
A Distributed Computing Framework for Parallelization of Coevolution in
Multi-sided Conflicts

Rami Al-Motlak
Dept. of Computer Science and Engineering
Arizona State University, Tempe, AZ 85287

rami.al-motlak@asu.edu

Jerzy W. Rozenblit, Faisal Momen
Electrical and Computer Engineering Department

The University of Arizona, Tucson, AZ 85721
{jr, momen}@ece.arizona.edu

Abstract

A large number of military simulation systems dealing
with warfare and games with coordinated missions can be
described as multi-sided conflicts. These systems usually
involve groups sharing various alliances and relationships,
each pursuing a range of different goals. A coevolutionary
approach in modeling the dynamics of such complex sys-
tems allows all sides of the conflict to evolve their strategies
or courses of action. The coevolutionary approach used in
Sheherazade [9], a multi-sided simulation environment for
Stability and Support Operations (SASO), allows each side
to evolve strategies in turns against other strategies cap-
tured from the other sides. In such systems, the greater the
number of plans that are evaluated, the better the final alter-
natives are likely to be. To improve the speed and efficiency
in generating strategies, a distributed computing modular
framework based on the coevolutionary approach used in
Sheherazade was designed and implemented to provide the
following salient features: provide a more natural model
of how different sides interact in a conflict, parallelize the
generation of strategies by the different sides, and improve
performance by utilizing network computing capabilities.

1. Introduction

Older military war-game simulators have been designed
for simulating conventional Major Theater of War opera-
tions, which typically involve two sides in conflict fighting
towards simple goals such as gaining territory or maximiz-
ing enemy attrition. Their objective was to provide deci-
sion making support to the battle staff by rapidly proto-
typing scenarios and generating possible Courses of Ac-
tion (COAs) for friendly and enemy forces. In FOX [8],
an efficient plan evaluator, based on Genetic Algorithms
(GAs), was developed to provide a trade-off between com-
putational efficiency and accuracy, meeting challenges that

usually arise for decision support in complex military do-
mains. These types of simulators lacked the ability to rep-
resent an increasing number of warfare operations that in-
volve two or more conflicting groups or forces having op-
posing or complementary goals. Stability and Support Op-
erations (SASO) [11] was introduced by the US Army “to
promote and sustain regional and global stability” and “to
meet the immediate needs of designated groups, for a lim-
ited time, until civil authorities can accomplish these tasks
without military assistance”. SASO scenarios generally in-
volve a number of groups or factions with varying interests,
allegiances and capabilities, ranging from organized mili-
tary forces to militia and terrorist organizations, media and
refugees. Simulating such a complex environment with the
aim of providing near real-time decision support .

A war-game simulator that models SASO was intro-
duced in [9]. It brings in the use of multi-sided evolution
or coevolution. The system is comprised of three parts:
Sheherazade [7], a war gaming engine for SASO, ATACKS
[6], a 3-Dimensional visualization platform, and a genetic
algorithm that uses the Sheherazade wargamer to compute
fitness values for courses of action. The model abstracts
a four-part approach for representing complex military do-
mains that involve multi-sided conflicts: setting up a SASO
simulator scenario; the coevolution of courses of action by
several agents; Sheherazade [7], the war-game simulator
used to compute a fitness score for a course of action; and
the analysis of coevolution results with scenario visualiza-
tion using ATACKS. Figure 1 shows a general architecture
for the four-part approach introduced in [9].

In Sheherazade [9], the war-game simulator is coupled
with a genetic algorithm based coevolutionary environment.
Agents are used as an abstraction in the simulation envi-
ronment to represent the goals and objectives of each side
of conflict. Agents are comprised of various SASO enti-
ties, which are the indivisible game pieces that carry out the
COAs assigned to them. A COA for an entity consists of a
movement schedule that directs the entity to move to a par-
ticular region at a specified time (within the bounds of the

2009 16th Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems

978-0-7695-3602-6/09 $25.00 © 2009 IEEE

DOI 10.1109/ECBS.2009.37

215

2009 16th Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems

978-0-7695-3602-6/09 $25.00 © 2009 IEEE

DOI 10.1109/ECBS.2009.37

215

Coevolution

Sheherazade

COA
Evolution

COA FITNESS

ATACKS

SETUP

VISUALIZE

Scenario
File

Visualization
File

Figure 1. The four-part system architecture introduced in
the coevolutionary approach

user-specified scenario time frame), and for combat-capable
units, a list of the factions or other sides of the conflict to
target for attack corresponding to each movement. The goal
of the system is to search for good candidate strategies for
each agent, where a strategy represents the set of COAs,
one for each game piece owned by that agent, and present
all the strategies to the battle staff for evaluation and to aid
in decision support.

In the current approach, all sides in the conflict are al-
lowed to evolve their own COAs against several static COAs
captured from the other sides. This is done in a sequential
manner in turns, where one agent evolves new COAs while
the other agents wait. The highest scoring COAs from each
agent are placed in a globally accessible hill with one slot
per agent. An agent can update only its own slot on the hill
with a higher scoring set of COAs and only when it is the
currently evolving agent. Thus, the hill represents the cur-
rent best COAs or strategies for each agent that the other
agents evolve against. Given the large search space of even
the abstract SASO domain used in Sheherazade, it is ob-
vious that the longer the simulation is allowed to run (i.e.
the number of agent COA-generation cycles) the larger the
number of plans that are evaluated, and the better and pos-
sibly more varied the final alternatives are likely to be.

One of the major problems that exists in the current ap-
proach, however, is the sequential computational behaviors
inherent in the architecture and the application’s implemen-
tation. It does not take advantage of parallel hardware archi-
tectures or network capabilities currently available and with
simulation times measured in hours, the system is believed
to be slow in generating COAs and in evaluating strate-
gies. Complex military domains provide many challenges
to software developers due to the parallel computational
natures inherent in such domains, therefore it is necessary
to explore and evaluate new system architectures and tech-
niques providing a trade-off between speed and the quality
of generated plans. A speedup in generating strategies while

keeping good quality is of most importance in these time-
sensitive military applications. This paper presents a sim-
ulation framework that facilitates parallel implementations
of such multi-sided conflict type of problems, along with a
demonstrative implementation of a ‘locale occupiers’ game
utilizing the framework.

2. Models for parallel COAs genertation

Improving the performance of COA generation for
multi-sided conflicts is a crucial factor in the paralleliza-
tion process. In the existing model [9], agents interact in a
sequential manner by taking turns to put their best plans on
a global hill. The strategy used by agents to decide when
to update their best plan on the hill is another important el-
ement in the model. Currently, each agent uses a genetic
algorithm to evolve plans for a predefined number of gener-
ations. The plan with the highest score is selected to chal-
lenge the hill, and if it results in a higher score, the cor-
responding COA on the hill is replaced by the challenging
one. This paradigm has some disadvantages. Firstly, the or-
der of agents’ interaction and the number of generations the
GA evolves before updating an agent’s plan are parameters
of the game setup. It may not accurately reflect how agents
interact in the real world. Secondly, each agent must wait
for its predecessors before it gets a chance to evolve and
update its own plan.

A1 A2 An

War-Game Simulator

CO
A 1

CO
A 2

CO
A n...

Agents
......

1 2 n

Global Hill

Figure 2. Agent interaction model in the sequential ap-
proach

Despite these issues however, the model can be consid-
ered to be fair. Each agent gets to evolve a predefined num-
ber of generations to come up with a new strategy. Further-
more, all agents wait uniformly for their next turn. Figure
2 shows a general overview of the architecture used in this
approach [9]. It involves a war-game simulator attached to

216216

a sequential coevolution process and shows how different
agents interact with the global hill to achieve the COA up-
dates.

For a game with n agents, the set of agents A and
the Global Hill GH which is the set of best courses-
of-action from each agent, can be represented as A =
{A1, A2, . . . An} and GH = {COA1, COA2, . . . COAn}.
Each agent is given a turn to evolve a predefined number
of times. The best COA achieved is run against all COAs
achieved so far by other agents on the global hill, and if a
newly generated COA scores higher than that agent’s dom-
inant COA on the hill, the global hill will be updated.

By assuming that the game is repeated k times, where k
is the specified number of turns needed to run the coevolu-
tion, an arithmetic formula can be derived to determine the
total time needed to run the game. Here, T represents the
total time to run the game, and T i

j is the time required by
agent j to iterate sequentially through evolution cycle i.

T =
k∑

i=0

T i

T =
k∑

i=0

T i
1 + T i

2 + . . . T i
n

Figure 3 (top) shows the agent interaction model in the
current sequential approach, and how the global hill is al-
tered at the end of each agent’s turn. Three agents are used
in the illustration. The timing chart, shown in Figure 4,
demonstrates the timing layout for 4 different agents dur-
ing an iteration of the game. In the sequential scheme, the
global hill update occurs at the end of each turn of an agent
if and only if the strategy is found to score higher than the
previous strategy.

2.1. Parallel coevolution with fixed update

In this approach, the constraint that an agent must wait
in a predetermined sequence for its turn to update the hill is
removed. All agents will start generating plans in parallel.
Each agent runs concurrently on a separate processor or ma-
chine in a distributed system, making a local copy of the hill
at a synchronization point, and using the GA to evolve plans
for a predetermined number of generations. The update pol-
icy for each agent is to update its corresponding slot on the
hill after evolving plans for a fixed predetermined number
of generations.

The agent interaction model is basically a synchroniza-
tion point, followed by concurrent evolution of new plans,
followed by another synchronization point and so on until
the specified number of evolution turns have elapsed. The
COA update criteria in this model is basically the same as
in the sequential model. At a synchronization point, each

1

1

1

2

1

1

2

2

1

2

2

2

A1

A2

A3

Agent 1

Agent 2

Agent 3

Global
Hill

1

1

1

2

2

2

3

3

3A3

Global
Hill

A3

A2

A1

A2

A1

1

1

1

1

2

1

2

2

1A3

Global
Hill

A3

A2

A1

A2

A1 3

2

2A3

A2

A1

Figure 3. The Agent interaction model with global hill
in the sequential approach (top), parallel coevolution
with fixed update scheme (middle), and reactive update
scheme (bottom)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

time

1

2

3

4

a
g
e
n
ts

T1

T2

T3

T4

Ti = T1 + T2 + T3 + T4

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

time

1

2

3

4

a
g
e
n
ts

Ti+1
4

Ti+1
3

Ti+1
2

Ti+1
1Ti

1

Ti
2

Ti
3

Ti
4

Ti = max(Ti
1,T

i
2,T

i
3,T

i
4)

Figure 4. Timing chart for the sequental (top) and fixed
update approach (bottom)

217217

agent uses a copy of the current hill to evolve new strategies
for a fixed predetermined number of generations. Once the
best strategy is found, it is used to replace the current COA
on the hill. Figure 3 (middle) shows the agent interaction
model in this approach, and how each agent is challeng-
ing a copy of the global hill at the same time and updating
its corresponding COA waiting for the next synchronization
point to repeat the process.

By assuming that the game is run for k cycles, the to-
tal time T needed by the game to generate the strategies is
given by:

T =
k∑

i=0

T i

T =
k∑

i=0

Max(T i
1, T

i
2, . . . T

i
n)

The timing chart, shown in Figure 4, demonstrates the
timing layout for 4 different agents running for 2 iterations
using this scheme.

2.2. Parallel coevolution with reactive update

In this approach, the constraint that all agents must
evolve for a fixed predetermined number of generations at
each turn is removed. An agent does not have to wait for
a certain number of generations before selecting a COA to
challenge the hill. The synchronization points from the pre-
vious approach are removed. Each agent runs concurrently
and maintains a local copy of the hill. Once an agent has
generated a COA, it is scored against the local copy of the
hill. If the generated COA scores higher than the current
one on the local hill, it immediately attempts to update the
central global hill by replacing the corresponding COA with
the new one. At that point, a broadcast occurs to inform all
other agents of the new state of the global hill. As a result,
all running agents will have a copy of the newest COAs
achieved so far.

Figure 3 shows the agent interaction model in the reac-
tive update approach, and how each agent is challenging a
copy of the global hill at the same time and updating its
corresponding COA.

It may be observed that some agents might be slower
than others to react and that the evolution process might
take longer for some agents than others. Hence, the game
might not be fair in the sense that each agent is not given
an equal opportunity to update the global hill. However, the
total time needed by the game to generate the strategies is
guaranteed to be less than, or in the worst case equal to, the
two previous schemes due to the fact that no overhead time
is lost due to synchronization, and the removal of the con-
straint that all agents must evolve for a fixed predetermined

number of generations. A COA update policy is of elevated
importance in this model. Two different update polices can
be considered in this approach.

2.2.1. Reactive update with multiple plan comparison.
In this COA update policy, once the global hill is success-
fully updated by an agent and a broadcast occurs from the
global hill to each local hill running under each agent, other
agents not responsible for the change might be still working
on scoring their own COA against the old local hill. This
policy suggests that an agent keeps working on challenging
the old known status of the hill while starting a new thread
to process challenging its COAs against the latest hill status
achieved so far. Since the global hill broadcast can occur at
different times, an agent might be running multiple threads
challenging its own COA against different instances of the
hill. At the end, an agent will choose the COA with the
highest score as its best COA and will update the global hill
accordingly.

This policy increases the sensitivity of the system but at
the expense of using more computing resources of the pro-
cessor due to the creation of multiple threads for challeng-
ing different copies of the hill. Figure 5 (top) illustrates this
update policy.

GH Update
by Agent 2

GH Update
by Agent 3

Threadi

Threadi+1

Threadi+2

Agent 1

1

Global Hill

1 1

1 2 1

1 2 3

GH Update
by Agent 2

Threadi

Threadi

1

Global Hill

1 1

1 2 1

X

Figure 5. Update-policy with and without (bottom)
multiple-plan-comparison

2.2.2. Reactive update without multiple plan compari-
son. In this COA update policy, once an agent updates the
global hill and the new hill is copied to all other agents,
any agent working on challenging its old local hill should
abandon that process and start challenging the current state
of the hill. This possibly can be unfair to agents that are
slow to react, and can lead to certain agents always forcing
their COAs on other agents by frequently updating the hill

218218

causing the other agents to constantly reset their evolution
processes, and therefore may only be useful if such an ar-
rangement reflects the real-world nature of the multi-sided
interaction. Figure 5 (bottom) shows a demonstration of this
update policy.

2.3. A Hybrid Scheme for Parallel Coevolution

An more ideal approach for parallel plan generation
could be derived by combining some of the features of the
fixed update and the reactive update approaches. In this hy-
brid approach, the constraint that all agents must evolve for
a predetermined number of generations is removed, and the
necessity to update the global hill when an agent is done
with challenging its local hill is removed as well. Instead,
the global hill’s update occurs at fixed time intervals, ∆t,
specified by the user as a reasonable value greater than the
average time needed to challenge the hill and run the war-
game simulator in the game. This would decrease the over-
head that can occur due to many global hill updates and at
the same time provides reasonable performance. The global
hill update policy could be a simple “without multiple plan
comparison” update policy but with no need to cancel the
agent’s process of challenging its old local hill before the
update. The update can be reflected to its local hill after
being done with that current COA evaluation process.

To achieve fairness in the game as in the old sequential
model, a counter can be added to each agent to count the
number of turns passed so far by each agent. The game will
continue until all agents’ counters indicate that all agents
have reached the same number of iterations. The total time
T needed by the game to generate the strategies is guar-
anteed to be less than the sequential method and the fixed
update method because all agents are running continuously
with no waiting overhead for synchronization. A timing
chart, shown in Figure 6, demonstrates the timing layout
using 3 iterations for this scheme.

3. Parallel GA Coevolution

Parallelization in our multi-sided conflict simulators can
be achieved by changing the architecture, the agents’ inter-
action model or the global hill update policy. Another level
of parallelization can be accomplished at the functional and
data level. The functional model splits the functionality into
modules whereas the data model splits the data into smaller
data chunks. GAs are used as the core algorithm for the co-
evolution process among agents. Hence, applying the func-
tional and/or data models of parallelization on a GA plays
an important role in speeding up the process of generating
strategies.

Coevolution using parallel GAs must attempt to keep
the quality of results and the way the GA functions

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

time

1

2

3

4

a
g
e
n
ts

Global
Hill

1
1
2
1

2
2
2
1

2
3
3
2

3
3
3
3

∆t ∆t ∆t ∆t ∆t

1
1
1
1

Figure 6. Timing chart of the hybrid method for parallel
coevolution

the same, while providing a speedup factor. Both the
single-population fine-grained GA and multiple-population
coarse-grained GAs change the way the GA works [1, 3, 5].
The global single-population master-slave GA seems to be
a reasonable choice for GA parallelization because of the
similarity it shares with our current simulation environment.
The use of this algorithm for coevolution can be accom-
plished by replicating the functionality of the war-game fit-
ness simulator on multiple nodes, and by splitting the in-
dividuals in the population among sub-populations that can
be evaluated separately on each simulator slave. Figure 7
shows a general overview of the new architecture which in-
volves multiple war-game simulator slaves attached to a co-
evolution process breaking down the coevolution process to
show more details of how different agents interact with the
global hill to achieve the COA update.

The data layout is important in this model because
the computation of relative fitness values for the selec-
tion process requires global communication among sub-
populations. Synchronization is needed as well since the
population is divided among several fitness simulator pro-
cesses. Replication of fitness simulator is required for paral-
lelization using this scheme. Individuals in a population can
be divided equally among the slaves for fairness. A uniform
distribution of individuals is not a must but is preferable.

4. Application Framework

Many design details, use case scenarios and system re-
quirements in coevolutionary environments can be provided
by domain experts. During the design process, many ap-
proaches can be used to model the system. Software ar-
chitects and developers employ the knowledge gained from

219219

War-Game
Simulator

1

War-Game
Simulator

2

War-Game
Simulator

k

A1 A2 An
Agents

......

CO
A 1

CO
A 2

CO
A n... Global Hill

Figure 7. A detailed architecture of multi-sided conflicts
using the global single-population master-slave GA

domain experts to develop software applications for simu-
lating these environments. On the other hand, these simula-
tion applications should help domain experts to gain a bet-
ter view of how different components in the system interact
and to study possible scenarios that will help in the decision
making process. These simulation applications usually lack
the ability to support any new approaches to model these
systems, fail to adapt with new domain specifications that
can arise from domain experts and most importantly may
lack the ability to support different computing platforms
and/or operating systems in the long run. As a result, an
application framework for such complex environments is of
utmost importance.

An application framework is a set of structures, tem-
plates and modules that provide a context to help a program-
mer in implementing custom applications for a specific do-
main [2, 4]. It defines a skeleton for the software application
and forces the programmer to look at the big picture. The
skeleton can be defined as a set of classes, abstract classes
and predefined interactions among classes in a framework.
Developers can then develop their applications on top of
the framework, taking advantage of modularity, code reuse
and design structure provided by the framework. A gen-
eral application framework, MULTISIDED CONFLICTS,
is introduced as an application framework to address the
parallelization of plan generation in multi-sided conflicts.
It employs both the sequential coevolution and the parallel
coevolution with fixed update approaches. It adds the uti-
lization of parallel GA for the coevolution process as well.

Implementation utilizes a low-cost Java-based parallel
computing platform for measurement and data processing
purposes. The increase of high speed, low latency network-
ing has provided a useful and inexpensive alternative to su-
percomputers and other parallel processing hardware. Tasks

are distributed on a number of machines loosely connected
by a network using the standard IP stack instead of run-
ning the entire task on a centralized high performance ma-
chine. The programming environment utilized is Java 6.0,
from Sun Microsystems. Java [10] has definite advantages
such as platform independence and suitability for network
executions.

User Application

MULTISIDED_CONFLICTS Core

JAVA JAVA RMI

Sequential Model
Module

Threads Model
Module

RMI Model
Module

Figure 8. : Layered architecture for MULTISIDED-
CONFLICTS

The MULTISIDED CONFLICTS framework is a lay-
ered architecture consisting of four self-contained mod-
ules. The modules are built on top of the core JAVA and
JAVA RMI framework, which provides the flexibility of
the framework being supported by many vendors’ operat-
ing systems and different hardware components by merely
having a JVM installed on the system. Figure 8 shows
the different software modules supported by the frame-
work. Each of the modules that comprise the MULTI-
SIDED CONFLICTS framework can stand on its own or
be implemented jointly with one or more of the others. The
functionality of each component (or module) is as follows:

1. The core component: The core module provides the es-
sential functionality of the framework. It provides the
tools required to read initialization parameters from
files, print results to files and measure critical time pro-
cessing parameters. Furthermore, it provides the func-
tionality needed to use the genetic algorithm for the
coevolution of agents. It also provides the necessary
abstract software components in a coevolutionary en-
vironment such as agents, the global hill and COAs.

2. The sequential model component: This module pro-
vides the essential functionality to construct a coevo-
lution model of agents running based on the sequential

220220

scheme where each agent is given a turn to evolve and
access the global hill if needed. A sequential controller
is the core of this module.

3. The threads model component: This module provides
the essential functionality to construct a parallel coevo-
lution with fixed update model of agents using threads
running on the same machine. It also allows the evolv-
ing of all agents simultaneously while they access the
global hill, if needed, as shared memory. A popu-
lation of chromosomes, for an agent, can be divided
into sub-populations while a proportional number of
threads running fitness simulators are created for that
specific agent. A threads controller is the core of this
module.

4. The RMI model component: This module provides the
essential functionality to construct a distributed paral-
lel coevolution with fixed update model of agents using
threads and RMI server/client architecture. Grid com-
puting is exploited in this module and used for the co-
evolution process. It provides the server/client imple-
mentation for Agents, fitness simulators and the global
hill. A controller is also provided as a component of
this module.

Figure 9 shows an example of the layout of threads using
the threads model where 3 agents are used, 2 fitness simula-
tors for each agent and a model controller. The initialization
and creation of threads is done by the controller which holds
the global hill as shared memory. The controller will allow
the model to coevolve based on the number of turns read
during initialization.

Controller
Thread

A1
Thread

A2
Thread

A3
Thread

F1
Thread

F3
Thread

F5
Thread

F2
Thread

F4
Thread

F6
Thread

Figure 9. An example of a threads model layout

Alternatively, Figure 10 shows an example of the layout
of components in an RMI model where 3 agents are used,
a single fitness simulator for each agent and a global hill.
All these nodes are servers that can be running on the same
or separate JVMs which in turn can exist on a single or on

several machines. Running the servers is done using batch
files. The IP addresses and port numbers of the machines,
where servers are to be run, must be known and should be
stored in an initialization file before running the controller.

The MULTISIDED CONFLICTS framework consists of
several Java packages that provide complementary func-
tionality for building applications using this framework. All
customization and game run-time parameters are stored in
initialization files. File Input/Output handling is done via a
Tools package in the core module. The input files also pro-
vide for some custom parameters that are game dependent
and need to be changed accordingly.

Global Hill

Agent 1 Agent 2 Agent 3

Fitness
Simulator 1

Fitness
Simulator 2

Fitness
Simulator 3

Controller

JVM
<<execution environment>>

<< JVM >> << JVM >> << JVM >>

JVM

<< JVM >> << JVM >> << JVM >>

Figure 10. An example of an RMI model layout

5 Experimental Evaluation

A “Locale occupiers” game was implemented using
MULTISIDED CONFLICTS to evaluate the framework.
The game consists of multiple players, each represented by
one color, randomly placed on an n x n grid. The objec-
tive of each player is to move one element up, down, left or
right at a time through the grid claiming as many remaining
uncolored grid elements until no further movement is possi-
ble. The fitness is computed based on the percentage of the
board occupied by each player at the end of the game. The
usage of the framework made it an easy process to develop
the game. Three different versions of the game were imple-
mented using the three different models supported by the
framework, namely, the sequential model, the concurrent
model using threads and the concurrent model using JAVA
RMI and threads. The parameters n, x[], y[] were added
to the initialization files as custom parameters required to
overload a version of the method RunSimulation. The pa-

221221

rameter n represents the size of the board, whereas both x[]
and y[] represent the initial position of each player on the
board. The values used for these custom parameters as well
as the SetofGenes default parameter which is dependent on
the game were: n = 40, X[] = {5,6,7,2,1,6,4,8,2,3}, Y [] =
{8,9,1,2,5,6,4,2,3,6}, and SetofGenes = {L,R,U,D}. Other
default values determined in running the experiments were:
PopulationSize = 100, CrossoverProbability = 0.25, Muta-
tionProbability = 0.02, ChromosomeLength = 100, Num-
berOfTurns = 100, and NumberOfIterationsPerCycle = 10.

The parameters NumberOfAgents and NumberOfSub-
Generations were varied in these experiments to analyze
how a model will react regarding execution time, speedup
and quality of results. The latter parameter is only impor-
tant for the parallelized models and not used in the default
sequential model. The system used to run the experiments
was an AMD Athlon 3000+ 800MHz processor with 256
MB of RAM, and Microsoft XP Home edition Version 2002
with Service Pack 2.

Ten sub-generations were used in the parallelized threads
model whereas five sub-generations were used in the par-
allelized RMI model. These two values for the parameter
NumberOfSubGenerations were determined as optimized
values for these two models by running several experiments
on the hardware system used to conduct the experiments.
These optimized values may vary if a different hardware
system is used. The key is to utilize a value that will pro-
vide a high CPU utilization while not adding tremendous
unjustified time latency due to the usage of virtual memory
swapping. Conducting real-time experiments adds many
time constraints that should be taken care of by optimizing
the system to run efficiently on the available hardware.

2 3 4 5 6 7 8 9 10

Number of Agents

0

500

1000

1500

2000

2500

3000

Ti
m
e

(s
)

Sequential
RMI
Threads

Figure 11. A histogram for the distribution of execution
times among the three supported models

A histogram showing the distribution of execution times

among the models with a variable number of agents is pro-
vided in Figure 11. A better understanding of measuring
performance regarding execution time can be clearly ob-
served by analyzing the line chart in Figure 12. The threads
model has the tendency of converging towards a threshold
limit of execution time as the number of agents increases,
while the other models tend to linearly grow as the number
of agents grows. However, the slope of the line for the de-
fault sequential model can be seen to be larger than that of
the RMI model.

While running the experiments, it was observed that the
sequential model had the worst CPU utilization. Increas-
ing the load, by running the model with a larger number of
agents, simply produced the effect of a waiting job queue
but not an increasing CPU utilization. This explains the lin-
ear nature of the performance obtained in the experiment.
On the other hand, the RMI model had the highest CPU
utilization. The addition of agents created the effect of a
waiting job queue as well since the maximum utilization
is achieved so far due to running several servers on the ma-
chine all together. The threads model achieved a better CPU
utilization than the sequential model and was adapting to
the addition of new agents by increasing CPU utilization.
Hence, it had the tendency to converge to a threshold exe-
cution time.

2 3 4 5 6 7 8 9 10

Number of Sub-generations

2.9

2.95

3

3.05

3.1

3.15

3.2

3.25

Threads Speedup Factor

2 3 4 5 6 7 8 9 10

Number of Sub-generations

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
RMI Speedup Factor

2 3 4 5 6 7 8 9 10

Number of Sub-generations

0

500

1000

1500

2000

T
im
e
 (
s
)

2 3 4 5 6 7 8 9 10

Number of Agents

0

500

1000

1500

2000

2500

3000

T
im
e
 (
s
)

Sequential Model

RMI Model

Threads Model

Figure 12. Execution times vs. number of agents (top left)
and number of sub-generations (top right), and speedup
factor of the RMI model (bottom left) and Threads Model
(bottom right) over the sequential model

The speedup factor is calculated for the threads and RMI
models with respect to the default sequential model. The
mean value of the speedup factor for the RMI model was
1.445 whereas for the threads model the speedup was 3.165.
A much better value can be achieved for the RMI model
or even the threads model by providing more hardware re-

222222

sources. In fact, the RMI model has high scalability al-
lowing it to run on a fast LAN by sharing several sepa-
rate CPUs. A fast LAN will guarantee that the overhead
time lost for communication is minimal and comparable to
that lost for communication among servers running on the
same machine. This is achievable in today’s technologies as
10/100 Mbps or faster network cards are available on almost
all new LANs.

The second part of the conducted experiments was to
change the number of sub-generations in the RMI and
threads models while having a predefined number of agents.
The median value of the number of agents between 2 and
10, which is 6, is chosen and fixed to be used later. The
value 1626 seconds obtained from running the sequential
model in the first part of the experiment is used for compar-
ison. The number of sub-generations cannot be changed in
the sequential model.

The execution times of the threads model were found to
be the best. The model was able to accommodate further
partitioning of its agents’ generations by increasing CPU
utilization. As a result, all execution times achieved by
the threads model were comparable and within the same
range. On the other hand, adding more partitions to the
RMI model will be reflected in adding more fitness servers
to the model, hence increasing CPU utilization until maxi-
mum is achieved. Subsequently performance decreases due
to overhead generated by too much communication time la-
tency. As a result, the RMI model performs well until the
number of sub-generations becomes too high and it suffers
after that from a decrease in performance. Figure 12 shows
that execution times of the RMI model became even higher
than that of the default sequential model after reaching a
number of sub-generations equal to 7.

The speedup factor is calculated for the threads and RMI
models with respect to the default sequential model. The
mean value of the speedup factor for the RMI model was
1.193 compared to 3.11 for the threads model. The drop
of the RMI speedup factor below 1.0 is observed after the
number of sub-generations increases above 7, and it keeps
dropping thereafter. Figure 12 also shows the speedup fac-
tor fluctuation by changing the number of sub-generations
in both the RMI and threads models. The highest values
seem to occur at small numbers of sub-generations in the
RMI model whereas it seems to occur at the highest values
of the number of sub-generations in the threads model.

The last part of the experiments was to study and an-
alyze the quality of results obtained by running the three
different models. Speedup was achieved by the threads and
RMI models compared with the sequential model by using
the same hardware resources. Furthermore, speed up can
be enhanced further by using better hardware resources or
a fast LAN compared to the sequential model which will
suffer from enhancing performance even if better hardware

resources are to be available. The last check point was to
make sure that the quality of results achieved from running
the RMI and threads models are comparable to those of the
sequential model. The result set from the first part of the
experiments was used for the analysis. The double values
returned as scores for the fitness of COAs on the global hill
are used at the end of the game to compare results and to
observe the winner. A problem that may arise for winner
comparison can be due to the random nature of the GA al-
gorithm. As a result a game might end up with different
winners in spite of the fact that the same model is used.

0

0.01

0.02

0.03

0.04

0.05

0.06

Fi
tn
es
s V
al
ue

A1 A2 A3 A4 A5 A6 A7 A8

Sequential RMI Threads

Figure 13. Quality of Results histogram for 8 agents

A closer look at the histogram in Figure 13 shows that fit-
ness values in the RMI and threads model tend to fall within
the same range with little variance while the values might be
a little more distributed in the case of the sequential model.
This is due to the fact that agents are running simultane-
ously and trying to compete and evolve strategies in real
time unlike the sequential model where they are given turns
in order. In fact, both the RMI and threads models cre-
ate a more competitive environment among agents and tend
to force agents to develop plans faster and in a more life-
like style. However, the quality of results achieved in these
two models is still comparable with respect to the results
achieved from the sequential model.

6 Conclusion

The design, implementation and evaluation of a new ap-
plication framework called MULTISIDED CONFLICTS to
tackle the problem of improving performance of plan gen-
eration in multi-sided conflicts was presented in this paper.
It supports rapid development of RMI and thread based ap-
plications in this domain that can take advantage of a wide
range of available concurrent computing resources. A rea-
sonable and expected degree of speedup with an accompa-
nying increase in CPU utilization was demonstrated through

223223

the implementation of an example multi-sided game using
the framework. Several avenues for future work remain.
For instance, several new models based on other agent in-
teraction approaches can be added to the framework. This
will enable researchers to study and compare different mod-
els and approaches. More experiments especially in dis-
tributed environments can be conducted to study the max-
imum speedup that can be achieved in the RMI model in
particular.

References

[1] P. Adamidis. Review of parallel genetic algorithms bibliog-
raphy. Technical Report 1, Aristotle University of Thessa-
loniki, Thessaloniki, Greece, 1994.

[2] L. Deutsch. Design reuse and frameworks in the smalltalk-
80 system. In T. Biggerstaff and A. Perlis, editors, Software
Reusability, volume 2, pages 57–71. ACM Press, 1989.

[3] V. Gordon and D. Whitley. Serial and parallel genetic al-
gorithms as function optimizers. In S. Forrest, editor, Pro-
ceedings of the Fifth International Conference on Genetic
Algorithms, pages 177–183, San Mateo, CA, 1993. Morgan
Kaufmann.

[4] R. Johnson and B. Foote. Designing reusable classes. Jour-
nal of Object-Oriented Programming, 1(2):22–35, June/July
1988.

[5] S. Lin, W. Punch, and E. Goodman. Coarse-grain paral-
lel genetic algorithms categorization and new approach. In
Sixth IEEE Symposium on Parallel and Distributed Pro-
cessin, Los Alamitos, CA, October 1994. IEEE Computer
Society Press.

[6] J. W. Rozenblit, L. Suantak, and M. Barnes. Multi-agent
approach to decision support in advanced tactical architec-
ture for combat knowledge system (atacks). In Advanced
Simulation Technology Conference, San Diego, April 2002.

[7] J. Schlabach and D. Hillis. Sheherazade: A research plat-
form for decision support in military stability and support
operations. Technical Report 01, BCBL-H, 2003.

[8] J. L. Schlabach, C. C. Hayes, and D. E. Goldberg. FOX-GA:
a genetic algorithm for generating and analyzing battlefield
courses of action. Evolutionary Computation, 7(1), Spring
1999.

[9] L. Suantak, D. Hillis, J. Schlabach, and J. W. Rozenblit. A
coevolutionary approach to course of action generation and
visualization in multi-sided conflicts. IEEE International
Conference on Systems, Man and Cybernetics, 2(5-8):1973–
1978, October 2003.

[10] Sun Microsystems Inc. The source for java developers. On-
line, http://java.sun.com, October 2007.

[11] U.S Army publication. Field Manual (FM) 3-07 Stability
and Support Operations, February 2003.

224224

