
COMPLEXITY OF THE SYSTEM DESIGN PROBLEM

William L. Chapman
Hughes Aircraft Company

Tucson, AZ

J e m y Rozenblit
A. Terry Bahill

University of Arizona
Tucson, Arizona

ABSTRACT

The system design problem describes the
process used to translating the need or
requirements for a system into an actual
design. It requires selecting components fiom
a given set and matching the interfaces
between them. Those that can be connected to
meet the top level system's input and output
requirements are tested to see how well they
meet the system's performance and cost goals.
We will prove that this system design process
is NP-complete by restricting the Knapsack
problem, which is known to be NP-complete,
to an instance of the system design process
problem. The results indicate that designing
optimal systems with deterministic, polynomial
time procedures is not possible.

1 INTRODUCTION

System design is a process of translating or
mapping the requirements of a system into a
buildable design. The problem can be
described in terms of set theory and formally
described. Discovering the complexity of this
problem statement is important to realize what
approach for solution should be used.

2 NP-COMPLETE PROBLEMS

NP-complete is the name of a class of
problems for which there is n o known efficient

0-7803-2531-1/95/$4.00 0 1 9 9 5 I E E E

algorithm far finding an optimal solution [1 J,
[3]. As the problem size increases, the number
of steps nectssav to solve the problem
increases exponentially. Efficient algorithms
are those whose number of steps increase at
the rate of a polynomial.

NP stands for nondeterministic polynomial.
Mathematicians created a conceptual device
called a nondeterministic machine to solve
these problems. A nondeterministic machine
has an infinite number of processors and two
stages; a guessing stage and a checking stage.
Each processor guesses an answer and the
checker verifies that it is a good answer in
polynomial time. Because an infinite number
of processors exist all the guesses are done in
parallel and the number of operations does not
combinatorially explode. Of course, tlhis is a
fantasy machine, but it helps to illustrate the
fact that a certain set of problems can only be
solved in polynomial time if one of these
machines is used. Any algorithm that can solve
a problem in the class NP is polynomial if run
on a nondeterministic machine. This is because
although the amount of work required to solve
the problem on one machine may inmiease to
infinity, if'the processors working on ithe
problem increase to infinity instead, then the
time to solve the problem will grow only at the
rate of a polynomial for any single processor.
There is also a set of problems called "P-hard
that cannot be solved with a nondeterministic
machine but are related to Np as shown in

51

Figure I . These problems are outside the
scope of this paper.

3. THE SYSTEM DESIGN PROCESS
PROBLEM

n\ / NP

(Polynomial) \
A?-
\ NP-complete .

NP HARD

Figure '1 - How NP-complete is related
to Polynomial and other algorithms.

Clearly, any polynomial algorithm could still
use the nondeterministic machine because the
algorithm could be restricted to one processor.

NP-complete is a class of problems that can be
solved on a nondeterministic machine for
which no known polynomial algorithm exists.
It has never been proven that a polynomial
algorithm does not exist - but no one has ever
found one, and mathematicians do not think
anyone ever will. One critical feature of all
NP-complete problems is they can be mapped
into an instance of each other by using a
polynomial transformation. If even one of the
problems in the class NP-complete can be
shown to have a solution in polynomial time,
then all of them have a solution. Yet none has
been found in 30 years of searching by very
talented people. Thus, it is generally agreed
that if a problem is shown to be NP-complete,
then no efficient algorithm for optimally
solving the problem will ever be found.

In terms of systems theory, system design can
be described as stating a set of input, output
and time restrictions for an overall desired
system and a series of performance and cost
measures [2], [SI. For a given set of
components available to build the system, a
possible system is configured that satisfies the
system's input, output and time specifications.
This system is then tested using some
predefined test requirement to provide an
overall system performance index (PI). This
must exceed a customer provided acceptability
limit. The cost of the system in terms of time,
money or other resources is then computed
into an overall cost index (CI). This CI must
be less than some customer specified target
value.

The systems approach to design can be
characterized as follows:

Define I series of potential components Zj that
constitute the available technology to build the
desired system. Each Zj has a time index Ti,

ports provide the means of connecting the
different components together to form a
system. The components connect output
ports, Oj, to input ports, I;, using system
coupling recipes, SCR, to form a potential
system, Z@j. Define the overall input to the
desired system as Io and the overall output of
the desired system as 0 0 . For simplicity we
examine only single input, single output
systems that are made up of components that
are single input, single output systems. (See
Figure 2.) It seems reasonable that if this
design is NP-complete then the more complex
multi-input, multi-output design must also be
NP-complete.

an input port Ii, and an output port 0;. The

52

Figure 2 - A single input single output
system.

The total set of potential systems, Z@j, that
can be built fiom the components Zj is shown
in Figure 3.

Figure 3 - Potential connectivities for a
series of 7 components.

These connections can be expressed as a
directed graph where the individual
components are nodes and the possible
connections between ports are the arcs. The
initial source for the directed graph is the
system input port, Io, and the initial target (or
sink) for the directed graph is the output port,
0 0 . Let the length of each arc represent the
cost of connecting the two components (See
Figure 4.) To find a potential system design
we must find a path through a directed graph.
Because we have restricted our attention to a
single-input, single-output system components
the connection between the system input and
output is a path. If we had allowed multi-
input, multi-output system components then it
would be possible to obtain a subgraph instead
of a path. Finding a subgraph within a network
is also NP-complete, but we will not examine
that problem in this paper.

shortest path through the graph can also be
accomplished in polynomial time. The problem
is that system design is not simply solving for
one constraint such as the least cost. In
addition a system must be found that: has
maximum performance. Having a minimum
and a maximum to solve at the same time
requires tradeoffs as a search for the best
value is done. This requires much more
searching especially as the number of options
increases.

For a simple path the CI of the system is then
the sum of the length of the arcs. The resultant
path is equivalent to one system coupling
recipe creating a system, Z@j. For the route in
Figure 5 the system coupling recipe is

SCR={(l0,Tl23),(0123,1124),
(0 1Z4,I 1z5),(0 IZ5,Oo))

This means that the system input, Io, is
connected to component 23 input port 1.
System component 23 output port 1 is
connected to system component 2 4 input port
1, and so on. After the system is coupled it is
tested per thle requirements to obtain the PI.

Figure 4 .. A directed graph of the
connectivities shown above.

Finding a path through a directed graph can be
accomplished in polynomial time. Finding the

53

z1 22 zs(u) c: B and ~ v (i t) 2 K
ti €U' 14 EU'

We have defined the system components as

0

b

"\
U 23 24

m
27

0
26

coupled by an SCR to create an overall system
Z@j which has associated measures PIj and

the set of possible components that can be
connected per an SCR. Let U%@ be the

CIj. Let K=PIj and B=CIj. Let U=& which is

subset of components selected fiom Zi by
means of the SCR to form Z@. Each
component uk=Z, has an associated cost that

Figure 5 - One possible route through
the directed graph above.

This process is how designs are created. An
engineer finds components that satisfy the
necessary input and output requirements and
creates an interconnection of these parts to
satisfy the performance and cost requirements.
Several different systems (concepts,
alternatives, models or prototypes) are often
considered before a selection of the best
possible is determined based on some tradeoff
study. To guarantee a system is optimal would
require testing all of the possible
configurations.

4. THE SYSTEM DESIGN PROBLEM IS
l"-COMPLETE

To illustrate NP-completeness we will now
restrict the Knapsack problem to the systems
design process problems described in the
sections above.

It was proven by Karp that the Knapsack
problem is NP-complete (Karp, 1972). It is
formally described below.

Instance: A finite set U, a "size" s(u) E 2' and
a "value" v(u) E 2' for each U E U, a size
constraint B E Z', and a value goal K E 2'.

Question. Is there a subset U' E U such that

contributes to the CI. Let s(u)=cost(Z). Each
component uk=q has an associated value that
can be measured by the test requirement that
contributes to the PI. Let v(u)=value(Z).
Based on the acceptability criteria, specified
by the customer, the cost constraints are
defined and so are the minimum acceptable
performance criteria.

The values of each component, Zi, are
combined into a composite performance
measure, PIj. There are many ways the values
can be obtained. The simplest is a linear
combination. Any other continuous,
monotonically increasing function would be
harder to solve and thus require even more
computer time. If we restrict the system
design process problem to performance
measures that combine linearly, and to cost
measures that combine linearly, then

then if we can find a Plj and CIj using a
polynomial algorithm such that

PIj>PIo and CIj<Cb

then we have solved the system design
problem. Hence, if we can solve the system
design process problem then we can solve the
Knapsack problem, but we know the

54

Knapsack problem to be NP-complete,
therefore the system design process problem is
NP-complete also. Figure 6 gives a summary
of the mapping fiom the Knapsack Problem to
the System Design Problem.

Showing that the Knapsack Problem can be
reduced to the System Design Process
Problem is sufficient for proving NP-
Completeness because if a solution for the
System Design Process problem was available
we could use it to solve the Knapsack and
hence all NP-complete problems.

'bapsack Svstem Desim Problem
a finite set U + z
a subset U' + z @
a "size" s(u) + cost(2)
a "value" v(u) + value(Z)
a size constraint B + CIj.
'a value goal K + Plj
1 C S (U) I B + CCOSt(Z,) = czj
' U € Ut Zi EZ$,

Figure 6. A summary of the mapping.

5 . IMPLICATIONS

The implication of the system design problem
being NP-complete is that it is unlikely a
computer will ever be created that can
perform the design of a complex system better
than a human. Subsets of the entire design
process, such as routing and checking
interfaces, are done better by computers now,
however no computer algorithm exists to
create even a simple automobile, factory or
personal computer. The creation of a system is
as much art as it is science, because the
combinatorics involved require original

solutions rather than fixed algorithms) for
solving the problem.

Once more complex issues of individual
creativity and adjusting for perceived
customer wants, rather than those that are
accurately expressed, are considered, it
becomes evem more obvious that a totally
automated design system is impossible.
Research must f m s on the human in the loop
design solution as the only feasible approach
to solving the System Design Process
problem.

Most design problems are Continuous
Improvement because most design is redesign.
A feasible solution exists, but it is not optimal.
Improvements are available and often not very
hard to find. The performance of the system
improves quickly at first, but optimality is hard
to achieve. Eventually it is not worth the cost
of the extra resources to improve the
performance. See Figure 7.

Perform-
ance

R o r o m s

Figure 7- Continuous Improvement .

There are many design cases where a feasible
solution does not already exist, but it is not a
challenge to find one. We call these Original
Innovative designs. It is original because no
prior feasible solution exists that will be
incrementally improved. This type of design
requires innovation, because the initial feasible
solution created will not be close to optimal
without an innovative design that creates the
feasible solution near the optimum. When the

55

designers are g’lven a chance to start fiom
scratch and design a new system then they are
performing an original design.

The final type of design is called Breakthrough
design. No known or easily obtainable feasible
solution exists or has ever existed. Only a
breakthrough in science or engineering will
create a feasible solution. Resources are
expended at an incredible rate with no
improvement at all. Ifthe project were
stopped half way through the design effort
there would be nothing to show for all the
money spent. Finally a breakthrough occurs
and performance improves rapidly. See Figure
8.

Breakthrough Design Model

Pcrtorm- 0.6

0.2
0
0 2 7 m. cv q m q w q U,

v cv m w
Rcwurces

Figure 8 - The Breakthrough design.

The implications for the system design process
are clear. Different approaches must be used
when a feasible system is at hand versus when
one is not easily obtainable. The Continuous
Improvement problem will have a different
system design process than that for Original
Innovative design or for Breakthrough
designs. None of the methods presented to
approach these different design problems will
guarantee optimality, but good solutions can
be obtained for them all.

If it is so difficult to obtain optimality then one
might ask why are there so many good
systems? The answer lies within the solution

techniques of NP-complete problems. Even
the most difficult problems in this class have
algorithms to obtain good solutions (that is, a
solution within a few percent of a theoretical
optimal when it is possible to compute) with
relatively simple polynomial algorithms. The
solution techniques applied to solve these
problems (such as the Traveling Salesman
Problem, Knapsack problem, maximum path
through a network, minimum test collection,
graph 3-colorability, etc.) to obtain good
solutions can also be applied (and have been
applied, knowingly or not) to the system
design process. This provides a mechanism to
analyze the tools and techniques of design.

We are now investigating the various methods
of solving NP-complete problems and using
these NP-complete algorithms to solve design
case studies.

6. SUMMARY

This paper has demonstrated that the system
design process is NP-complete by a mapping
fiom the Knapsack problem. The implications
are that achieving an optimal design for a
complex system is not likely. It is possible to
design forever without achieving an optimal
solution. Therefore, limits must be set on the
design early in the process. In addition
creation of a computer based design system
will be very difficult. The interesting aspect of
NP-complete algorithms is that it is often quite
easy to find near optimal solutions. Within the
context of product design, optimal is not often
an objective, but rather satisfaction of a
problem statement. Therefore, a solution good
enough to satisfy the customer may be within
reach of a knowledge based design system.
We plan on continuing research in this area by
examining the relationship between algorithms
that solve NP-complete problems and the
system design methodology.

56

7. REFERENCES

[11 M. W. Bemand and R. L. Graham, "The
Shortest Network Problem," Scientific
American, January 1989, pp. 84-89.

121 W.L. Chapman, A.T. Bahill and A.W.
Wymore, Engineering Modeling and Design,
CRC Press Inc., Boca Raton, 1992.

[3] M. Gar9 and D. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Company,
New York, 1979.

[4] R.M. Karp, "Reducibility Among
Combinatorial Problems," Complexiry of
Computer Comptttations, R.E. Miller and J.W.
Thatcher (eds), Plenum Press, New York, pp.
85-103, 1972.

[51 A. W. Wymore, Model-based Systems
Erigrrteering, Boca Raton: CRC Press, 1993

57

