
THE SYSTEM DESIGN PROBLEM IS NP-COMPLETE

William L. Chapman
Hughes Aircraft Company

Jerzy Rozenblit
A. Terry Bahill

University of Arizona

ABSTRACT. System design is the process
used to transfer the need for a system into an
actual production unit. It requires selecting
components from a given set and matching the
interfaces between them. Those that can be
connected to meet the top level system's input
and output requirements are tested to see how
well they meet the system's performance and
cost goals. We will prove that this system
design process is NP-complete. This will be
done by restricting the Knapsack problem,
which is known to be NP-complete, to an
instance of the system design process problem.
The implications of this are that designing
optimal systems with deterministic,
polynomial time procedures is not possible.
However, designing near optimal systems is
possible and even likely.

NP-COMPLETENESS

NP-complete is the name of a class of problems
for which there is no known efficient algorithm
for finding an optimal solution (Garey and
Johnson, 1979),(Bern and Graham, 1989). As the
problem size increases, the number of steps
necessary to solve the problem increases
exponentially. Efficient algorithms are those
whose number of steps increase at the rate of a
polynomial.

NP stands for nondeterministic polynomial. A
nondeterministic machine has an infinite number
of processors and two stages; a guessing stage
and a checking stage. Each processor guesses an
answer and the checker verifies that it is a good
answer in polynomial time. Because an infinite
number of processors exist all the guesses are
done in parallel and the number of operations
does not combinatorially explode. Of course, this
is a fantasy machine created by a mathematician,
but it helps to illustrate the fact that a certain set
of problems can only be solved in polynomial
time if one of these machines is used. Any
algorithm that can solve a problem in the class NP
is polynomial if run on a nondeterministic
machine. This is because although the amount of
work required to solve the problem on one
machine may increase to infinity, if the processors
working on the problem increase to infinity
instead, then the time to solve the problem will
grow only at the rate of a polynomial. There is
also a set of problems called NP-hard that cannot
be solved with a nondeterministic machine but are
related to NP as shown in Figure 1.

0-7803-2129-4/94 $3.00 0 1994 IEEE

i Polynomial

NP

/ I

NP HARD

Figure 1 - How NP-complete is related to
Polynomial algorithms.

Clearly, any polynomial algorithm could still use
the nondeterministic machine because the
algorithm could be restricted to one processor.

NP-complete is a class of problems that can be
solved on a nondeterministic machine for which
no known polynomial algorithm exists. It has
never been proven that a polynomial algorithm
does not exist - its just that no one has ever found
one. One critical feature of all NP-complete
problems is they can be mapped into an instance
of each other by using a polynomial
transformation. If even one of the problems in the
class NP-complete can be shown to have a
solution in polynomial time, then all of them have
a solution. Yet none has been found in 30 years
of searching by very talented people. Thus, it is
generally agreed that if a problem is shown to be
NP-complete, then no efficient algorithm for
optimally solving the problem will ever be found.

THE SYSTEM DESIGN PROCESS

In terms of systems theory, system design can be
described as stating a set of input, output and
time restrictions for an overall desired system and
a series of performance and cost measures

(Chapman, Bahill, and Wymore, 1992),
(Wymore, 1993). For a given set of components
available to build the system, a possible system is
configured that satisfies the system's input, output
and time specifications. This system is then tested
using some predefined test requirement to
provide an overall system performance index
(PI). This must exceed a customer provided
acceptability limit. The cost of the system in
terms of time, money or other resources is then
computed into an overall cost index (CI). This C1
must be less than some customer specified target
value.

The systems approach to design can be
characterized as follows:

Define a series of potential components Zi that
constitute the available technology to build the
desired system. Each 2, has a time index Ti, an
input port 4, and an output port Oi. The ports
provide the means of connecting the devices
together to form a system. The components
connect output ports, Oi, to input ports, Ii, using
system coupling recipes, SCR, to form a potential
system, Z@j. Define the overall input to the
desired system as Io and the overall output of the
desired system as 00 . For simplicity we examine
only single input, single output systems that are
made up of components that are single input,
single output systems. (See Figure 2.) It seems
reasonable that if this design is NP-complete then
the more complex multi-input, multi-output
design must also be NP-complete.

outputs t-
Figure 2 - A single input single output
system.

1881

The total set of potential systems, Z@j, that can
be built from the components Zi is shown in
Figure 3.

4 LL" / . I -
" r I ' I

\ \

Figure 3 - Potential connectivities for a
series of 7 components available to map the
input, Io, to the output, 00, via each
component's output port (on the right) to
an other's input port (on the left).

These connections can be expressed as a directed
graph where the individual components are nodes
and the possible connections between ports are
the arcs. The initial source for the directed graph
is the system input port, Io, and the initial target
(or sink) for the directed graph is the output port,
0 0 . Let the length of each arc represent the cost
of connecting the two components (See Figure
4.) To find a potential system design we must find
a path through a directed graph. Because we have
restricted our attention to a single-input, single-
output system components the connection
between the system input and output is a path. If
we had allowed multi-input, multi-output system
components then it would be possible to obtain a
subgraph instead of a path. Finding a subgraph
within a network is also NP-complete, but we will
not examine that problem in this paper.

Finding a path through a directed graph can be
accomplished in polynomial time. Finding the
shortest path through the graph can also be
accomplished in polynomial time. The problem is
that system design is not simply solving for one
constraint such as the least cost. In addition a

system must be found that has maximum
performance. Having a minimum and a maximum
to solve at the same time requires tradeoffs as a
search for the best value is done. This requires
much more searching especially as the number of
options increases.

For a simple path the CI of the system is then the
sum of the length of the arcs. The resultant path
is equivalent to one system coupling recipe
creating a system, Z@j. For the route in Figure 5
the system coupling recipe is

SCR={ (I o , I ~ Z ~) , (O ~ Z ~ , I ~ Z ~) ,
(0 1z4,I 1z5),(0 lZ5,Oo))

This means that the system input, Io, is connected
to component 23 input port 1. System
component 23 output port 1 is connected to
system component 24 input port 1, and so on.
M e r the system is coupled it is tested per the
requirements to obtain the PI.

z1 22 25

Figure 4 - A directed graph of the
connectivities shown above.

1882

z1 22 25 C s (u) < - B and C v (u) > K

0
27

Figure 5 - One possible route through the
directed graph above.

This process is how designs are created. An
engineer finds components that satisfjr the
necessary input and output requirements and
creates an interconnection of these parts to satisfjr
the performance and cost requirements. Several
different systems (concepts, alternatives, models
or prototypes) are often considered before a
selection of the best possible is determined based
on some tradeoff study. To guarantee a system is
optimal would require testing all of the possible
configurations.

SYSTEM DESIGN IS NP-COMPLETE

To illustrate NP-completeness we will now
restrict the Knapsack problem to the systems
design process problems described in the sections
above.

It was proven by Karp that the Knapsack problem
is NP-complete (Karp, 1972). It is formally
described below.

Instance: A finite set U, a "size" s(u) E Z+ and a
"value" v(u) E Z+ for each U E U, a s i
constraint B E Z+, and a value goal K E Z+.

Question: Is there a subset U' c U such that

We have defined the system components as
coupled by an SCR to create an overall system
Z@j which has associated measures PIj and CIj.
Let K=PIj and B=CIj. Let U=Z, which is the set
of possible components that can be connected per
an SCR. Let U'=Z@ be the subset of components
selected from Zi by means of the SCR to form
Z@. Each component uk=& has an associated
cost that contributes to the CI. Let s(u)=cost(Z).
Each component uk=Z, has an associated value
that can be measured by the test requirement that
contributes to the PI. Let v(u)=value(Z). Based
on the acceptability criteria, specified by the
customer, the cost constraints are defined and so
are the minimum acceptable performance criteria.

The values of each component, Zi, are combined
into a composite performance measure, PIj. There
are many ways the values can be obtained. The
simplest is a linear combination. Any other
continuous, monotonically increasing hnction
would be harder to solve and thus require even
more computer time. If we restrict the system
design process problem to performance measures
that combine linearly, and to cost measures that
combine linearly, then

Cvalue(Zi) = PIj and ccost(Zi) = CIj
Zi d @ j Zi EZ@ j

then if we can find a PIj and CIj using a
polynomial algorithm such that

then we have solved the system design problem.
Hence, if we can solve the system design process
problem then we can solve the Knapsack
problem, but we know the Knapsack problem to
be NP-complete, therefore the system design

process problem is NP-complete also. Figure 6
gives a summary of the mapping from the
Knapsack Problem to the System Design
Probelm.

~ ~~

Knapsack Problem System Design Problem
a finite set U - + z
a subset U' + Z@
a "size" Nu) -+ cost(2)
a "value" v(u) -+ value(Z)
a she constraint B -+ CIj.
a value goal K + PIj

c s (u) I B + cmt(.q)=crj
U €U' Zi d @ j

p (u) 2 K + Cvalu$z,) = H,
U €U' Zi a@j

Figure 6. A summary of the mapping.

IMPLICATIONS

The implication of the system design problem
being NP-complete is that it is unlikely a
computer will ever be created that can perform
the design of a complex system better than a
human. Subsets of the entire design process, such
as routing and checking interfaces, are done
better by computers now, however no computer
algorithm exists to create even a simple
automobile, factory or personal computer. The
creation of a system is as much art as it is science,
because the combinatorics involved require
original solutions rather than fixed algorithms for
solving the problem.

SUMMARY

This paper has demonstrated that the system
design process is NP-complete by a mapping
from the Knapsack problem. The implications are

that achieving an optimal design for a complex
system is not likely. It is possible to design
forever without achieving an optimal solution.
Therefore, limits must be set on the design early
in the process. In addition creation of a computer
based design system will be very difficult. The
interesting aspect of NP-complete algorithms is
that it is often quite easy to find near optimal
solutions. Within the context of product design,
optimal is not often an objective, but rather
satisfaction of a problem statement. Therefore, a
solution good enough to satisf) the customer may
be within reach of a knowledge based design
system. We plan on continuing research in this
area by examining the relationship between
algorithms that solve NP-complete problems and
the system design methodology.

REFERENCES

M. W. Bernand and R. L. Graham (1989), "The
Shortest Network Problem," Scient@ American,
Jan~ary 1989, pp. 84-89.

W.L. Chapman, A.T. Bahill and A.W. Wymore
(1 992), Engineering Modeling and Design, CRC
Press Inc., Boca Raton.

M. Garey and D. Johnson (1979), Computers a d
Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Company,
New York.

R.M. Karp (1972), "Reducibility Among
Combinatorial Problems," Complexity of
Computer Computations, R.E. Miller and J.W.
Thatcher (eds), Plenum Press, New York, pp. 85-
103.

A. W. Wymore (1993), Model-based Systems
Engineering, Boca Raton: CRC Press.

1884

