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Abstract 

Complex soflware environments, such as CAD sys- 
tems, consist of many modules which are often created, 
maintained, and executed separately. When slick sys- 
tems  are invoked, appropriate execution sequences and 
parameters must be determined for  each modiile so that 
desired results are produced. The  task of planning, ex- 
ecuting, and supervising the CAD environments has 
become so complex that it itself requires advanced com- 
puter support facilities. This  paper presents a sophisti- 
cated new design process management system (DPMS) 
that helps 20 manage globally the design process i n  
order t o  achieve adequate (if not optimal) design re- 
sults. It thus makes design systems more autonomous 
by freeing resources for  the critical design steps. The  
architecture of the system, as well as its data man- 
agement, decision support, and planning facilities ure 
described in detail and a prototype system is presented. 
The system has been used in the electronic design au- 
tomation area. However, the concepts described here 
are applicable t o  other design domains as well. 

1 Introduction 

Complex design projects, such as designing systems 
containing hardware (HW) and software (SW) com- 
ponents, depend heavily on advanced computer sup- 
port. In the last decade an array of computer-based 
design tools have been developed. Usually, such tools 
can be applied to  only one aspect of the overall de- 
sign task (e.g., routing or logic synthesis). Thus, the 
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overall management of the design process cannot be 
supported. The management tasks include the moni- 
toring of the process, ensuring the proper sequencing 
of the tool invocations, controlling the allocation of 
resources (personnel, machines, etc.), and supervising 
the fulfilment of design constraints. Due to  frequent 
changes of design methods (caused by rapid techno- 
logical advances), the growing object complexity, and 
the increasing pressure on shortening the design cycle, 
the task of organizing the design process has reached 
the limit of being manageable without the computer 
support. The consequences are: cost and time over- 
runs, erroneous design results, or failures to design 
a system. This paper presents a step towards mak- 
ing design systems more autonomous by introducing 
a design process management system (DPMS). The 
D P M S  helps to  determine appropriate sequences of 
design steps solving a given design problem. To this 
end, it determines an initial plan, estimates the conse- 
quences and design results, and then makes the neces- 
sary adaptations and modifications of design activities 
in close cooperation with the designer. Once a plan 
has been set up, it can be executed and supervised 
automatically. Replanning is invoked whenever the 
plan significantly differs from the actual state of the 
project. 

During the plan construction, decisions must be 
made among alternate ways to pursue the design goal. 
This is done by a special decision support subsystem 
which uses knowledge provided by various knowledge 
sources (descriptions of design tools and partial pro- 
cesses, design experience, etc.). A data  management 
system provides access to these knowledge sources. 

The article is structured as follows: after discussing 
some related research in Section 2, we present the 
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architecture of the DPMS system. In Section 4,  we 
look at design process modelling, design flow manage- 
ment, decision support, data  management, and plan- 
ning subsystems in more detail. Our prototype system 
is described in Section 5 .  We close by looking a t  future 
research goals and possible extensions to the current 
prototype. 

2 Related Work 

Two basic approaches towards solving the design 
management problem are discussed in the literature: 
a) the use of a static process model that globally de- 
fines the dependencies among design steps. The model 
is created before a design process begins. It controls 
the sequence of steps in subsequent design projects 
[19]; [14], [12], [l], and b) design steps are described 
independently of each other by defining their functions 
and the conditions for activating them. These local de- 
scriptions are evaluated dynamically during the course 
of a design project to  construct the sequence of re- 
quired design tool invocations [15] [6], [9]. 

Procedural models or data  flow graphs were used 
to implement the first approach. Procedural mod- 
els require a fixed control flow built into the algo- 
rithm. They cannot easily express activities the order 
of which is determined dynamically. Data flow graphs 
lack the modeling power to  represent complex rela- 
tions among design activities, such as dynamic con- 
straints that cannot be anticipated before earlier de- 
sign stages have been completed (see Section 3). The 
second approach easily causes an unpredictable be- 
havior of the overall design system. Small changes 
to the design step models can have unforeseen conse- 
quences for the overall process. Maintaining consis- 
tency among the models is complicated. Thus process 
data cannot be changed easily. Conflicts among de- 
sign steps are only detected dynamically. This makes 
it difficult to devise conflict resolution strategies in ad- 
vance. This is why more and more researchers apply 
mixed process models. They either differentiate be- 
tween statically defined design tasks and dynamically 
controlled design activities [SI or do not use any a pri- 
ori process descriptions at all [7]. Dynamic constraints 
are merely recorded during the design process. On 
this level, it  is not possible to provide guidance for the 
designer, to plan or to optimize design sequences in 
advance. In [5], the design process is also decomposed 
into design tasks. Task schemas are specified as de- 
pendency graphs between abstractions of design tools 
and data. A design problem is first separated into 
tasks by the designer or a design adviser [13]. Then, 
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Figure 1: DPMS Architecture 

the task schemas are used to derive design plans for 
each task. While the separation of task and process 
levels seems beneficial, the use of different modeling 
paradigms on these levels is arbitrary. 

3 Design Process Management System 
- Architecture 

The formal basis and implementation of the design 
flow management and planning system are thoroughly 
described in (31. Here, we propose a conceptual ar- 
chitecture of an advanced design process management 
system (DPMS) which complements the one already 
in place at Siemens AG. The DPMS architecture (Fig- 
ure 1) follows the notions of Design Flow Manager, 
Task Manager, and the overall Petri net-based for- 
mal methodology [3]. The architecture fosters a high 
level view of intelligent design support. We briefly de- 
scribe its components and their functionality. There 
are three basic layers in the system: 

1. Management and organization layer, which de- 
termines the overall system goal (i.e., design 
goal) and supports interaction with the design- 
ers via the interface unit. Essentially, this layer 
can be used by project management personnel, 
corporate officers, and designers/users. 

2. Coordinution layer, which supports design task 
planning, decision making, diagnostics, and tool 
scheduling. This layer interfaces with both the 
users and the execution stratum. 

3. Ezecution layer, which carries out design actions 
determined a t  higher levels through the Task 



Manager. This layer also monitors the design 
process and the state of the system being de- 
signed. 

These layers are modeled after architectures for 
high autonomy systems [18]. 

As indicated above, the management layer 
consists of corporate policy makers and system 
users/designers. The coordination layer is centered 
around a principal database called Supporting Data 
Bases and Methods Bank (SDBMB) (Figure 1). We 
envision this database as a collection of tools and pro- 
cedures offering several types of design decision mak- 
ing. The components of this module are described in 
detail in Section 4. Based on this architecture, deci- 
sion support is achieved through the following modiiles 
and functions: 

The Planner’s function is to  generate a design pro- 
cess flow model and a schedule for executing it (see [3] 
for a good summary of planning methods). I t  gener- 
ates a nominal plan - a pre-planned sequence of de- 
sign actions that would normally be executed to realize 
the design goal. This process is supported by knowl- 
edge about the design goals, constraints, requirements, 
as well as by tools and procedures available in the 
SDBMB (i.e., the Tool Base, design methodology from 
the Methodology Base, and the design traces). 

We postulate that the Planner be capable of re- 
planning and dynamically updating the design ac- 
tions. This can be based on several factors: a) the 
re-plan order from the diagnosing component, of the 
SDBMB. Re-planning would be necessary if and when 
the design process simulation state is significantly dif- 
ferent from the actual process execution &ate, b) In- 
ference Engines and Optimization Methods may be 
used for updating the plan dynamically based on lo- 
cally selecting “best” design decisions using design 
models, and c) designers can override the plan and 
the Design Flow Manager (see below). 

The Task Manager is responsible for invoking intli- 
vidual tools as directed by the Design Flow Manager. 
The Design Flow Manager has the knowledge of the 
nominal plan, the current state of the design process, 
and the state of the design object on which the process 
and the tools operate. As CAD tools are invoked, the 
states of the process and design objects are updated. 
Optimization and inferencing procedures should sup- 
port the Design Flow Manager in its actions at two 
levels: reasoning about the design process and reason- 
ing about the system being designed. 

The Monitor “observes” the progress of both the 
design process flow and the design artifact,. It, can 
compare the current state with that of the expected 

progress based on the simulated data obtained from 
the Ernirlator and from the CAD simulators in the 
SDBMB. The Emulator executes the design process 
model whereas the CAD simulators operate on the 
design object model. The Design Flow Manager makes 
decisions regarding the progress of the design process 
and invocations of various CAD tools. I t  may issue a 
re-plan order to the planner as well. 

We now proceed to discuss the details of design flow 
management. 

4 Design Process Management Ser- 
vices 

4.1 Process Models 

We found that high level Petri net models can pro- 
vide an adequate and intuitive representation of de- 
sign process dependencies if properly extended for that 
purpose [3]. We therefore based our process modeling 
language on the Petri net paradigm. 

High Level Petri nets [ll] are directed, bipartite 
graphs (consisting of places and transitions) marked 
with tokens of various “colors”. Transitions, repre- 
senting the active components of a system, execute 
(or fire) depending on the existence of certain tokens 
on their input places. The firing causes the input 
tokens to be removed and new tokens to be created 
on the output places. Petri net models are compact 
in size and they can clearly express various relations 
among process steps and objects (such as sequences, 
conflicts, and concurrencies among activities). They 
define a formal behavioral semantics based on mark- 
ings (i.e., the set of tokens that is present on all places) 
and a simple firing rule. The graphical representation 
of Petri nets offers an overview of the process and of 
its current state. The correct behavior of a Petri net 
(with respect to  a given specification) can be tested 
by simulation and verified to some extent by formal 
methods [3], [4]. 

The basic Petri net paradigm is too restrictive for 
modeling design processes. Therefore, extentions in- 
clude special decision nodes, various arc types, meth- 
ods for accessing and creating sets of tokens, hierar- 
chical transitions and places. 

Like the process models themselves execution of 
the process models is recorded in a Petri net struc- 
ture as well, and is called a trace. The transitions of 
a trace represent executable design steps, while the 
places model data object instances that are used or 
created by these design steps. Tokens indicate whether 
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the data objects are valid or not. An important prop- 
erty of the traces is that they are acyclic. Petri nets 
and traces are described in more detail in [3], [4] [7], 
[14] and [17]. 

4.2 Design Flow Management 

Design Flow Manager operates on defined process 
models (see 4.1) to control the flow of design, i.e., 
to determine the current design state and the actions 
that can be taken next. The design flow manager su- 
pervises all contraints among design steps that are de- 
fined in the process models. Additional services that 
the design flow management can provide are: design 
process simulations, gathering of design histary infor- 
mation, support of backtracking for the investigation 
of design alternatives, automatic restoration of design 
data and the enforcement of design policies. 

4.3 Design Decision Support (DDS) 

Design decisions are required in every phase of the 
design process, at both the process model level and 
the design artifact level. Here, we focus on the process 
model level. DDS supports users in decisions such as 
tool selection, design strategy and trade-off analyses. 
DDS also supports design planning. 

In addition to  the existing design flow process mod- 
eling techniques, we are introducing other design deci- 
sion support concepts. They amalgamate traditional 
decision support systems (DSS) [20] and AI tech- 
niques. 

The ultimate goal of our efforts is to design a de- 
sign decision support methodology that can be eas- 
ily adapted to  changes in the problem domain and to 
varying levels of the users’ decision making expertise. 
To this end, the core of our DPMS architecture is the 
SDBMB database. I t  consists of domain-dependent 
and independent knowledge sources which support the 
operation of the management, coordination, and exe- 
cution layers of our system. The data base modules 
are summarized below. 

The Design Process Model Base contains generic 
process models for a design domain, for instance, Petri 
Net models as developed by Bretschneider [3]. The 
Design Object Model Base represents models under- 
lying the components of a design domain. Knowl- 
edge representation schemes support the organization 
of this database. The CAD Tool Base is a domain de- 
pendent library populated with CAD tools. An Ezppcr- 
imental Frame Base is is intended to contain generic 
simulation experiment templates used in the evalua- 
tion of design models [18]. 

The Design Methodology Base and Technology 
Database are intended to  store design guidelines, rules, 
standard design procedures for a domain, off-the shelf 
components and standards. 

For the appropriate control of the flow and design 
history management, the Design Trace Base/Trace 
Selector stores traces as designs are carried out. Ko- 
courek [16] suggests a scheme to discard traces as new 
or better traces are added to this database. This 
scheme underlies a module called a Trace Selector, also 
part of the SDBMB. 

The Optimization Methods Bank is as a set of math- 
ematical optimization procedures for analytical per- 
formance and tradeoff studies. The Inference Engines 
are expert system shells for the generation and selec- 
tion of alternative designs. 

In addition to the above modules, we envision 
higher level procedures such as Design Knowledge Ac- 
quisition Methods - methods for knowledge elicitation, 
used to set up the DPMS environment for a domain 
specific application; Design Rationale Capture Meth- 
ods Bank - a set of procedures for design capture; and 
Diagnostics Methods - a set of procedures for design 
process and object fault detection and identification. 
We imagine this as a support tool, which can assist 
in recognizing that an erroneous design state (in the 
process and/or design object) has been produced, and 
identifying why it has been reached. This is a high 
level design support, yet to  be clearly defined. 

4.4 Planning 

Using the information contained in the process 
model, the DPMS can ensure that only those tasks 
are activated that are applicable to the current de- 
sign state. However, a combination of “correct” design 
steps can still lead to a situation which makes it im- 
possible to achieve the desired design goal. Required 
design steps might not be enabled (due to a violation 
of constraints earlier in the process or missing design 
data), the project might exceed the available resources 
(e.g., time, cost), or the generated results may be use- 
less since important design requirements are not met. 
To avoid these costly problems, designers and project 
managers need to be supported by a design planning 
facility. Planning services can be provided based on 
our process model. 

The process model not only describes preconditions 
of design steps but it also represents their postcondi- 
tions. Therefore, it  can be used to  simulate design 
processes. During simulation, instead of activating 
the respective design tasks when firing a transition, 
the output, tokens of the transitions are created di- 
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rectly, based on the information contained in the pro- 
cess model. Each design process simulation leaves a 
trace, just as the “real” execution of the process would 
do. Provided that the process model is correct, the 
tokens that are produced as a result, of a simulation 
run represent design data or design states that would 
be created if the simulated process were actually exe- 
cuted. The trace of the process simulation can there- 
fore be seen as the representation of a plan for creating 
the design results from the state in which the simula- 
tion was started. 

Using automated design process simulation, a 
forward-chaining planning technique has been imple- 
mented [3]. Starting from the current project state, 
a number of applicable design steps are selected, and 
their execution is simulated. From the resulting mark- 
ings, one proceeds in the same direction, until the de- 
sired goal state is reached. Since only abstractions of 
design steps are provided in the process model, their 
detailed behavior has to be predicted using estima- 
tors for the activities. The challenge is to limit the 
effort of estimating design results, and yet to be able 
to determine a useful plan. 

From a Petri net point of view, planning can be seen 
as the task of finding sequences of transition firings 
that, starting from an initial marking of the net, gener- 
ate a new net marking containing a given set of goal to- 
kens. One way to  solve this problem is to successively 
enumerate all reachable markings until the marking 
covering the set of goal tokens has been found. This 
technique, which corresponds to the state-space plan- 
ning approach suggested by Knapp [15] ,  is very in- 
efficient since the number of intermediate markings 
is often immense, especially if there exist numerous 
concurrently enabled transitions. Traces are a more 
efficient technique, since only the enabled transitions 
rather than all the intermediate markings have to be 
kept. Only slight restrictions to the net topology are 
required to guarantee that all possible firing sequences 
are found using this approach. The planning technique 
is further enhanced by applying the rules annotating 
the transitions in the net to select the most, promising 
continuations. 

Detail design object properties (e.g., the area of a 
VLSI circuit) are not usually modeled in the design 
process model and therefore need to be predicted by 
estimators for the design tools diiring planning. Our 
system allows us to  declare these estimators so that 
they can be automatically activated and chained for 
providing (prospective and retrospective) measures to 
support planning decisions. After a design plan in the 
form of a trace has been determined, activity net de- 

scriptions [17] are automatically extracted. Network- 
ing techniques can then be applied to determine opti- 
mal schedules for the design activities. These identify 
the earliest (latest) start and completion times for the 
design activities, critical design steps, and optimal re- 
source allocations. 

4.5 Data and Knowledge Management 

A process management system requires data man- 
agement facilities. Various types of information about 
the system and the state of a process have to be gath- 
ered, and must be efficiently retrievable (e.g., design 
data, tool data, trace data, knowledge bases for de- 
cision support). All data and knowledge should be 
managed by a common management system. This 
eliminates redundancy and makes the data uniformly 
accessible. The data management system is the in- 
terface to data bases, file systems, or other storage 
mechanisms. It offers facilities for data security, data 
persistence, transaction mechanisms, and access con- 
trol. In our case, not only design and tool data must be 
managed and stored, but also knowledge-based flows 
in the form of rules and facts, and decision data in the 
form of many knowledge and data bases. The use of 
knowledge-based tools, especially design decision sup- 
port tools, requires new facilities for representation 
and evaluation of knowledge. Here, a solution for the 
handling of design knowledge represented in different 
forms is suggested. The result is the integration model 
for data and knowledge management. This model is 
realized by an object oriented data  management inter- 
face between knowledge-based design tools and an ob- 
ject oriented data base management system. This in- 
terface extends existing framework data handling ser- 
vices. Most of the knowledge-based tools in the de- 
sign area use rules or frames to represent their knowl- 
edge. They combine artificial intelligence techniques 
with conventional programming methods. Object ori- 
ented data models provide a good basis for procedu- 
ral as well as for frame- and network-like knowledge 
representation mechanisms. New features for an ob- 
ject oriented data model are necessary to support rule 
based mechanisms, to extend knowledge base struc- 
turing capabilities, and to  handle uncertain and in- 
complete knowledge [2]. 

A class library for all types of data with manage- 
ment methods provides a convenient extension of data 
representation and data handling services. This object 
oriented concept also offers facilities to structure the 
data by different criteria, such as design object, net hi- 
erarchy level, decision information, or planning aspect. 
This data management approach integrates data and 
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knowledge sources. I t  offers mechanisms to control, 
evaluate, represent, and to access design knowledge. 

5 Prototype 

The design process management prototype system 
has been implemented using OPS83 and the C pro- 
gramming languege in the UNIX environment. The 
system consists of two parts: the process model cap- 
ture component and the design flow management sub- 
system. 

To create a process model, users invoke a graphi- 
cal editor, offering a predefined set of symbols to form 
a process net. A checking program automatically su- 
pervises the compliance of the process model with the 
extended Petri net syntax [3]. A process model can 
consist of any number of partial nets which are seman- 
tically joined by the checker through the identification 
of nodes having the same type and name. After the 
process model has been completely defined, the rule 
generator is started, which creates OPS83 production 
rules [lo] for the process nets. The resulting rule set 
is linked together with the flow manager, the design 
decision rules ,and the planning rules to provide an 
executable design flow for the given process. 

The design process management system is capa- 
ble of controlling the correct execution of hierarchical 
PrT-nets, of invoking the design tools associated with 
the net transititons when they are fired, and of provid- 
ing restoration and re-creation services for the tokens. 
Traces, which can be represented graphically, are col- 
lected automatically. The hierarchy of the process net 
is exploited to  distinguish between partial traces rep- 
resenting net executions at different, levels. 

The prototype has been applied to various design 
processes consisting of a very large number of trace 
steps. Apart from a slight delay when activating and 
completing a design step (due to the communication 
overhead), there is no measiirable performance de- 
crease since the evaluation of rule sets and restoration 
of design process states is extremely fast. The supe- 
rior performance of the system allows us to handle 
all graphical requests (such as redrawing of windows) 
elegantly through the OPS83 rules. 

6 Conclusions and Future Work 

In essence, all the concepts, methods, and tech- 
niques discussed here are intended to support, design 
processes. There is no single, universally accepted ar- 
chitecture or framework that can be judged superior 

to all other systems. However, it  is clear that a set of 
concepts is emerging to  unify design activities across 
teams, tools, and tasks. The DPMS architecture pre- 
sented here fosters such concepts. I t  amalgamates 
many of the tenets of CAD frameworks, knowledge- 
based design, and decision support systems. With 
an adequate distributed processing support, it  can be 
placed in a concurrent design environment as well. 

Initial design decision support can be provided at 
the design process level by incorporating facilities for 
design trace recording, retrieval, and selection. Pre- 
liminary work towards this objective has been under- 
taken by Bretschneider [3] and Kocourek [16]. To real- 
ize fully the vision charted in our architecture, a design 
object modeling support layer should be embedded in 
the system. A decision support system in the form of 
optimization procedures for both design process mod- 
els and design objects should be added incoroporated 
in our system as well. Lastly, sophisticated knowledge 
acquisition, learning, and diagnostic modules must be 
developed. At each of the above three levels of refine- 
ment, the Design Flow Manager, Planner, and other 
components must be augmented with additional rea- 
soning capabilites. 
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