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ABSTRACT. System design is the process 
used to transfer the need for a system into an 
actual production unit. It requires selecting 
components from a given set and matching the 
interfaces between them. Those that can be 
connected to meet the top level system's input 
and output requirements are tested to see how 
well they meet the system's performance and 
cost goals. We will prove that this system 
design process is NP-complete. This will be 
done by restricting the Knapsack problem, 
which is known to be NP-complete, to an 
instance of the system design process problem. 
The implications of this are that designing 
optimal systems with deterministic, 
polynomial time procedures is not possible. 
However, designing near optimal systems is 
possible and even likely. 

NP-COMPLETENESS 

NP-complete is the name of a class of problems 
for which there is no known efficient algorithm 
for finding an optimal solution (Garey and 
Johnson, 1979),(Bern and Graham, 1989). As the 
problem size increases, the number of steps 
necessary to solve the problem increases 
exponentially. Efficient algorithms are those 
whose number of steps increase at the rate of a 
polynomial. 

NP stands for nondeterministic polynomial. A 
nondeterministic machine has an infinite number 
of processors and two stages; a guessing stage 
and a checking stage. Each processor guesses an 
answer and the checker verifies that it is a good 
answer in polynomial time. Because an infinite 
number of processors exist all the guesses are 
done in parallel and the number of operations 
does not combinatorially explode. Of course, this 
is a fantasy machine created by a mathematician, 
but it helps to illustrate the fact that a certain set 
of problems can only be solved in polynomial 
time if one of these machines is used. Any 
algorithm that can solve a problem in the class NP 
is polynomial if run on a nondeterministic 
machine. This is because although the amount of 
work required to solve the problem on one 
machine may increase to infinity, if the processors 
working on the problem increase to infinity 
instead, then the time to solve the problem will 
grow only at the rate of a polynomial. There is 
also a set of problems called NP-hard that cannot 
be solved with a nondeterministic machine but are 
related to NP as shown in Figure 1. 
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Figure 1 - How NP-complete is related to 
Polynomial algorithms. 

Clearly, any polynomial algorithm could still use 
the nondeterministic machine because the 
algorithm could be restricted to one processor. 

NP-complete is a class of problems that can be 
solved on a nondeterministic machine for which 
no known polynomial algorithm exists. It has 
never been proven that a polynomial algorithm 
does not exist - its just that no one has ever found 
one. One critical feature of all NP-complete 
problems is they can be mapped into an instance 
of each other by using a polynomial 
transformation. If even one of the problems in the 
class NP-complete can be shown to have a 
solution in polynomial time, then all of them have 
a solution. Yet none has been found in 30 years 
of searching by very talented people. Thus, it is 
generally agreed that if a problem is shown to be 
NP-complete, then no efficient algorithm for 
optimally solving the problem will ever be found. 

THE SYSTEM DESIGN PROCESS 

In terms of systems theory, system design can be 
described as stating a set of input, output and 
time restrictions for an overall desired system and 
a series of performance and cost measures 

(Chapman, Bahill, and Wymore, 1992), 
(Wymore, 1993). For a given set of components 
available to build the system, a possible system is 
configured that satisfies the system's input, output 
and time specifications. This system is then tested 
using some predefined test requirement to 
provide an overall system performance index 
(PI). This must exceed a customer provided 
acceptability limit. The cost of the system in 
terms of time, money or other resources is then 
computed into an overall cost index (CI). This C1 
must be less than some customer specified target 
value. 

The systems approach to design can be 
characterized as follows: 

Define a series of potential components Zi that 
constitute the available technology to build the 
desired system. Each 2, has a time index Ti, an 
input port 4, and an output port Oi. The ports 
provide the means of connecting the devices 
together to form a system. The components 
connect output ports, Oi, to input ports, Ii, using 
system coupling recipes, SCR, to form a potential 
system, Z@j. Define the overall input to the 
desired system as Io and the overall output of the 
desired system as 00 .  For simplicity we examine 
only single input, single output systems that are 
made up of components that are single input, 
single output systems. (See Figure 2.) It seems 
reasonable that if this design is NP-complete then 
the more complex multi-input, multi-output 
design must also be NP-complete. 

outputs t- 
Figure 2 - A single input single output 
system. 
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The total set of potential systems, Z@j, that can 
be built from the components Zi is shown in 
Figure 3. 
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Figure 3 - Potential connectivities for a 
series of 7 components available to map the 
input, Io, to the output, 00, via each 
component's output port (on the right) to 
an other's input port (on the left). 

These connections can be expressed as a directed 
graph where the individual components are nodes 
and the possible connections between ports are 
the arcs. The initial source for the directed graph 
is the system input port, Io, and the initial target 
(or sink) for the directed graph is the output port, 
0 0 .  Let the length of each arc represent the cost 
of connecting the two components (See Figure 
4.) To find a potential system design we must find 
a path through a directed graph. Because we have 
restricted our attention to a single-input, single- 
output system components the connection 
between the system input and output is a path. If 
we had allowed multi-input, multi-output system 
components then it would be possible to obtain a 
subgraph instead of a path. Finding a subgraph 
within a network is also NP-complete, but we will 
not examine that problem in this paper. 

Finding a path through a directed graph can be 
accomplished in polynomial time. Finding the 
shortest path through the graph can also be 
accomplished in polynomial time. The problem is 
that system design is not simply solving for one 
constraint such as the least cost. In addition a 

system must be found that has maximum 
performance. Having a minimum and a maximum 
to solve at the same time requires tradeoffs as a 
search for the best value is done. This requires 
much more searching especially as the number of 
options increases. 

For a simple path the CI of the system is then the 
sum of the length of the arcs. The resultant path 
is equivalent to one system coupling recipe 
creating a system, Z@j. For the route in Figure 5 
the system coupling recipe is 

SCR={ ( I o , I ~ Z ~ ) , ( O ~ Z ~ , I ~ Z ~ ) ,  
(0 1z4,I 1z5),(0 lZ5,Oo)) 

This means that the system input, Io, is connected 
to component 23 input port 1. System 
component 23 output port 1 is connected to 
system component 24 input port 1, and so on. 
M e r  the system is coupled it is tested per the 
requirements to obtain the PI. 

z1 22  25 

Figure 4 - A directed graph of the 
connectivities shown above. 

1882 



z1 22 25 C s ( u ) < - B  and C v ( u ) > K  

0 
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Figure 5 - One possible route through the 
directed graph above. 

This process is how designs are created. An 
engineer finds components that satisfjr the 
necessary input and output requirements and 
creates an interconnection of these parts to satisfjr 
the performance and cost requirements. Several 
different systems (concepts, alternatives, models 
or prototypes) are often considered before a 
selection of the best possible is determined based 
on some tradeoff study. To guarantee a system is 
optimal would require testing all of the possible 
configurations. 

SYSTEM DESIGN IS NP-COMPLETE 

To illustrate NP-completeness we will now 
restrict the Knapsack problem to the systems 
design process problems described in the sections 
above. 

It was proven by Karp that the Knapsack problem 
is NP-complete (Karp, 1972). It is formally 
described below. 

Instance: A finite set U, a "size" s(u) E Z+ and a 
"value" v(u) E Z+ for each U E U, a s i  
constraint B E Z+, and a value goal K E Z+. 

Question: Is there a subset U' c U such that 

We have defined the system components as 
coupled by an SCR to create an overall system 
Z@j which has associated measures PIj and CIj. 
Let K=PIj and B=CIj. Let U=Z, which is the set 
of possible components that can be connected per 
an SCR. Let U'=Z@ be the subset of components 
selected from Zi by means of the SCR to form 
Z@. Each component uk=& has an associated 
cost that contributes to the CI. Let s(u)=cost(Z). 
Each component uk=Z, has an associated value 
that can be measured by the test requirement that 
contributes to the PI. Let v(u)=value(Z). Based 
on the acceptability criteria, specified by the 
customer, the cost constraints are defined and so 
are the minimum acceptable performance criteria. 

The values of each component, Zi, are combined 
into a composite performance measure, PIj. There 
are many ways the values can be obtained. The 
simplest is a linear combination. Any other 
continuous, monotonically increasing hnction 
would be harder to solve and thus require even 
more computer time. If we restrict the system 
design process problem to performance measures 
that combine linearly, and to cost measures that 
combine linearly, then 

Cvalue(Zi) = PIj and ccost(Zi) = CIj 
Zi d @ j  Zi EZ@ j 

then if we can find a PIj and CIj using a 
polynomial algorithm such that 

then we have solved the system design problem. 
Hence, if we can solve the system design process 
problem then we can solve the Knapsack 
problem, but we know the Knapsack problem to 
be NP-complete, therefore the system design 



process problem is NP-complete also. Figure 6 
gives a summary of the mapping from the 
Knapsack Problem to the System Design 
Probelm. 

~ ~~ 

Knapsack Problem System Design Problem 
a finite set U - + z  
a subset U' + Z@ 
a "size" Nu) -+ cost(2) 
a "value" v(u) -+ value(Z) 
a she constraint B -+ CIj. 
a value goal K + PIj 

c s ( u )  I B + cmt(.q)=crj 
U €U'  Zi d @ j  

p ( u )  2 K + Cvalu$z,) = H, 
U €U' Zi a@j 

Figure 6. A summary of the mapping. 

IMPLICATIONS 

The implication of the system design problem 
being NP-complete is that it is unlikely a 
computer will ever be created that can perform 
the design of a complex system better than a 
human. Subsets of the entire design process, such 
as routing and checking interfaces, are done 
better by computers now, however no computer 
algorithm exists to create even a simple 
automobile, factory or personal computer. The 
creation of a system is as much art as it is science, 
because the combinatorics involved require 
original solutions rather than fixed algorithms for 
solving the problem. 

SUMMARY 

This paper has demonstrated that the system 
design process is NP-complete by a mapping 
from the Knapsack problem. The implications are 

that achieving an optimal design for a complex 
system is not likely. It is possible to design 
forever without achieving an optimal solution. 
Therefore, limits must be set on the design early 
in the process. In addition creation of a computer 
based design system will be very difficult. The 
interesting aspect of NP-complete algorithms is 
that it is often quite easy to find near optimal 
solutions. Within the context of product design, 
optimal is not often an objective, but rather 
satisfaction of a problem statement. Therefore, a 
solution good enough to satisf) the customer may 
be within reach of a knowledge based design 
system. We plan on continuing research in this 
area by examining the relationship between 
algorithms that solve NP-complete problems and 
the system design methodology. 

REFERENCES 

M. W. Bernand and R. L. Graham (1989), "The 
Shortest Network Problem," Scient@ American, 
Jan~ary 1989, pp. 84-89. 

W.L. Chapman, A.T. Bahill and A.W. Wymore 
(1 992), Engineering Modeling and Design, CRC 
Press Inc., Boca Raton. 

M. Garey and D. Johnson (1979), Computers a d  
Intractability: A Guide to the Theory of NP- 
Completeness, W.H. Freeman and Company, 
New York. 

R.M. Karp (1972), "Reducibility Among 
Combinatorial Problems," Complexity of 
Computer Computations, R.E. Miller and J.W. 
Thatcher (eds), Plenum Press, New York, pp. 85- 
103. 

A. W. Wymore (1993), Model-based Systems 
Engineering, Boca Raton: CRC Press. 

1884 


