jobs at the end of the line
results in “spurts” of job completions, exemplified by
throughput oscillations as shown in Figure 7.

The slowest throughput, 0.0455 jobs per time unit,
came from the robot prioritized to the assembly line’s
end. Decreased performance with this algorithm re-
sults from its priority on getting jobs to the assembly
line’s end. I t uses too much travel time going from
end of the line jobs to those earlier in the process.

Algorithms focusing on the beginning of the assem-
bly line, or simply on the closest task at hand, out-
perform the algorithm whose only goal is output. A
focus on the process, instead of only the goal, turned
out to be the winning method.

5 Future Work and Conclusions

Model operation exemplified how TORPL code can
be generated and verified before implementation in
an actual manufacturing system. The example here
requires both task formation, and assignment of the
task to the robot most suited. Real world scenarios
are rarely so simple. Future systems require planning
to deal with unprecedented difficulties.

Planning is commonly approached in two ways, on-
line and off-line. Off-line planning has merit in that
computation time does not impose upon the present
process. On-line planning benefits the user in its au-
tonomy. Decisions are made and executed on the spot.

ElMaraghy and Rondeau [7] propose ”a new envi-
ronment for off-line programming of robot tasks, in-
cluding a feature-based geometric database, an off-line
programmingsystem with a knowledge base, an expert
task and motion planner, and a run-time monitoring
system.” This comprehensive planning methodology
would substantially extend control capability in our
system.

Extending task formation in our system to include
the benefits of planning is a natural extension. Sim-
ilarly, extending individual or group robot capability
would take us from pick-and-place robotization to a
myriad of possibilities.

Decentralization of this system would involve mov-
ing task and job formation to the robot level. This is
similar to Jacak and Rozenblit’s [l] original conception
of attaching an acceptor to each robot in order to allow
it an immediate state representation of the assembly
line The difference will be transforming robots into
tzndomorphic agents as conceived by Zeigler [%I.

219

rob-pres - 0.0494
1 R U w a

0.046

0.040

0.096

0.030

0.026

0.020

0.015

0.010

2000 3000 4000 5000 lo00

Figure 7: Assembly Line Throughput Performance

-
Robot priorlclzed
to beginning of
assembly line

- - -_
Robot prioritized
to end of assembly
line

Robot prloritized
to dosest
available
workstation

.____-_

Adding planning and decentralization to assenibly
line entities opens up a whole new world of robustliess
for the system. Changing robots from simple slaves

would significantly increase this system’s versatility.

[5] R. Speed, “Off-line Programming for Industrial
Robots” Proc. of ISIR 87, pp. 2110-2123, 1987.

of the centralized controller to autonornous operators [6] N.J . Nilsson, Principles Of Artificial Inteligence,
Tioga, Palo Alto, CA, 1980.

References

,:I] W. Jacak and J.W. Rozenblit, “Automatic Simu-
lation of a Robot Program for a Sequential Man-
ufacturing Process” Robotica, Vol 10, pp. 45-56,
1992.

I21 B.P. Zeigler, Object-Oriented Simulatzon wzth
Hierarchical, Modular Models, Academic Press,
London, 1990.

[3] B.P. Zeigler, Multifacetted Modelling and Discrete
Event Simulation Academic Press, London, 1984.

[4] B. Faverjon, “Object Level Programming of In-
dustrial Robots” IEEE Int . Conf. on Robotics
and Automation, Vol. 2 , pp. 1406-1411, 1986

[7] H.A. ElMaraghy and J.M. Rondeau, “Automated
Planning and Programming Environments for
Robots” Robotica, vol. 10, pp. 75-82, 1992.

220

