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ABSTRACT

A wide range of modeling and simulation packages

have been applied to evaluate manufacturing systems,

computer systems, and telecommunication networks.

The objective of using simulation is to assess system

designs prior to their implementation. In this paper,

a modeling and simulation environment supported by

a hierarchical, model-based management met hodol-

ogy is presented. This environment allows users to

efficiently construct system models and procedures

for performance evaluation without requiring prior

knowledge of the simulation description language.

The environment, called Performance index-Oriented

modeling and Simulation Environment (POSE), pro-

vides hierarchical function manipulation based on the

partition of the system’s architecture. A window-

ba.sed graphical front-end has been developed to offer

a simple and straightforward user interface. Through

POSE, the model and simulation development time

has been significant reduced. An example of a man-

ufacturing system is presented to illustrate POSE.

1 INTRODUCTION

Due to complex, multilayer, multicomponent designs

of new systems, it is critical to provide an efficient

means for performance data generation. In this pa-

per, we prewmt an environment called Performance

index-Oriented modeling and Simulation Environ-

ment (POSE) to automate system modeling and sys-

tem simulation. POSE uses DEVS (Discrete EVent

System Specification) (Zeigler 1990) as an underly-

ing simulation engine. Our environment features the

following:

1. Automation of model development.

2. Hiding of simulation description language from

the user.

3. Efficient, simulation-based performance evalua-

tion.

To structure the model development process,

POSE uses the composition tree and system entity

structure concepts (Zeigler 1984, Rozenblit and Zei-

gler 1988). To manage performance evaluation, we

use the experimental frame formalism (Zeigler 1984).

In the ensuing sections, model design and devel-

opment using functions provided by POSE are ad-

dressed. Each function is discussed in detail.

2 MODEL DESIGN USING POSE

Our environment is intended to automate the model

creation for use in simulation and to provide related

performance data calculation and system evaluation.

We first consider the requirements and constraints of

the system to be modelled. After considering the sys-

tem’s requirements, we then proceed with the mod-

eling procedure. We develop two types of models: a)

the Experimental Frames (EFs) used for generating

and processing performance statistics, and b) models

needed to simulate the proposed or the real system in

question. The model development procedure is one of

the major tasks performed by POSE. It is organized

hierarchically. The hierarchical model construction

shown in Figure 1 includes four steps: 1) Automatic

Generation of Experimental Frame (AGEF), 2) Node

Modeling, 3) System Modeling, and 4) Model Inte-

gration (MI). The Node Modeling and the System

Modeling are combined and are termed Automatic

Generation of System Model (AGSM). The goals and

functions of AGEF, AGSM and MI are explained be-

low:

1 Automatic Generation of Experimental Frame:

This function is to automatically generate the ex-

perimental frames (EFs). The elements required

to generate EFs are the workload distribution of

the system being modelled, the requirements of
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Figure 1: Hierarchical Model Construction in POSE
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the system, and the object-based library called

the Generic Experimental Frame Base (GEFB)

(Rozenblit 1991). All the created EFs are stored

in the Experimental Frame Model Base (EFMB).

Automatic Generation of System Model The el-

ementary atomic models (nodes) in the system

being modelled are constructed during the Node

Modeling procedure. Then, an overall system

model (network) is established through coupling

the elementary models and/or other networks (as

subsystems). Both node and network models are

stored in the System Model Baae (SMB), and can

be invoked during model integration (MI).

Model Integration: Models in the EFMB or the

SMB can be processed in the DEVS-Scheme

environment (Zeigler 1990) in the standalone

mode. Through a proper coupling of models

from the model base, at the integration stage,

a complete coupled model is created. After sim-

ulation runs are completed, related performance

statistics are evaluated. The integrated models

are saved in the Integrated Model Base (IMB)

for future reuse.

Along with the operations of the AGEF, AGSM,

and MI, three model bases (EFMB, SMB and IMB)

and an object-based library (GEFB) are required.

These bases are initially empty. They are populated

when models are developed in POSE. The efficiency

and performance of the POSE package is greatly

enhanced by the hierarchical organization of these

bases. This feature can be utilized in different ways.

The models existing in SMB can be accessed and in-

corporated into a larger and more complex system

model without any restrictions aa long aa the behav-

ior of the new system model is captured and data are

processed properly. This construction results in the

system model being set up in a hierarchical manner.

The same process takes place during the MI execu-

tion in which EFs in the EFMB and system models

in the SMB are retrieved.

In the GEFB, the performance objects in the li-

brary are related to one another. This close relation-

ship results in a hierarchical performance chain which

we explain in the next section.

Due to its hierarchical structure, POSE facilitates

flexible and rapid modeling. Suppose that an in-

tegrated model with incorrect performance data is

found. The system designer (POSE’s user) identifies

the incorrect subsystem model. There are two pos-

sible solutions for this problem in POSE. One way

is to couple a correct subsystem model through the

AGSM (if the subsystem model exists in SMB). A

correct subsystem could also be created from scratch

by using the AGSM. Once the subsystem has been

corrected, the designer can reuse the existing inte-

grated model, bypass the step of model integration,

and perform model simulation.

System Model
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Figure 2: The Relationship Between an EF and The

System Model

In the next section, we describe the Automatic

Generation of Experimental Frame. As we have

stated previously, experimental frames are a means

of generating performance related data. The struc-

ture of an EF and its relation to a simulation model

is shown in Figure 2.
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3 AUTOMATIC GENERATION OF EX-

PERIMENTAL FRAME – AGEF

An experimental frame (Zeigler 1984) can be defined

as a coupling of a generator, a transducer and an

acceptor. Various EF configurations are designed to

reflect the diverse requirements and conditions asso-

ciated with specific applications models. These con-

figurations are organized through a window-driven

procedure developed for the AGEF as shown in Fig-

ure 3. Since POSE is targeted for performance eval-

uation, special features have been incorporated in an

EF structure. These features are discussed below.

tion. Furthermore, by considering the random be-

havior of the system’s workload and processing rates,

a transducer needs to decide if a system’s state is in

equilibrium during the simulation.

Acceptors As System Runtime Controllers:

The major feature provided by an acceptor is the

ability to define a set of system constraints used for

runtime control. Therefore, an acceptor can periodi-

cally check whether the constraint boundary is broken

or not. If a violation occurs, an immediate warning

signal is sent out to the model(s) coupled to it.

3.1 Generic Experimental IYame

Figure 3: The Window-Driven AGEF

Generators Characterized by Probability Dis-

tributions: In order to emulate a real system’s be-

havior, a realistically driven workload is an important

factor. The common discrete and continuous proba-

bility distribution functions are incorporated into the

generator (Law and Kelton 1991). To ensure the cor-

rectness of implementing the discrete and continu-

ous distribution functions is nontrivial. Several ap-

proaches have been introduced in (Law and Kelton

1991). The Inverse Transform approach is adopted

here and has been validated through the method of

“histogram”, the expected value, and the variance.

Transducers Used for Performance Calcula-

tion: A transducer should collect raw performance

data and process them in terms of the pre-defined per-

formance metrics during a simulation session. These

raw and processed performance data are stored in

the corresponding log files for analysis and evalua-

In order to achieve high efficiency and flexibility in

the construction of the EF models, the concept of

Generic Experimental Frame (Rozenblit 1991), and

the scheme of Performance Metric Tree (Rozenblit

and Hu 1989) are applied.

A generic experimental frame (GEF) is an universal

performance metric specification from which diverse

sorts of experimental frames used for performance

evaluation in different fields can be derived. To illus-

trate the generic frame concept consider the following

case: in an automated manufacturing system, perfor-

mance metrics could deal with the throughput of a

specific tooling machine, the mean turnaround time

per product at a workstation or the whole system. A

GEF consists of a set of variables that correspond to

each of the performance metrics. The construction

of the GEFB is primarily based on the concept of

GEF and the structured characteristic provided by a

frame representation (Rich 1983). Every entity in the

GEFB is called a performance object frame (POF).

It contains information about a performance object’s

metric (an algebraic expression) in a frame structure

(Rich 1983). The POFS in the GEFB need to be sys-

tematically chained together for the sake of efficiency

and flexibility of the EF modeling procedure. This

systematic management is carried out by utilizing the

scheme of Performance Metric Tree (PMT).

A PMT is a data structure built upon an alge-

braic relation of the performance metric under which

the system is to be evaluated. For example, con-

sider Figure 4 which shows a PMT for evaluating

a machine’s utilization. The root node of the tree

expresses the performance measure of interest. The

internal node, Throughput is a subexpression which

also is a PMT. The leaf nodes in the tree are atomic

expressions, i.e., specifications that cannot be fur-

ther decomposed. (Note that the blocks drawn at

the leaves denote generic module% others represent

parameters.) The generic modules are defined in the

Experimental Frame Model Base (EFMB) to facili-
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Figure 4: The Utilization PMT of The Machine

tate the translation of new performance metrics. The

parameters are used to describe some known proper-

ties about the system or the component being mon-

itored. The Utilization PMT inherits all the proper-

ties from the Throughput PMT. Therefore, the inher-

itance chain is established. Through this chain, the

Utilization performance metric of the machine can be

expressed by U = (/X R). This utilization expression

is based on Little’s result (Little 1961). Through the

inheritance chains, the POFS in the GEFB are orga-

nized hierarchically. This hierarchical, object-based

library enables POSE’s users to easily and efficiently

proceed EF modeling. The EF models are generated

automatically via the AGEF. They are stored in the

EFMB for reuse in the Model Integration procedure.

4 AUTOMATIC GENERATION OF SYS-

TEM MODEL – AGSM

The AGSM procedure is divided into two phases:

the node (component) modeling and the coupled sys-

tem (network) modeling. A system model could have

a very simple configuration, composed of only one

node model, or have a complex, multilayer, multi-

component configurate ion. This kind of complex sys-

tem model implies a hierarchical composition which

is the major concern at the system modeling stage.

4.1 Node Modeling

By using the DEVS formalism (Zeigler 1984), the

properties of a queueing model (Schwartz 1987) are

embedded in a node. Hence, the related probability

distribution functions mentioned in the construction

of a generator are adopted and are used ss the node

processing-time (service-time) distribution functions.

Node models generated through the Node Modeling

procedure are stored in the SMB. They cam take the

following forms:

1.

2.

3.

4.

4.2

Normal Node: This node model processes an in-

put job (an event in DEVS) within a certain

time, and passes it out successfully. The pro-

cessing time can be state independent or state

dependent.

Blockade~ It acts as an obstacle to absorb in-

coming jobs without producing any output. For

example, a component failure beyond repair can

be modelled by this type of node.

Dispatche~ A node model as a job clispatching

center is used to dispatch jobs to other nodes

with a user-defined probabilistic behavior. It

takes zero processing time to dispatch jobs.

Noisemake~ This node model can generate er-

rors such as different transmission meclium noises

in networks.

System Modeling

After the required, individual node models are cre-

ated, a system model then can be constructed by

coupling them. This is accomplished by an algorithm

called SM-Algo. In order to describe this algorithm,

we define the term Closed System. A Closed System

is a system model obeying two conditions: 1) there

is more than one model inside it, and 2) no identical

subsystems excluding the marked non-Closed Systems

can be extracted from it. The subsystem mentioned

in this definition has a strict constraint, i.e., it must

consist of more than one model. A method called

Make Instances is used to make several instances from

the given model. Based on these definitions, the SM-

Algo is specified as follows:

Step 1: Analyze the system to find two sets: Closed

System set (CS-set) and non-Closed System set (NCS-

set). (At lesst one of these sets must not be empty.)

Count the number of instances for every element in

both sets.

Step 2: If CS-set is empty, then a complete system

model can be constructed by invoking the Make In-

stances method for the element(s) in NCS-set if neces-

sary, based on the number computed in Step 1. Delete

the element(s) from NCS-set. Add the new instances

to NCS-set. Set up the appropriate coupling for the

element (s) in NCS-set if needed. Terminate the algo-

rithm. Otherwise, go to Step 3.

Step 3: Set up the proper coupling for each element

in CS-set.

Step 4: Perform Make Instances on the element(s) in

CS-set if necessary, based on the number computed
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(a) The original system madel.

The System

5u&DY01 6 SubDYs2 : in.tancas of sub-y= modd.

(b) The new system model.

Figure 5: The Effect of The SM-Algo Approach

in Step 1. Delete the element(s) from CS-set. Add

the new instances to CS-set.

Step 5: Change the property of every element in

CS-set by switching it to a non-Closed System. Go

to Step 1.

By utilizing this algorithm, we can design a com-

plex, multilayer, multicomponent system model effi-

ciently. As shown in Figure 5, the model (a) is the

original design. The model (b) is the result of apply-

ing the SM-Algo procedure. The steps to convert

model (a) to model (b) are:

1.

2.

3.

4.

5.

After executing Step 1, we find that CS-set con-

tains Sub-sys with two instances. NCS-set is

empty.

Since CS-set is not empty, Step 3 is performed.

Then the proper coupling is set up for Sub-sys.

Two new instances named Sub-sysl and Sub-

sys2 are crested by invoking Make Instances at

Step 4. Delete Sub-sys from CS-set. Add Sub-

sysl and Sub-sys2 to CS-set.

At Step 5, Change the property of Sub-sysl and

Sub-sys2 from Closed System to non-Closed Sys-

tem. Go to Step 1.

After analyzing the system again, CS-set be-

comes empty. NCS-set includes Sub-sysl and

Sub-sys2. Each element haa only one instance.

6. At Step 2, the new system model (b) is con-

structed by coupling the elements from NC S-set.

5 MODEL INTEGRATION AND SIMULA-

TION

The purpose of the Model Integration block is to

set up an integrated model which can be executed

in DEVS-Scheme. The schemes of Distributed and

Global Experimental Frames (Rozenblit 1991) are

adopted to attach experimental frames to the sys-

tem model. The expected integrated models can be

established based on the algorithm called MI- Algo.

Two methods are used to support the algorithm. One

is the Make Instances defined in the SM-Algo ap-

proach. The other is called String Matching and Cre-

ation (SMC). It is used for the EF only. The MI-

Algo procedure is given below:

Step 1: Retrieve the EF(s) required from the EFMB

and the system model(s) from the SMB. Save these

models in the sets, EF-set and System-set, respec-

tively.

Step 2: Perform Make Instances on the element(s) of

System-set if necessary. Delete the element(s) from

System-set. Add the new instances to System-set.

Step 3: Perform the Make Instances and SMC meth-

ods on the element(s) of EF-set if necessary. Delete

the element(s) from EF-set. Add the new instances

into into EF-set.

Step 4: Set up the coupling for the elements in the

sets EF-set and System-set. Terminate the proce-

dure.
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Figure 6: The DEVS-Scheme Simulation in POSE
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Through the MI-Algo approach, integrated mod-

els are generated and stored in the IMB for simu-

lation. The simulation stage invokes DEVS-Scheme

to execute the integrated model. Figure 6 shows the

DEVS-Scheme simulation window running in POSE.

6 AN APPLICATION EXAMPLE

A case study by using POSE to model and simulate

a manufacturing cell (MC) (Enrick 1985, Merabet

1986) is briefly summarized. Through experiment-

ing with various repair probabilities associated with

limited and unlimited workstation’s capacities, the

related performance objects are analyzed.

The MC model shown in Figure 7 is composed of

four machining workstations (&fl, kf2, Lf3 and itf4),

one repair station (RS) and a raw material dispatch-

ing station (Dispatcher). The assumptions specified

in the model are:

MC ,

I II
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1.

2.

3.

4.

Figure 7: A Manufacturing Cell

The raw material is classified into three kinds:

PI, P2 and P3. These three kinds are generated

with equal quantities by the generator.

The probability distribution of the generator is

exponential with the mean 20 minutes, i.e., the

input rate of the MC is 1 part per 20 minutes.

All part delivery between stations is handled by

conveyors. For simplicity of simulation, the de-

livery time is included in the machining time of

the destination station. Meanwhile, the length

of each conveyor segment is assigned to be the

capacity of the destination station.

The dispatcher is used to dispatch pl parts to

Ml, and p2 and pa parts to M2.
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5.

6.

7.

All machining workstations have uniform prob-

ability distributions with low and hi,gh bounds

(minutes): Ml (3,5), M2 (6,8), Ma ( 10,12), MA

(3,5).

The probability distribution of the RS is set to

exponential with mean 20 minutes by considering

the uncertainty of repairing a part.

Only PI parts are considered to be made with de-

fect-during the machining procedure in the Ma.

Two major tests are processed in POSE. One is to

set limited capacities to the stations. Another is to

give each station’s capacity without limitation for the

sake of comparison. The performance objects under

consideration are throughput and turnaround. Also,

this experiment is concentrated on the performance of

machining PI parts and examining the MC’s through-

put. The results are summarized below (alko see Fig-

ure 8): (The pl repair probability occurred at the M3

is changed from 0.0 to 0.25.)

..................I .......... ..........- 4
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z :~/ =
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The exteneion of a part name hae epeciel maanlng. .’Arra”, Wm”
and Wrnit” mean the data generated from ●talytk approach,
aimuktion with Iimned workstation capacity, ●nd simulation
with uniinr itsd worlcstatkm capacity, reepeetirfely.

Figure 8: The Performance Outcome of The Case

Study
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The throughput error percentage between the

analytic approach “PI .Ana” and the simulation

approach ‘(P1 .Sim”, under the unlimited case,

is less than 4$Z0. The throughput of “P2. Sire”

and “P3.Sim” is close to 0.01667 part per minute

which matches the assumptions 1 and 2. There-

fore, the simulation experiment is highly reliable.

The throughput degradation caused by the lim-

ited capacity constraint is shown in the figure.

This constraint results in 10% throughput degra-

dation of pl parts, and l~o degradation of the

MC’s throughput. This situation becomes more

serious as smaller capacity is assigned to the sta-

tions.

As to the turnaround graph, the pl’s turnaround

time grows faster aa the repair probability in-

creases. This is because more repair time is

needed at the RS.

The turnaround times of all parts are different for

the limited and unlimited cases. This situation

shows the blocking problem in this MC.

i SUMMARY

We have presented an automatic modeling and sim-

ulation environment called POSE. By utilizing the

modeling functions provided by POSE, users can cre-

ate system models for an application environment

and for performance data collection and calculation.

The efficiency of the model generation procedure is

attributed to the hierarchical design of the model-

ing functions, the model bases (EFMB, SMB and

IMB), and the object-based library GEFB. Through

POSE, rapid simulation and performance evaluation

is achieved.

Our current work focuses on the application of Mul-

tiple Criteria Decision Making approaches to facili-

tate tradeoff among alternative system models.
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