
Proceedings of the 1991 Winter Simulation Conference

Barry L. Nelson, W. David KeJton, Gordon M. Clark (eds.)

A FRAMEWORK FOR SIMULATION DESIGN OF FLEXIBLE MANUFACTURING

SYSTEMS *

Marco Chierotti

Jerzy W. Rozenblit

Department of Electrical and

Computer Engineering

The University of Arizona

Tucson, Arizona 85721

U.S.A

ABSTRACT

A framework is being developed for simulation-based

design of flexible manufacturing systems. The frame-

work integrates generation of assembly plans, design

and configuration of the manufacturing facility and

equipment, synthesis oft ask orient ed robot programs,

and simulation of a manufacturing system. In this pa-

per, each layer is briefly summarized and a simulation

case study of a system for electric motor assembly is

presented.

1 METHODOLOGY

In recent years, the use of programmable and flexi-

ble systems has enabled partial or complete automa-

tion of product machining and assembly. The eco-

nomic pressure for increases in quality, productivity,

and efficiency of manufacturing processes has moti-

vated the development of more complex and detailed

design methodologies for flexible manufacturing sys-

tems (Kusiak 1990). The proposed simulation-based

framework integrates generation of assembly plans,

design and configuration of a manufacturing facility

and equipment, synthesis of task oriented robot pro-

grams, and simulation of the manufacturing system.

In our methodology, the design process is driven

by manufacturing objectives. First, a technological

process is established. This plan is a sequence of ma-

chining and/or assembly operations. The Task Plan-

ning Layer organizes the technological process into a

feasible sequence of elementary operations.

1.1 Task Planning

Task planning methods generate a task-level plan

which describes the decomposition of the machining

*Supported in part by Siemens Corporate Research, Prince-
ton, New Jersey

t On leave from the Institute of Technical Cybernetics, Tech-

nical University of Wroclaw Wroclaw 50-370, Poland

Witold Jacakt

Department of Systems and

- Information Science

University of Linz

A-4040 Linz

Austria

and/or assembly task into the sequence of elemen-

tary operations ‘of robot and devices, the assignment

of machining subtasks to system resources, and a

model for the coordination and scheduling of system

resources in a flexible manufacturing system (FMS).

An FMS is a set of programmable machines (tech-

nological devices) and product stores (buffers) con-

nected by a flexible material handling facility (such

as a robot or an automated guided vehicle), and con-

trolled by a computer connected with a system of

sensors.

An FMS can perform such technological operations

as fabrication, machining, or assembly. The state of

an FMS is monitored by the sensory system. The

FMS state depends on the states of every machine

and store. In order to generate a plan of a task real-

ization, actions have to be applied to affect a change

of the FMS state. In general, an action can be ap-

plied to a sensors-monitored state of an FMS if a set

of preconditions are met. An implementation of the

production plan can be therefore seen as a sequence

of FMS state transitions obtained by applying funda-

mental actions executable by the system. To estab-

lish the sequence of actions and their preconditions

list, the task planning problem is divided into two

subproblems: a) the technological process planning

problem (called production route planning problem),

and b) the deadlock avoidance planning problem.

The production route planning goal is to find an

ordered sequence of technological operations with a

minimum number of deadlock inst antes. The techno-

logical process planning is based on the description of

the operations of the machining or assembly process,

the precedence relation over the set of operations, the

description of the FMS geometry, and the description

of resources. To solve this problem, an AND/OR

graph representation is used (Homem De Mello and

Sanderson 1990), (Sanderson, Homem De Mello, and

Zhang 1990). A decomposition of the machining task

corresponds to a cut set of this graph. Feasible de-

1106

Design of Flexible Manufacturing Sys terns 1107

compositions, with respect to a precedence relation of

assembly operations, are used to create an AND/OR

graph that represents all valid operation sequences.

A production route is a set of ordered sequences

of technological devices or stores (called resources)

required by successive operations.

Once a fundamental plan is defined as a sequence

of robot actions, we determine the programs for robot

operations and the geometric trajectories of robot

movements that implement each act ion. This is ac-

complished in the Task-Level Programming Layer.

1.2 Task-Level Programming

The action plan for an assembly task determines the

robot’s program of operations needed to service the

process. Such a program is a sequence of instructions

(motion, grasp, and sensors instructions) expressed

in a Task-Oriented Robot Programming Language

(TORPL). Each elementary action has an associated

set of instructions in such a language (Lozano-Perez

1989).

The fundamental function of the Task Program-

ming Layer is to synthesize the robot’s motion tra-

jectories that realize the MOVE and GRASP instruc-

tions. Trajectories also determine the duration of the

moves. To generate the trajectories, we must have

available the geometrical models of all the machines

and stores of the production system as well as models

of the robot’s kinematics and dynamics.

The robot’s motion trajectory planning process is

decomposed into two subproblems: 1) planning of

the collision-free geometric track of motion, and 2)

planning of the motion dynamics along the computed

track.

The planner determines the collision-free track of

the robot motion from the initial to the final effec-

ter locations based on a) geometric and kinematic

description of the robot, and b) its environment and

the initial and final positions of the effecter-end. This

problem has been addressed in various ways and is

widely reported in literature (Brooks 1983), (Jacak

1989a), (Lozano-Perez 1989). The methods which

solve the problem in question depend on the assumed

mathematical model of the robot’s kinematics. Now,

the optimal speed and acceleration of movements

along the computed track should be computed. This

task is solved by the trajectory planner.

The trajectory planner receives the geometrical

tracks as input and determines a time history of po-

sition, velocity, acceleration and input torques which

are then input to the trajectory tracker. On this level,

the robot is represented by the manipulator dynamics

model (Shin and McKay 1986), (Jacak 1989 b).

Hence, we can obtain an optimal trajectory and

the time of manipulator movement along a geomet-

rical track. Such a planner can generate variant in-

terpretations of robot action plans. For each instruc-

tion of the robot’s program, we can change the ge-

ometry of the motion or change the motion dynamics

along the track by selecting criteria of minimal-time

or minimal-energy planning. Variant inter,pretations

of the language instructions result in different realiza-

tions of robot actions. This motivated us to introduce

a procedure that would automatically verify the se-

mantics of the robot’s program. This procedure is

described briefly in the next section.

1.3 Discrete Event Simulation of Robot Ac-

t ions

The variants of motion interpretation obta,ined from

the motion planning level are tested by a simulator.

Simulation is used to select the most effective vari-

ant. The program synthesis process requires that

we introduce conditional instructions which depend

on the states of each machine d~ of the machin-

ing/assembly line and the operational instructions

that realize robot actions. Thus, to define a, simulator

of the program, we model conditions that enable pro-

gram instructions. Each machine di has the following

DEVS (Zeigler 1984) representation:

Deva =< X, S, Y, 6jn~, 6M, A, t. >

where:

xi={zo~, xlj, z2i} I i=l,..., L

is the set of external events defined as follows:

ZOi = SETUP working parameters

x li = PLACE part ON i-th position,

x2i = PICKUP part AT i-th position,

The state set is defined as:

. s= signifies that machine is off line

● sb signifies that machine is free

● s= signifies that machine is loading,

. sd signifies that machine is busy processing

an operation

● se signifies that machine has completed an

operation and is not free

1108 Chierot ti, Rozenblit and Jacak

The internal transition function for each machine i

is given as follows:

c$jnt(s:) = s:

c$:nt(s:) = s~

b;nt(s:) = s:

6jnt(sj) = s:

6jnt(s:) = s:

The external transition function for each machine

i is defined as:

6gxt((sj , Zoi) = s~

6:ct((s~ , Zli) = s;

6$J(S\, Xii) = Sj

6~=*((S~ , Z2i) = S;

Aj$t ((., .), .) = failure for all other states

The output function is simply defined as Ai(s) = s.

The time advance functions for Devi determine

the time needed to process a part in the i-th ma-

chine. They are defined as follows: if s = s~, then

tai(s) = +, otherwise tai (s) = m, where # is the

tooling/assembly time of operation k for machine i.

The above specification defines a model of the tech-

nological machines. The activation of each machine

Devi is caused by an external event generated by

the model of the robot. This model is realized by a

generator of an experimental frame component (Ja-

cak and Rozenblit 1991) associated with the pro-

duction system model. Since the events generated

by each robot depend on the states of the workcells

Devili = 1, ..., L, we define an acceptor which ob-

serves the state of each workcell.

Rather than provide a detailed mathematical de-

scription of the experimental frame models here, we

describe their functionality. (The reader is referred

to (Jacak and Rozenblit 1991) for a complete for-

mal specification of the simulator.) The acceptor is

a DEVS that receives as input state descriptions of

each machine Devi. It selects events which invoke the

robot to service a workcell. The acceptor state set is

a class of subsets of indexes of workcells Devi. The

state contains indexes of only those workcells which

have completed processing of a part and from which

the part can be transported to another workcell (i.e.,

the preconditions of the next operation are satisfied).

The states of the acceptor also determine state com-

ponents of the frame generator that models the be-

havior of every robot.

The DEVS-model of each robot contains the state

set SR = S. x Positions x HS, where S= is the

state set of the acceptor, Positions is the set of posi-

tions of the robot’s effecter-end in the base-Cartesian

space, IJS is the set of states of the effecter, i.e.,

HS = {Empty, Holding}. Jacak and Rozenblit

(1991) demonstrate

specifications can be

tions in TORPL.

how the above discrete event

translated into a set of instruc-

Design of a manufacturing facility capable of car-

rying out an assembly sequence plan is an integral

phase of the proposed framework. Resources, i.e., ma-

chines, robots, material handling devices, and com-

puter hardware must be integrated in a manner most

conducive to the realization of the plan. Knowledge-

Based Simulation Design methodology is applied to

accomplish the integration.

1.4 Knowledge-Based Simulation Design

Met hodology

Knowledge-Based Simulation Design methodology is

applied to accomplish the integration of plant com-

ponents and resources. The system design approach

proposed by Rozenblit and Zeigler (1990), termed

Knowledge-Based Simulation Design, focuses on the

use of modeling and simulation techniques to build

and evaluate models of the system being designed.

It treats the design process as a series of activities

which include specification of design levels in a hi-

erarchical manner (decomposition), classification of

system components into different variants (special-

ization), selection of components from specializations

and decompositions, development of design models,

experimentation and evaluation by simulation, and

choice of design solutions.

The design model construction process begins with

developing a representation of design components and

their variants. To appropriately represent the fam-

ily of design configurations, a representation scheme

called the system entity structure (SES) has been pro-

posed. The scheme captures the following three re-

lationships: decomposition, taxonomy, and coupling.

The synthesis (coupling) constraints impose a man-

ner in which components identified in decompositions

can be connected together. The selection constraints

limit choices of variants of objects determined by the

t axonomic relations.

Beyond this, procedural knowledge is available in

the form of production rules. They are used to ma-

nipulate the elements in the design domain by ap-

propriately selecting and synthesizing the domain’s

components. This selection and synthesis process is

called pruning. Pruning results in a recommendation

for a model composition tree, i.e., the set of hier-

archically arranged objects corresponding to model

components.

Performance of design models is evaluated by sim-

ulation. A simulation experiment is defined using the

experimental frame concept. Briefly, an experimen-

Design of Flexible Manufacturing Systems 1109

t 1

I MOTOR ISTATOR RUTOR

f-r

Figure 1: Electric Motor

tal frame defines a set of input, control, output, and

summary variables, and input and control trajecto-

ries. These objects specify conditions under which a

model can be observed and experimented with. It is

usually realized as a coupling of three components: a

generator (supplying a model with an input segment

reflecting the effects of the external environment upon

a model), an acceptor (a device monitoring a simula-

tion run), and a transducer (collecting and processing

model output data).

The simulation phase of the design framework is

followed by evaluation of simulation results and rank-

ing of alternative design models in respective exper-

iment al frames. Design models that best conform to

design performance criteria, constraints, and require-

ments serve as the basis for the proposed design s~

lution.

The following example shows the application of the

methodology to a simple FMS design problem.

2 CASE STUDY

The example presented here demonstrates different

plans of sequencing operations (operations schedul-

ing problem), selection of devices (machines, mate-

rial handling systems, and robots) to carry out the

operations, synthesis of a program for robots servic-

ing the devices, simulation modeling, and testing and

verification of design variants based on the simulation

models of the overall system architecture.

2.1 Product Description

The example illustrates design of a system for an elec-

tric motor assembly. The motor is shown in Figure 1.

xREAR PLATE
STATOR

clROTOR aSTATOR

Figure 2: AND/OR Graph

Our model is a simple motor composed of four parts:

rotor/bearings, front and rear plates, and st ator.

To obtain the final assembly, a sequence of assem-

bly steps must be devised. In order to do so, the

product is conceptually disassembled until only ele-

ment ar y parts are left. This process, called gener-

ation of feasible assembly sequences, allows the def-

inition of partial assembly states and the sequence

of operations needed to move through the assembly

state space.

Out of all the possible disassembly/assembly se-

quences,only some are feasible. Some subassembly

states and some assembly operations are impossible

because of geometrical and technological constraints,

and have to be eliminated. To capture the possi-

ble assembly sequences, an AND/OR graph repre-

sent ation is used. Referring to the graph c~f Figure 2,

K-connectors represent feasible decompositions while

nodes represent legal subassembly states. The graph

shown in the figure considers only a subset of all the

geometrically feasible decompositions (some of them

have already been discarded). For examplle, the rear

plate could be separated from the whole assembly,

giving place to a geometrically feasible decomposi-

tion. Nevertheless, the resulting inverse assembly op-

eration would be complex to perform, and the mo-

tor without the rear plate would be an unstable sub-

assembly, impractical to handle and to operate on.

Using the above criteria, the AND/OR graph of Fig-

ure 2 has been generated. It represents two possible

sequences of technologically feasible operations and

stable subassemblies.

1110 Chierot ti,Rozenblit and 3acak

Table 1: Assembly Feeder Data

~MOTOR I

REAR PLATE
STATOR
ROTOR

A
Figure 3: Plan 1 Assembly Tree

FEEDERS ROLE ASS. PART PREP. TIME

Feeder O input stator 5

Feeder 1 input rear plate 5

Feeder 2 input rotor 5

Feeder 3 input front plate 5

Feeder 4 output motor 10

From the AND/OR graph, two possible assem-

bly trees are generated, as shown in Figures 3 and

4. These trees constitute the bssis for the synthesis

of two alternative production plans. Assembly trees

embody the precedence relationships between opera-

tions. For example, the first tree leads to the imple-

mentation of a pipeline structure where single parts

are added to a single subassembly. The second tree

allows a parallel organization where two partial as-

semblies are joined to get the final product.

2.2 Production Plan, Requirements and

Constraints

Once an assembly tree is generated, assembly opera-

tions have to be assigned to actual physical devices.

In addition, materials have to be moved among de-

vices. Thus to complete the system design, material

handling and storage components are needed.

Due to the simplicity of the assembly plan, ma-

chines are clustered in a sin~le workcell serviced bv a

Figure 4: Plan 2 Assembly Tree

single robot. For both plans the workcell needs four

parts and produces a single finite assembly. Therefore

four input and one output feeders must be provided.

Input feeders have to be connected to the same num-

ber of storage areaa in order to receive parts. The

output feeder is connected to a final product storage

area. Parts are moved using conveyors, therefore five

of them are needed. This information is used during

the SES pruning process to obtain the system com-

position tree.

To have a complete assembly plan, timing values

for operations must be added. As shown in Table 1,

each part is assigned to a feeder. Feeder preparation

time is the time needed by an empty feeder receiving

an object to make it available on output. Feeders are

supposed to have a capacity of two. Machine process-

ing time is determined by the operation’s complexity.

Machines have to wait the arrival of all needed parts

before they can begin processing. In Tables 2 and

3, the list of parts in square brackets indicates that

these parts have been connected into a subassembly

Design of Flexible Manufacturing Systems 1111

Table 2: Assembly Plan 1 Machine Data

MACHINES PARTS NEEDED SUBASS. PROD. PROCESS. TIME

Machine O rear plate, stator [rear plate, stator] 30 —
Machine 1 [rear plate, stator], rotor [rear plate, stator, rotor] 20
Machine 2 [rear plate, stator, rotor], rear plate motor 30

Table 3: Assembly Plan 2 Machine Data

MACHINES PARTS NEEDED SUBASS. PROD. PROCESS. TIME

Machine O rear plate, stator [rear plate, stator] 30 –
Machine 1 rotor-, front plate [rotor, front platej 10
Machine 2 [rear plate, stator], [rotor, front plate] motor 40 —

woRlmiLL

J=J’5a
=

PART2
MAr3uNB

FE3DIR

PART 1

FSEDER
ROBOT

LAsSEMBLY

OUEWT
FErm?R

Figure 5: Workcell Physical Organization

and are now a single product.

A workcell topology is important in order to define

the robot’s timing. Figure 5 shows a simple physical

organization of one system under consideration. The

robot must pick up parts 1, 2 and 3 from the respec-

tive feeders, one at the time, and put them into the

machine needing them. When the machine is done

processing, the robot must remove the assembly and

put it into the machine downstream or into the out-

put feeder.

Robot trajectories, defined by Task Level Program-

ming, are determined by a very simple bidimensional

model. Trajectories are straight lines between points,

while the velocity profile during the trajectory is de-

termined m follows: The robot accelerates with con-

stant acceleration Ar up to the constant velocity Vr,

then decelerates again with deceleration –A. until it

stops. If the trajectory is not long enough to reach

Table 4: Assembly Plan 1 Topology

DEVICE X-coord Y-coord

Feeder O 2 6“

Feeder 1 2 2

Feeder 2 4 6

Feeder 3 6 6

Feeder 4 6 2

Machine O 2 4

Machine 1 4 4

Machine 2 6 4

the velocity V,, the robot accelerates up to the middle

point of the path, and then decelerates. Numerical

values have been set to Vr = 0.5m/s and Ar = lm/s2.

Tables 4 and 5 contain device coordinates for plan

1 and 2.

2.3 Evaluation Objectives and Experimental

Frames

The design objectives orient both the model and the

experiment construction. In fact, from the design ob-

jectives, performance indexes and experimental con-

ditions are derived. The first performance index is

the time needed by the plant to produce a given num-

ber of assemblies. The second performance index is

the utilization profile of workcell machines. The third

performance index is the machines’ joint utilization,

defined as the percentage of time during which all ma-

chines are working at the same time. The fourth per-

formance index is the utilization profile of the robot.

1112 Chierot ti, Rozenblit and Jacak

Table 5: Assembly Plan 2 Topology

DEVICE X-coord Y-coord

Feeder O 2 6

Feeder 1 2 2

Feeder 2 4 6

Feeder 3 6 6

Feeder 4 4 2

Machine O 2 4

Machine 1 6 4

Machine2 4 4

From the above performance indexes, Experimental

Frames are derived. For all of them, no input seg-

ments are provided. The storage areas are consid-

ered part of the system itself. Parts storage areas

are loaded with the right quantity of parts needed,

while the finite product storage areas are empty at

the beginning of simulation runs.

2.4 Simulation

Simulation of design models is carried out in the

DEVS-Scheme environment (Zeigler 1990). DEVS-

Scheme is an object-oriented simulation shell for mod-

eling and design that facilitates construction of fam-

ilies of models specified in the DEVS formalism. To

specify modular discrete event models requires that

we adopt a different view than that fostered by tradi-

tional simulation languages. As with modular specifi-

cation in general, we must view a model as possessing

input and output ports through which all interaction

with the environment is mediated. In the discrete

event case, events determine values appearing on such

ports. More specifically, when external events, arising

outside the model, are received on its input ports, the

model description must determine how it responds to

them. Also, internal events arising within the model,

change its state, as well as manifest themselves as

events on the output ports to be transmitted to other

model components.

Basic models can be coupled to form a class of cou-

pled models. This facilitates simulation of hierarchi-

cal, modular, multicomponent models (Zeigler 1990).

The synthesized model uses the following ba-

sic components: Production Store PSTORE, Plant

Controller PLC, Workcell Feeder FEEDER, Work-

cell Assembly Machine MACHINE, Robot Model

ROBOT, and Workcell Controller CONTR. In addi-

t ion, the experimental frame uses a Workcell Trans-

ducer TRANWC, a Robot Transducer TRANROB,

and a Production Store Transducer TRANPS. The

Production Store Acceptor has been omitted. The

simulation stops by itself when all parts have arrived

at the Finite Product Store and all devices are idle.

The Production Store PSTORE can contain parts

or finite products. In the first case, when requested,

it waits for processing time units and then delivers a

part (provided it is not empty). In the second case,

when a request for storage arrives, PSTORE waits its

processing time and then stores the assembly (pro-

vided it is not full). The delays incorporated into

the Production Stores models simulate the presence

of conveyors connecting them with the Workcell.

The simulation starts with Production Stores

loaded with the required number of parts and the

output Production Store set to empty. All workcell

devices are off line. To begin production, the Cell

Controller CONTR receives the production plan as

input data. The production plan assigns parts to cell

Feeders, designates them as input or output devices,

determines the parts needed by the machines to pro-

duce an assembly, and defines the devices’ timing.

The Cell Controller sets itself in a working status

and broadcasts the plan to all cell devices. Each de-

vice scans the plan, extracts the information it needs

in order to operate, and sends its new status to the

Cell Controller. At this point the production phase

begins.

Messages to and from the Production Stores are

sent and received by the Plant Controller PLC that

manages communications and material flow among

the Production Stores and the Workcell. During the

operations, the Workcell generates messages for the

Plant Controller, sending lists of needed parts to be

received from Part Production Stores and lists of Fi-

nite Products to be sent to the Finite Product Store.

When the Plant Controller receives requests for assis-

tance from the Workcell, it puts them in a waiting list

and then broadcasts this list to all Production Stores.

Production Stores which are able to satisfy the re-

quests wait their processing time and then send a re-

ply to the Plant Controller that routes it to the work-

cell. At the same time, the Plant Controller deletes

from its waiting list the request that corresponds to

the reply.

We now analyze the Workcell’s operation. When

the Plant Controller sends messages to place or

pickup parts on/from the workcell, the Cell Controller

routes them to the corresponding input/output Feed-

ers. At any moment, the Cell Cent roller keeps track

of the status of each Feeder, Machine and the Robot,

and generates commands for the Robot and external

messages for the Plant Controller, accordingly.

When parts from the Parts Production Stores ar-

Design of Flem”ble Man ufact uring Systems 1113

rive at the Cell Feeders, Feeders communicate this to

the Cell Controller. The type of part offered is also

relayed. At the same time, the Cell Controller knows

the status of all machines. From this information, the

Cell Controller is able to generate a list of external

requests for the Plant Controller and a list of possible

tasks for the Robot. An external request is generated

when an input feeder can receive parts and/or when

an output feeder has parts to ship out. A task for the

Robot is generated when a device (feeder or machine)

has a part or subassembly available and some other

device inside the workcell needs it. A Robot Task is

generated only if the Robot is idle at that moment.

If it is not, the Cell Controller waits until the Robot

asks for one. If several tasks are possible, the Cell

Controller chooses the task for which the Robot has

to travel the shortest dist ante.

When the Robot receives a task, it moves from its

current position to the device where it has to pick up

a part, communicates to the device its action, then

holding the part, moves to the second device, and

communicates to the device that it is placing the part.

When the Robot is done, it stops near the destination

device and asks the Cell Controller for a new task.

The Workcell Transducer receives a signal every

time a cell device changes its status and updates

its time table and its internal clock. The Workcell

Transducer timetable contains as many entries as the

number of machines in the system, each entry haa

four partial time counters, one per each possible ma-

chine status. An additional time counter registers

the joint utilization. The Robot Transducer receives

a signal every time the robot communicates with the

Cell Controller, picks up or places a part. It keeps

track of the time the Robot is idle, moves empty, or

moves holding a part.

At a global level, the Final Product Store Trans-

ducer, records the number of assemblies and the times

of their arrival at the Final Product Store.

2.5 Simulation Results

For both plans the production of a batch of ten mo-

tors has been simulated. For Plan 1, the time needed

to produce the motors was 1744.30 units, the utiliza-

tion profile of workcell machines is shown in Table

6, the joint utilization of machines was zero. The

Robot was idle for 13.59% of the time, moved empty

for 48.29%, and moved holding a part for 38. 12’%0.

For Plan 2, the time was 1699.41 units, the utiliza-

tion profile of workcell machines is shown in Table

7. The joint utilization of machines was zero. The

Robot was idle for 16.63% of the time, moved empty

for 43.27?10, and moved holding a part for 40.10%.

Table 6: Plan 1 Machines Utilization [%]

MACHINE S. Sb Sc Sd

MO 27.45 36.87 17.20 18.48

Ml 40.98 27.85 11.47 19.70

Mz 27.63 38.62 17.20 16.55

Table 7: Plan 2 Machines Utilization [%]

MACHINE

M. 33.; 12.;: 17.;; ,35.;;

Ml 48.12 31.93 5.88 14.07

M2 35.71 31.63 23.54 9.12

Although the two designs have different architec-

tures (pipeline vs. parallel), the results /show that

they have equivalent dynamic performances. Comple-

mentary design aspects, such as cost and availability

of tools and fixtures, will guide the designer’s final

choice.

3 CONCLUSIONS

A comprehensive framework for design of automated

manufacturing system requires integration of several

layers of support methods and tools. We are devel-

oping an FMS CAD framework in which ~simulation

plays a pivotal role. The need for simulation compo-

nent in FMS CAD is becoming increasingly obvious.

Most existing systems facilitate only one mode of op-

eration, i.e., the off-line input of robot’s program and

subsequent testing of the program by graphic anima-

tion of robot’s motions in a geometric model of the

workscene. The systems are capable of detecting col-

lisions. However, they do not facilitate simulation of

the overall automation system in order to evaluate the

proposed FMS design. Starting from manufacturing

objectives, our methodology generates a technological

process as a sequence of machining and/or assembly

operations, and organizes it into elementary opera-

tions of robots and devices. These operations are

translated into motion commands for robc)ts. Differ-

ent variants of motion interpretation are tested by a

simulator. Simulation is used to select the most ef-

fective variant.

Our current work is focused on simulation based

optimization of aasembly systems layout, Given a

set of topological constraints imposed on the system

layout, devices are placed on the workscene in such a

way that material handling costs are minimized.

1114 Chierotti, Rozenblit and Jacak

REFERENCES

Brooks)R. 1983. Planning Collision-Free Motions for

Pick- and-Place Operations. Int. J. of Robotics

Research 2(4): 19-44.

Homem De Mello, L. S., and A.C. Sanderson.

1990. AND/OR Graph Representation of Assem-

bly Plans. IEEE Trans. on Robotics and Automa-

tion, 6(2): 188-199.

Jacak, W. 1989. Strategies for Searching Collision-

Free Manipulator Motions: Automata Theory Ap-

proach. Robotics, 7: 129-138.

Jacak, W. 1989. A Discrete Kinematic Model of

Robot in the Cartesian Space. IEEE Trans. on

Robotics and Automation,5(4): 435-446.

Jacak, W., and J. W. Rozenblit. 1991. Automatic

Simulation of a Robot Program for a Sequential

Manufacturing Process, Robotics (in print).

Kusiak, A. 1990. Intelligent Manufacturing Systems.

Prentice Hall.

Lozano-Perez, T. 1989. Task-Level Planning of Pick-

and- Place Robot Motions. IEEE Trans. on C’om-

puter 38(3): 21-29.

Rozenblit, J. W., B,P. Zeigler. 1990. Knowledge-

Based Simulation Design Methodology: A Flexi-

ble Test Architecture Application. Transactions of

The Society for Computer Simulation 7(3): 195-

228.

Sanderson, A. C., L.S. Homem De Mello, and

H. Zhang. 1990. Assembly Sequence Planning. AI

Magazine, 11(1), Spring.

Shin, K., N. McKay. 1986. A Dynamic Programming

Approach to Trajectory Planning of Robotic Ma-

nipulators. IEEE Trans. on Automatic Control,

31(6): 491-500.

Zeigler, B.P. 1984. Multifaceted Modelling and Dis-

crete Event Simulation, Academic Press.

Zeigler, B.P. 1990. Object-Oriented Simulation with

Hierarchical, Modular Models, Academic Press.

AUTHOR BIOGRAPHIES

MARCO CHIEROTTI is a Graduate Student of

Electrical and Computer Engineering at The Univer-

sity of Arizona, Tucson. He received the M.S. de-

gree in Mechanical Engineering from the University

of Geneva, Italy, in 1985. His principal interests focus

on modeling and computer simulation, knowledge-

based system design, and artificial intelligence.

State University, Detroit, in 1985 and 1983, respec-

tively, and the M.S. degree in Control Engineering

from the Technical University of Wroclaw, Poland, in

1980. He specializes in modeling and computer simu-

lation, knowledge-based system design, and artificial

intelligence. His principal research activities focus on

the development of expert, computer-aided environ-

ments for engineering design support.

WIT OLD JACAK is currently Professor of Sys-

tems Science at Johannes Kepler University in Linz,

Austria. He received the Ph.D. degree in control and

system engineering from the Institute of Techical Cy-

bernetics, Technical University of Wroclaw, in 1977,

and the M .S .E.E. degree in electronics from the Tech-

nical University of Wroclaw, Poland, in 1973. His

research interests include artificial intelligence and

robotics, CAD/CAM systems, modeling, simulation,

and system theory applications to robot motion plan-

ning.

JERZY W. ROZENBLIT is an Assistant Profes-

sor of Electrical and Computer Engineering at The

University of Arizona, Tucson. He received the Ph.D.

and M.S. degrees in Computer Science from Wayne

