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ABSTRACT 

The system design problem describes the 
process used to translating the need or 
requirements for a system into an actual 
design. It requires selecting components fiom 
a given set and matching the interfaces 
between them. Those that can be connected to 
meet the top level system's input and output 
requirements are tested to see how well they 
meet the system's performance and cost goals. 
We will prove that this system design process 
is NP-complete by restricting the Knapsack 
problem, which is known to be NP-complete, 
to an instance of the system design process 
problem. The results indicate that designing 
optimal systems with deterministic, polynomial 
time procedures is not possible. 

1 INTRODUCTION 

System design is a process of translating or 
mapping the requirements of a system into a 
buildable design. The problem can be 
described in terms of set theory and formally 
described. Discovering the complexity of this 
problem statement is important to realize what 
approach for solution should be used. 

2 NP-COMPLETE PROBLEMS 

NP-complete is the name of a class of 
problems for which there is n o  known efficient 
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algorithm far finding an optimal solution [ 1 J, 
[3]. As the problem size increases, the number 
of steps nectssav to solve the problem 
increases exponentially. Efficient algorithms 
are those whose number of steps increase at 
the rate of a polynomial. 

NP stands for nondeterministic polynomial. 
Mathematicians created a conceptual device 
called a nondeterministic machine to solve 
these problems. A nondeterministic machine 
has an infinite number of processors and two 
stages; a guessing stage and a checking stage. 
Each processor guesses an answer and the 
checker verifies that it is a good answer in 
polynomial time. Because an infinite number 
of processors exist all the guesses are done in 
parallel and the number of operations does not 
combinatorially explode. Of course, tlhis is a 
fantasy machine, but it helps to illustrate the 
fact that a certain set of problems can only be 
solved in polynomial time if one of these 
machines is used. Any algorithm that can solve 
a problem in the class NP is polynomial if run 
on a nondeterministic machine. This is because 
although the amount of work required to solve 
the problem on one machine may inmiease to 
infinity, if'the processors working on ithe 
problem increase to infinity instead, then the 
time to solve the problem will grow only at the 
rate of a polynomial for any single processor. 
There is also a set of problems called "P-hard 
that cannot be solved with a nondeterministic 
machine but are related to Np as shown in 
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Figure I .  These problems are outside the 
scope of this paper. 

3.  THE SYSTEM DESIGN PROCESS 
PROBLEM 

n\ / NP 

(Polynomial ) \ 
A?- 
\ NP-complete . 

NP HARD 

Figure '1 - How NP-complete is related 
to Polynomial and other algorithms. 

Clearly, any polynomial algorithm could still 
use the nondeterministic machine because the 
algorithm could be restricted to one processor. 

NP-complete is a class of problems that can be 
solved on a nondeterministic machine for 
which no known polynomial algorithm exists. 
It has never been proven that a polynomial 
algorithm does not exist - but no one has ever 
found one, and mathematicians do not think 
anyone ever will. One critical feature of all 
NP-complete problems is they can be mapped 
into an instance of each other by using a 
polynomial transformation. If even one of the 
problems in the class NP-complete can be 
shown to have a solution in polynomial time, 
then all of them have a solution. Yet none has 
been found in 30 years of searching by very 
talented people. Thus, it is generally agreed 
that if a problem is shown to be NP-complete, 
then no efficient algorithm for optimally 
solving the problem will ever be found. 

In terms of systems theory, system design can 
be described as stating a set of input, output 
and time restrictions for an overall desired 
system and a series of performance and cost 
measures [2], [SI. For a given set of 
components available to build the system, a 
possible system is configured that satisfies the 
system's input, output and time specifications. 
This system is then tested using some 
predefined test requirement to provide an 
overall system performance index (PI). This 
must exceed a customer provided acceptability 
limit. The cost of the system in terms of time, 
money or other resources is then computed 
into an overall cost index (CI). This CI must 
be less than some customer specified target 
value. 

The systems approach to design can be 
characterized as follows: 

Define I series of potential components Zj that 
constitute the available technology to build the 
desired system. Each Zj has a time index Ti, 

ports provide the means of connecting the 
different components together to form a 
system. The components connect output 
ports, Oj, to input ports, I;, using system 
coupling recipes, SCR, to form a potential 
system, Z@j. Define the overall input to the 
desired system as Io and the overall output of 
the desired system as 0 0 .  For simplicity we 
examine only single input, single output 
systems that are made up of components that 
are single input, single output systems. (See 
Figure 2.) It seems reasonable that if this 
design is NP-complete then the more complex 
multi-input, multi-output design must also be 
NP-complete. 

an input port Ii, and an output port 0;. The 
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Figure 2 - A single input single output 
system. 

The total set of potential systems, Z@j, that 
can be built fiom the components Zj is shown 
in Figure 3. 

Figure 3 - Potential connectivities for a 
series of 7 components. 

These connections can be expressed as a 
directed graph where the individual 
components are nodes and the possible 
connections between ports are the arcs. The 
initial source for the directed graph is the 
system input port, Io, and the initial target (or 
sink) for the directed graph is the output port, 
0 0 .  Let the length of each arc represent the 
cost of connecting the two components (See 
Figure 4.) To find a potential system design 
we must find a path through a directed graph. 
Because we have restricted our attention to a 
single-input, single-output system components 
the connection between the system input and 
output is a path. If we had allowed multi- 
input, multi-output system components then it 
would be possible to obtain a subgraph instead 
of a path. Finding a subgraph within a network 
is also NP-complete, but we will not examine 
that problem in this paper. 

shortest path through the graph can also be 
accomplished in polynomial time. The problem 
is that system design is not simply solving for 
one constraint such as the least cost. In 
addition a system must be found that: has 
maximum performance. Having a minimum 
and a maximum to solve at the same time 
requires tradeoffs as a search for the best 
value is done. This requires much more 
searching especially as the number of options 
increases. 

For a simple path the CI of the system is then 
the sum of the length of the arcs. The resultant 
path is equivalent to one system coupling 
recipe creating a system, Z@j. For the route in 
Figure 5 the system coupling recipe is 

SCR={(l0,Tl23),(0123,1124), 
(0 1Z4,I 1z5),(0 IZ5,Oo)) 

This means that the system input, Io, is 
connected to component 23 input port 1. 
System component 23 output port 1 is 
connected to system component 2 4  input port 
1, and so on. After the system is coupled it is 
tested per thle requirements to obtain the PI. 

Figure 4 .. A directed graph of the 
connectivities shown above. 

Finding a path through a directed graph can be 
accomplished in polynomial time. Finding the 
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coupled by an SCR to create an overall system 
Z@j which has associated measures PIj and 

the set of possible components that can be 
connected per an SCR. Let U%@ be the 

CIj. Let K=PIj and B=CIj. Let U=& which is 

subset of components selected fiom Zi by 
means of the SCR to form Z@. Each 
component uk=Z, has an associated cost that 

Figure 5 - One possible route through 
the directed graph above. 

This process is how designs are created. An 
engineer finds components that satisfy the 
necessary input and output requirements and 
creates an interconnection of these parts to 
satisfy the performance and cost requirements. 
Several different systems (concepts, 
alternatives, models or prototypes) are often 
considered before a selection of the best 
possible is determined based on some tradeoff 
study. To guarantee a system is optimal would 
require testing all of the possible 
configurations. 

4. THE SYSTEM DESIGN PROBLEM IS 
l"-COMPLETE 

To illustrate NP-completeness we will now 
restrict the Knapsack problem to the systems 
design process problems described in the 
sections above. 

It was proven by Karp that the Knapsack 
problem is NP-complete (Karp, 1972). It is 
formally described below. 

Instance: A finite set U, a "size" s(u) E 2' and 
a "value" v(u) E 2' for each U E U, a size 
constraint B E Z', and a value goal K E 2'. 

Question. Is there a subset U' E U such that 

contributes to the CI. Let s(u)=cost(Z). Each 
component uk=q has an associated value that 
can be measured by the test requirement that 
contributes to the PI. Let v(u)=value(Z). 
Based on the acceptability criteria, specified 
by the customer, the cost constraints are 
defined and so are the minimum acceptable 
performance criteria. 

The values of each component, Zi, are 
combined into a composite performance 
measure, PIj. There are many ways the values 
can be obtained. The simplest is a linear 
combination. Any other continuous, 
monotonically increasing function would be 
harder to solve and thus require even more 
computer time. If we restrict the system 
design process problem to performance 
measures that combine linearly, and to cost 
measures that combine linearly, then 

then if we can find a Plj and CIj using a 
polynomial algorithm such that 

PIj>PIo and CIj<Cb 

then we have solved the system design 
problem. Hence, if we can solve the system 
design process problem then we can solve the 
Knapsack problem, but we know the 
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Knapsack problem to be NP-complete, 
therefore the system design process problem is 
NP-complete also. Figure 6 gives a summary 
of the mapping fiom the Knapsack Problem to 
the System Design Problem. 

Showing that the Knapsack Problem can be 
reduced to the System Design Process 
Problem is sufficient for proving NP- 
Completeness because if a solution for the 
System Design Process problem was available 
we could use it to solve the Knapsack and 
hence all NP-complete problems. 

'bapsack Svstem Desim Problem 
a finite set U + z  
a subset U' + z @  
a "size" s(u) + cost(2) 
a "value" v(u) + value(Z) 
a size constraint B + CIj. 
'a value goal K + Plj 
1 C S ( U ) I B  + CCOSt(Z,) = czj 
' U  € Ut Zi EZ$, 

Figure 6. A summary of the mapping. 

5 .  IMPLICATIONS 

The implication of the system design problem 
being NP-complete is that it is unlikely a 
computer will ever be created that can 
perform the design of a complex system better 
than a human. Subsets of the entire design 
process, such as routing and checking 
interfaces, are done better by computers now, 
however no computer algorithm exists to 
create even a simple automobile, factory or 
personal computer. The creation of a system is 
as much art as it is science, because the 
combinatorics involved require original 

solutions rather than fixed algorithms) for 
solving the problem. 

Once more complex issues of individual 
creativity and adjusting for perceived 
customer wants, rather than those that are 
accurately expressed, are considered, it 
becomes evem more obvious that a totally 
automated design system is impossible. 
Research must f m s  on the human in the loop 
design solution as the only feasible approach 
to solving the System Design Process 
problem. 

Most design problems are Continuous 
Improvement because most design is redesign. 
A feasible solution exists, but it is not optimal. 
Improvements are available and often not very 
hard to find. The performance of the system 
improves quickly at first, but optimality is hard 
to achieve. Eventually it is not worth the cost 
of the extra resources to improve the 
performance. See Figure 7. 

Perform- 
ance 

R o r o m s  

Figure 7- Continuous Improvement . 

There are many design cases where a feasible 
solution does not already exist, but it is not a 
challenge to find one. We call these Original 
Innovative designs. It is original because no 
prior feasible solution exists that will be 
incrementally improved. This type of design 
requires innovation, because the initial feasible 
solution created will not be close to optimal 
without an innovative design that creates the 
feasible solution near the optimum. When the 
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designers are g’lven a chance to start fiom 
scratch and design a new system then they are 
performing an original design. 

The final type of design is called Breakthrough 
design. No known or easily obtainable feasible 
solution exists or has ever existed. Only a 
breakthrough in science or engineering will 
create a feasible solution. Resources are 
expended at an incredible rate with no 
improvement at all. Ifthe project were 
stopped half way through the design effort 
there would be nothing to show for all the 
money spent. Finally a breakthrough occurs 
and performance improves rapidly. See Figure 
8. 

Breakthrough Design Model 

Pcrtorm- 0.6 

0.2 
0 
0 2 7 m. cv q m q w q U, 

v cv m w 
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Figure 8 - The Breakthrough design. 

The implications for the system design process 
are clear. Different approaches must be used 
when a feasible system is at hand versus when 
one is not easily obtainable. The Continuous 
Improvement problem will have a different 
system design process than that for Original 
Innovative design or for Breakthrough 
designs. None of the methods presented to 
approach these different design problems will 
guarantee optimality, but good solutions can 
be obtained for them all. 

If it is so difficult to obtain optimality then one 
might ask why are there so many good 
systems? The answer lies within the solution 

techniques of NP-complete problems. Even 
the most difficult problems in this class have 
algorithms to obtain good solutions (that is, a 
solution within a few percent of a theoretical 
optimal when it is possible to compute) with 
relatively simple polynomial algorithms. The 
solution techniques applied to solve these 
problems (such as the Traveling Salesman 
Problem, Knapsack problem, maximum path 
through a network, minimum test collection, 
graph 3-colorability, etc.) to obtain good 
solutions can also be applied (and have been 
applied, knowingly or not) to the system 
design process. This provides a mechanism to 
analyze the tools and techniques of design. 

We are now investigating the various methods 
of solving NP-complete problems and using 
these NP-complete algorithms to solve design 
case studies. 

6.  SUMMARY 

This paper has demonstrated that the system 
design process is NP-complete by a mapping 
fiom the Knapsack problem. The implications 
are that achieving an optimal design for a 
complex system is not likely. It is possible to 
design forever without achieving an optimal 
solution. Therefore, limits must be set on the 
design early in the process. In addition 
creation of a computer based design system 
will be very difficult. The interesting aspect of 
NP-complete algorithms is that it is often quite 
easy to find near optimal solutions. Within the 
context of product design, optimal is not often 
an objective, but rather satisfaction of a 
problem statement. Therefore, a solution good 
enough to satisfy the customer may be within 
reach of a knowledge based design system. 
We plan on continuing research in this area by 
examining the relationship between algorithms 
that solve NP-complete problems and the 
system design methodology. 
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