
Decision Support, Planning, and Data Management of Complex,
Discrete Event Systems

F. Bretschneider, C. Kocourek, S. Mittrach
Siemens AG, Corporate Research and Development

Otto-Hahn-Ring 6, 81739 Munich, Germany

J. Rozenblit.
Department of Electrical and Computer Engineering

The University of Arizona
Tucson, AZ 85721, U.S.A

Abstract

Complex soflware environments, such as CAD sys-
tems, consist of many modules which are often created,
maintained, and executed separately. When slick sys-
tems are invoked, appropriate execution sequences and
parameters must be determined for each modiile so that
desired results are produced. The task of planning, ex-
ecuting, and supervising the CAD environments has
become so complex that it itself requires advanced com-
puter support facilities. This paper presents a sophisti-
cated new design process management system (DPMS)
that helps 20 manage globally the design process i n
order t o achieve adequate (if not optimal) design re-
sults. It thus makes design systems more autonomous
by freeing resources for the critical design steps. The
architecture of the system, as well as its data man-
agement, decision support, and planning facilities ure
described in detail and a prototype system is presented.
The system has been used in the electronic design au-
tomation area. However, the concepts described here
are applicable t o other design domains as well.

1 Introduction

Complex design projects, such as designing systems
containing hardware (HW) and software (SW) com-
ponents, depend heavily on advanced computer sup-
port. In the last decade an array of computer-based
design tools have been developed. Usually, such tools
can be applied to only one aspect of the overall de-
sign task (e.g., routing or logic synthesis). Thus, the

the ESPRIT project 7364 JESSI-Common-Frame
'This research has been partially funded by the EC within

0-8186-4020-0/93 $03.00 0 1993 IEFX

overall management of the design process cannot be
supported. The management tasks include the moni-
toring of the process, ensuring the proper sequencing
of the tool invocations, controlling the allocation of
resources (personnel, machines, etc.), and supervising
the fulfilment of design constraints. Due to frequent
changes of design methods (caused by rapid techno-
logical advances), the growing object complexity, and
the increasing pressure on shortening the design cycle,
the task of organizing the design process has reached
the limit of being manageable without the computer
support. The consequences are: cost and time over-
runs, erroneous design results, or failures to design
a system. This paper presents a step towards mak-
ing design systems more autonomous by introducing
a design process management system (DPMS). The
D P M S helps to determine appropriate sequences of
design steps solving a given design problem. To this
end, it determines an initial plan, estimates the conse-
quences and design results, and then makes the neces-
sary adaptations and modifications of design activities
in close cooperation with the designer. Once a plan
has been set up, it can be executed and supervised
automatically. Replanning is invoked whenever the
plan significantly differs from the actual state of the
project.

During the plan construction, decisions must be
made among alternate ways to pursue the design goal.
This is done by a special decision support subsystem
which uses knowledge provided by various knowledge
sources (descriptions of design tools and partial pro-
cesses, design experience, etc.). A data management
system provides access to these knowledge sources.

The article is structured as follows: after discussing
some related research in Section 2, we present the

245

architecture of the DPMS system. In Section 4, we
look at design process modelling, design flow manage-
ment, decision support, data management, and plan-
ning subsystems in more detail. Our prototype system
is described in Section 5 . We close by looking a t future
research goals and possible extensions to the current
prototype.

2 Related Work

Two basic approaches towards solving the design
management problem are discussed in the literature:
a) the use of a static process model that globally de-
fines the dependencies among design steps. The model
is created before a design process begins. It controls
the sequence of steps in subsequent design projects
[19]; [14], [12], [l], and b) design steps are described
independently of each other by defining their functions
and the conditions for activating them. These local de-
scriptions are evaluated dynamically during the course
of a design project to construct the sequence of re-
quired design tool invocations [15] [6], [9].

Procedural models or data flow graphs were used
to implement the first approach. Procedural mod-
els require a fixed control flow built into the algo-
rithm. They cannot easily express activities the order
of which is determined dynamically. Data flow graphs
lack the modeling power to represent complex rela-
tions among design activities, such as dynamic con-
straints that cannot be anticipated before earlier de-
sign stages have been completed (see Section 3). The
second approach easily causes an unpredictable be-
havior of the overall design system. Small changes
to the design step models can have unforeseen conse-
quences for the overall process. Maintaining consis-
tency among the models is complicated. Thus process
data cannot be changed easily. Conflicts among de-
sign steps are only detected dynamically. This makes
it difficult to devise conflict resolution strategies in ad-
vance. This is why more and more researchers apply
mixed process models. They either differentiate be-
tween statically defined design tasks and dynamically
controlled design activities [SI or do not use any a pri-
ori process descriptions at all [7]. Dynamic constraints
are merely recorded during the design process. On
this level, it is not possible to provide guidance for the
designer, to plan or to optimize design sequences in
advance. In [5], the design process is also decomposed
into design tasks. Task schemas are specified as de-
pendency graphs between abstractions of design tools
and data. A design problem is first separated into
tasks by the designer or a design adviser [13]. Then,

I

I
I
I I

I

Management& i 1 I
I J i Organization : I

layer 1 Coordination layer Execution layer

Figure 1: DPMS Architecture

the task schemas are used to derive design plans for
each task. While the separation of task and process
levels seems beneficial, the use of different modeling
paradigms on these levels is arbitrary.

3 Design Process Management System
- Architecture

The formal basis and implementation of the design
flow management and planning system are thoroughly
described in (31. Here, we propose a conceptual ar-
chitecture of an advanced design process management
system (DPMS) which complements the one already
in place at Siemens AG. The DPMS architecture (Fig-
ure 1) follows the notions of Design Flow Manager,
Task Manager, and the overall Petri net-based for-
mal methodology [3]. The architecture fosters a high
level view of intelligent design support. We briefly de-
scribe its components and their functionality. There
are three basic layers in the system:

1. Management and organization layer, which de-
termines the overall system goal (i.e., design
goal) and supports interaction with the design-
ers via the interface unit. Essentially, this layer
can be used by project management personnel,
corporate officers, and designers/users.

2. Coordinution layer, which supports design task
planning, decision making, diagnostics, and tool
scheduling. This layer interfaces with both the
users and the execution stratum.

3. Ezecution layer, which carries out design actions
determined a t higher levels through the Task

Manager. This layer also monitors the design
process and the state of the system being de-
signed.

These layers are modeled after architectures for
high autonomy systems [18].

As indicated above, the management layer
consists of corporate policy makers and system
users/designers. The coordination layer is centered
around a principal database called Supporting Data
Bases and Methods Bank (SDBMB) (Figure 1). We
envision this database as a collection of tools and pro-
cedures offering several types of design decision mak-
ing. The components of this module are described in
detail in Section 4. Based on this architecture, deci-
sion support is achieved through the following modiiles
and functions:

The Planner’s function is to generate a design pro-
cess flow model and a schedule for executing it (see [3]
for a good summary of planning methods). I t gener-
ates a nominal plan - a pre-planned sequence of de-
sign actions that would normally be executed to realize
the design goal. This process is supported by knowl-
edge about the design goals, constraints, requirements,
as well as by tools and procedures available in the
SDBMB (i.e., the Tool Base, design methodology from
the Methodology Base, and the design traces).

We postulate that the Planner be capable of re-
planning and dynamically updating the design ac-
tions. This can be based on several factors: a) the
re-plan order from the diagnosing component, of the
SDBMB. Re-planning would be necessary if and when
the design process simulation state is significantly dif-
ferent from the actual process execution &ate, b) In-
ference Engines and Optimization Methods may be
used for updating the plan dynamically based on lo-
cally selecting “best” design decisions using design
models, and c) designers can override the plan and
the Design Flow Manager (see below).

The Task Manager is responsible for invoking intli-
vidual tools as directed by the Design Flow Manager.
The Design Flow Manager has the knowledge of the
nominal plan, the current state of the design process,
and the state of the design object on which the process
and the tools operate. As CAD tools are invoked, the
states of the process and design objects are updated.
Optimization and inferencing procedures should sup-
port the Design Flow Manager in its actions at two
levels: reasoning about the design process and reason-
ing about the system being designed.

The Monitor “observes” the progress of both the
design process flow and the design artifact,. It, can
compare the current state with that of the expected

progress based on the simulated data obtained from
the Ernirlator and from the CAD simulators in the
SDBMB. The Emulator executes the design process
model whereas the CAD simulators operate on the
design object model. The Design Flow Manager makes
decisions regarding the progress of the design process
and invocations of various CAD tools. I t may issue a
re-plan order to the planner as well.

We now proceed to discuss the details of design flow
management.

4 Design Process Management Ser-
vices

4.1 Process Models

We found that high level Petri net models can pro-
vide an adequate and intuitive representation of de-
sign process dependencies if properly extended for that
purpose [3]. We therefore based our process modeling
language on the Petri net paradigm.

High Level Petri nets [ll] are directed, bipartite
graphs (consisting of places and transitions) marked
with tokens of various “colors”. Transitions, repre-
senting the active components of a system, execute
(or fire) depending on the existence of certain tokens
on their input places. The firing causes the input
tokens to be removed and new tokens to be created
on the output places. Petri net models are compact
in size and they can clearly express various relations
among process steps and objects (such as sequences,
conflicts, and concurrencies among activities). They
define a formal behavioral semantics based on mark-
ings (i.e., the set of tokens that is present on all places)
and a simple firing rule. The graphical representation
of Petri nets offers an overview of the process and of
its current state. The correct behavior of a Petri net
(with respect to a given specification) can be tested
by simulation and verified to some extent by formal
methods [3], [4].

The basic Petri net paradigm is too restrictive for
modeling design processes. Therefore, extentions in-
clude special decision nodes, various arc types, meth-
ods for accessing and creating sets of tokens, hierar-
chical transitions and places.

Like the process models themselves execution of
the process models is recorded in a Petri net struc-
ture as well, and is called a trace. The transitions of
a trace represent executable design steps, while the
places model data object instances that are used or
created by these design steps. Tokens indicate whether

247

the data objects are valid or not. An important prop-
erty of the traces is that they are acyclic. Petri nets
and traces are described in more detail in [3], [4] [7],
[14] and [17].

4.2 Design Flow Management

Design Flow Manager operates on defined process
models (see 4.1) to control the flow of design, i.e.,
to determine the current design state and the actions
that can be taken next. The design flow manager su-
pervises all contraints among design steps that are de-
fined in the process models. Additional services that
the design flow management can provide are: design
process simulations, gathering of design histary infor-
mation, support of backtracking for the investigation
of design alternatives, automatic restoration of design
data and the enforcement of design policies.

4.3 Design Decision Support (DDS)

Design decisions are required in every phase of the
design process, at both the process model level and
the design artifact level. Here, we focus on the process
model level. DDS supports users in decisions such as
tool selection, design strategy and trade-off analyses.
DDS also supports design planning.

In addition to the existing design flow process mod-
eling techniques, we are introducing other design deci-
sion support concepts. They amalgamate traditional
decision support systems (DSS) [20] and AI tech-
niques.

The ultimate goal of our efforts is to design a de-
sign decision support methodology that can be eas-
ily adapted to changes in the problem domain and to
varying levels of the users’ decision making expertise.
To this end, the core of our DPMS architecture is the
SDBMB database. I t consists of domain-dependent
and independent knowledge sources which support the
operation of the management, coordination, and exe-
cution layers of our system. The data base modules
are summarized below.

The Design Process Model Base contains generic
process models for a design domain, for instance, Petri
Net models as developed by Bretschneider [3]. The
Design Object Model Base represents models under-
lying the components of a design domain. Knowl-
edge representation schemes support the organization
of this database. The CAD Tool Base is a domain de-
pendent library populated with CAD tools. An Ezppcr-
imental Frame Base is is intended to contain generic
simulation experiment templates used in the evalua-
tion of design models [18].

The Design Methodology Base and Technology
Database are intended to store design guidelines, rules,
standard design procedures for a domain, off-the shelf
components and standards.

For the appropriate control of the flow and design
history management, the Design Trace Base/Trace
Selector stores traces as designs are carried out. Ko-
courek [16] suggests a scheme to discard traces as new
or better traces are added to this database. This
scheme underlies a module called a Trace Selector, also
part of the SDBMB.

The Optimization Methods Bank is as a set of math-
ematical optimization procedures for analytical per-
formance and tradeoff studies. The Inference Engines
are expert system shells for the generation and selec-
tion of alternative designs.

In addition to the above modules, we envision
higher level procedures such as Design Knowledge Ac-
quisition Methods - methods for knowledge elicitation,
used to set up the DPMS environment for a domain
specific application; Design Rationale Capture Meth-
ods Bank - a set of procedures for design capture; and
Diagnostics Methods - a set of procedures for design
process and object fault detection and identification.
We imagine this as a support tool, which can assist
in recognizing that an erroneous design state (in the
process and/or design object) has been produced, and
identifying why it has been reached. This is a high
level design support, yet to be clearly defined.

4.4 Planning

Using the information contained in the process
model, the DPMS can ensure that only those tasks
are activated that are applicable to the current de-
sign state. However, a combination of “correct” design
steps can still lead to a situation which makes it im-
possible to achieve the desired design goal. Required
design steps might not be enabled (due to a violation
of constraints earlier in the process or missing design
data), the project might exceed the available resources
(e.g., time, cost), or the generated results may be use-
less since important design requirements are not met.
To avoid these costly problems, designers and project
managers need to be supported by a design planning
facility. Planning services can be provided based on
our process model.

The process model not only describes preconditions
of design steps but it also represents their postcondi-
tions. Therefore, it can be used to simulate design
processes. During simulation, instead of activating
the respective design tasks when firing a transition,
the output, tokens of the transitions are created di-

248

rectly, based on the information contained in the pro-
cess model. Each design process simulation leaves a
trace, just as the “real” execution of the process would
do. Provided that the process model is correct, the
tokens that are produced as a result, of a simulation
run represent design data or design states that would
be created if the simulated process were actually exe-
cuted. The trace of the process simulation can there-
fore be seen as the representation of a plan for creating
the design results from the state in which the simula-
tion was started.

Using automated design process simulation, a
forward-chaining planning technique has been imple-
mented [3]. Starting from the current project state,
a number of applicable design steps are selected, and
their execution is simulated. From the resulting mark-
ings, one proceeds in the same direction, until the de-
sired goal state is reached. Since only abstractions of
design steps are provided in the process model, their
detailed behavior has to be predicted using estima-
tors for the activities. The challenge is to limit the
effort of estimating design results, and yet to be able
to determine a useful plan.

From a Petri net point of view, planning can be seen
as the task of finding sequences of transition firings
that, starting from an initial marking of the net, gener-
ate a new net marking containing a given set of goal to-
kens. One way to solve this problem is to successively
enumerate all reachable markings until the marking
covering the set of goal tokens has been found. This
technique, which corresponds to the state-space plan-
ning approach suggested by Knapp [15] , is very in-
efficient since the number of intermediate markings
is often immense, especially if there exist numerous
concurrently enabled transitions. Traces are a more
efficient technique, since only the enabled transitions
rather than all the intermediate markings have to be
kept. Only slight restrictions to the net topology are
required to guarantee that all possible firing sequences
are found using this approach. The planning technique
is further enhanced by applying the rules annotating
the transitions in the net to select the most, promising
continuations.

Detail design object properties (e.g., the area of a
VLSI circuit) are not usually modeled in the design
process model and therefore need to be predicted by
estimators for the design tools diiring planning. Our
system allows us to declare these estimators so that
they can be automatically activated and chained for
providing (prospective and retrospective) measures to
support planning decisions. After a design plan in the
form of a trace has been determined, activity net de-

scriptions [17] are automatically extracted. Network-
ing techniques can then be applied to determine opti-
mal schedules for the design activities. These identify
the earliest (latest) start and completion times for the
design activities, critical design steps, and optimal re-
source allocations.

4.5 Data and Knowledge Management

A process management system requires data man-
agement facilities. Various types of information about
the system and the state of a process have to be gath-
ered, and must be efficiently retrievable (e.g., design
data, tool data, trace data, knowledge bases for de-
cision support). All data and knowledge should be
managed by a common management system. This
eliminates redundancy and makes the data uniformly
accessible. The data management system is the in-
terface to data bases, file systems, or other storage
mechanisms. It offers facilities for data security, data
persistence, transaction mechanisms, and access con-
trol. In our case, not only design and tool data must be
managed and stored, but also knowledge-based flows
in the form of rules and facts, and decision data in the
form of many knowledge and data bases. The use of
knowledge-based tools, especially design decision sup-
port tools, requires new facilities for representation
and evaluation of knowledge. Here, a solution for the
handling of design knowledge represented in different
forms is suggested. The result is the integration model
for data and knowledge management. This model is
realized by an object oriented data management inter-
face between knowledge-based design tools and an ob-
ject oriented data base management system. This in-
terface extends existing framework data handling ser-
vices. Most of the knowledge-based tools in the de-
sign area use rules or frames to represent their knowl-
edge. They combine artificial intelligence techniques
with conventional programming methods. Object ori-
ented data models provide a good basis for procedu-
ral as well as for frame- and network-like knowledge
representation mechanisms. New features for an ob-
ject oriented data model are necessary to support rule
based mechanisms, to extend knowledge base struc-
turing capabilities, and to handle uncertain and in-
complete knowledge [2].

A class library for all types of data with manage-
ment methods provides a convenient extension of data
representation and data handling services. This object
oriented concept also offers facilities to structure the
data by different criteria, such as design object, net hi-
erarchy level, decision information, or planning aspect.
This data management approach integrates data and

249

knowledge sources. I t offers mechanisms to control,
evaluate, represent, and to access design knowledge.

5 Prototype

The design process management prototype system
has been implemented using OPS83 and the C pro-
gramming languege in the UNIX environment. The
system consists of two parts: the process model cap-
ture component and the design flow management sub-
system.

To create a process model, users invoke a graphi-
cal editor, offering a predefined set of symbols to form
a process net. A checking program automatically su-
pervises the compliance of the process model with the
extended Petri net syntax [3]. A process model can
consist of any number of partial nets which are seman-
tically joined by the checker through the identification
of nodes having the same type and name. After the
process model has been completely defined, the rule
generator is started, which creates OPS83 production
rules [lo] for the process nets. The resulting rule set
is linked together with the flow manager, the design
decision rules ,and the planning rules to provide an
executable design flow for the given process.

The design process management system is capa-
ble of controlling the correct execution of hierarchical
PrT-nets, of invoking the design tools associated with
the net transititons when they are fired, and of provid-
ing restoration and re-creation services for the tokens.
Traces, which can be represented graphically, are col-
lected automatically. The hierarchy of the process net
is exploited to distinguish between partial traces rep-
resenting net executions at different, levels.

The prototype has been applied to various design
processes consisting of a very large number of trace
steps. Apart from a slight delay when activating and
completing a design step (due to the communication
overhead), there is no measiirable performance de-
crease since the evaluation of rule sets and restoration
of design process states is extremely fast. The supe-
rior performance of the system allows us to handle
all graphical requests (such as redrawing of windows)
elegantly through the OPS83 rules.

6 Conclusions and Future Work

In essence, all the concepts, methods, and tech-
niques discussed here are intended to support, design
processes. There is no single, universally accepted ar-
chitecture or framework that can be judged superior

to all other systems. However, it is clear that a set of
concepts is emerging to unify design activities across
teams, tools, and tasks. The DPMS architecture pre-
sented here fosters such concepts. I t amalgamates
many of the tenets of CAD frameworks, knowledge-
based design, and decision support systems. With
an adequate distributed processing support, it can be
placed in a concurrent design environment as well.

Initial design decision support can be provided at
the design process level by incorporating facilities for
design trace recording, retrieval, and selection. Pre-
liminary work towards this objective has been under-
taken by Bretschneider [3] and Kocourek [16]. To real-
ize fully the vision charted in our architecture, a design
object modeling support layer should be embedded in
the system. A decision support system in the form of
optimization procedures for both design process mod-
els and design objects should be added incoroporated
in our system as well. Lastly, sophisticated knowledge
acquisition, learning, and diagnostic modules must be
developed. At each of the above three levels of refine-
ment, the Design Flow Manager, Planner, and other
components must be augmented with additional rea-
soning capabilites.

References

[l] I<. ten Bosch, P. Bingley, and P. van der Wolf,
“Design Flow Management in the NELSIS CAD
Framework”, Proc. 28th Design Automation Con-
ference, IEEE, pp. 711-716, 1991.

[2] B. BOSS, C. Danner, S. Mittrach, “Report on
the Integration Model for Integrated Data and
Knowledge Management Part 1” , SP1 Applied
Framework Research, JCF/FZI/OlJ-OJ/ZS-Feb-
93, ESPRIT Project 7364.

[3] F. Bretschneider, A Process Model f o r Design
Flow Management and Planning, VDI Verlag,
Reihe 9, Nr. 157, 1993.

[4] F. Bretschneider, C. Kopf, H. Lagger, A. Hsu,
E. Wei, “Knowledge Based Design Flow Manage-
ment”, Proc. ICCAD, pp. 350-353, 1990.

[5] J . Brockman and S. Director, “A Schema-Based
Approach to CAD Task Management”, Proceed-
ings of the Third IFIP WG 10.2 Workshop on
Electronic Design Automation Frameworks, Else-
vier Science Publishers, 1992.

[SI M. Bushnell, “VLSI CAD Tool Integration Using
the ULYSSES Environment” , Proc. 29rd Design
Automation Conference, IEEE, pp. 55-61, 1986.

[7] A. Casotto, Automated Design Manugement Us-
ing Traces, Ph.D. Dissertation, University of Cal-
ifornia, Berkeley, 1991.

[SI T. Chiueh and R. Katz, “A History Model for
Managing the VLSI Design Process”, Proc. Inter-
national Conference on Computer-Aided Design,
IEEE, pp. 358-361, 1990.

[9] J . Daniell, and S. Director, “An Object Oriented
Approach to CAD Tool Control within a Design
Framework”, Proc. 2Gtl1 Design Automution Con-
ference, IEEE, pp. 197-202, 1989.

[lo] C. Forgy, The OPS83 User’s Munuul - System
Version 9.0, Production Systems Technologies
Inc, 1993.

[ll] G. Gernich, Predicate / Transition Nets, Springer
Publishing Company, Lecture Notes in Computer
Science 254, pp. 207-247,1987.

[12] P. van den Hamer and M. Treffers, “A Data
Flow Based Architecture for CAD Frameworks”,
Proc. International Conference on Computer-
Aided Design, IEEE, pp. 350-353,1990.

[13] M. Jacome and S. Director, “Design Process
Management for CAD Frameworks”, Proceed-
ings of the 29th Design Automution Conference,
ACMIIEEE, June 1992.

[14] A. di Janni, “A Monitor for Complex CAD Sys-
tems”, Proc. of the 23rd Design Autoiriation Con-
ference, IEEE, pp. 145-151, 1986.

[15] D. Knapp and A. Parker, “A Design Utility Man-
ager: the ADAM Planning Engine”, Proc. t3rd
Design Automation Conference, IEEE, pp. 48-54,
1986.

[16] C. Kocourek, “A Petri Net Based Design Deci-
sion Support System”, Proc. I A S T E D Internu-
tional Conference Applied Modelling and Siniirlu-
tion, 1993.

[17] A. Pagnoni, Project Engineering: Corirputer Ori-
ented Planning und Operutionul Decision Making,
Springer Verlag, Berlin, 1990.

[18] J . W. Rozenblit, “Design for High Autonomy”,
Applied Artijiciul Intelligence vo1.6, pp 1-18,
1992.

[19] D. Siewiorek, D. Guise, W. Birmingham, M.
Hirsch, V. Rao, G. York, “DEMETER Project:
Phase 1 (1984)”, Research Repori CMUCAD-
84-95, SRC-CMU Center for Computer Aided
Design, Carnegie Mellon University, Pittsburgh,
1984.

[20] R. H. Sprague, Jr. and E. D. Carlson, Building Ef-
fective Decision Support Systems, Prentice Hall,
1982.

251

